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This deliverable describes the second year TRADR summer school, which
was organized by Fraunhofer IAIS. The topic of the school was Autonomous
Micro Aerial Vehicles. The school took place August 24th-28th 2015 at
Schloss Birlinghoven, Sankt Augustin, Germany. Eight invited speakers de-
livered 90 minutes lectures. The program also featured hands-on exercises,
an excursion, and social events.
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Executive Summary

This deliverable describes the second TRADR summer school. As topic for
the school Autonomous Micro Aerial Vehicles was chosen, as micro aerial
vehicles are one important element of the TRADR system to provide situ-
ational awareness to the rescue team, and autonomy is necessary to assist
MAV operators, e.g. by obstacle avoidance, and make MAVs usable for un-
skilled pilots like fire fighters. The school was organized by Fraunhofer IAIS
and took place in Schloss Birlinghoven, Sankt Augustin, Germany, from
August 24th to August 28th, 2015. Eight invited speakers were lecturing.
Participants had to apply for the school and only a fraction of the appli-
cants could be accepted. More than 50 participants from 14 countries were
present, around one quarter of them were from the TRADR consortium.
The summer school inspired vivid discussions and lead to new collabora-
tions. The impact was deepened by a TRADR integration meeting that
directly followed the school.

Role of the Summer School in TRADR

The general role of the yearly TRADR summer schools is to gain new knowl-
edge and disseminate experience. In this second instance, there was a bal-
ance between gaining new knowledge on micro aerial vehicles and dissemi-
nating experiences and results obtained within the TRADR project.

Contribution to the TRADR SOTA and Prototypes

The Year 2 TRADR summer school focused on the topic Autonomous Micro
Aerial Vehicles.

Micro aerial vehicles (MAV) such as multicopters have become a popular
research tool in recent years and are used in an increasing number of appli-
cation domains such as aerial photography and inspection tasks [2, 4, 1, 3].
They are also becoming increasingly relevant for the search and rescue do-
main that TRADR addresses. The objective of the school was to give re-
searchers and students deep insights into the currently leading approaches to
essential subproblems, such as 3D environment perception, mapping, navi-
gation planning, and control of autonomous MAVs.
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1 Tasks, objectives, results

1.1 Planned work

The project proposal plans summer schools organized yearly. For the Year
2 it was decided that Fraunhofer IAIS organizes it in Schloss Birlinghoven,
Sankt Augustin, Germany.

1.2 Actual work performed

1.2.1 Advertisement and participant selection

A call for participation was sent to several mailing lists, published on the
website, and advertised in social media like Facebook, Google+, and Twit-
ter. A total of 77 applications were submitted through EasyChair, many of
them from international applicants. Applications were reviewed by the orga-
nizers and 55 applicants were accepted. Accepted applicants had to provide
a billing address for the registration fees and 40 bills were issued for non-
TRADR participants. 17 of these came from Germany, six from Italy, 15
from eight other European countries, one from China, and one from Russia.
11 participants from the TRADR project registered free of charge. At the
summer school, also the eight speakers and the four organizers participated.
Four PhD and Master students from the Autonomous Intelligent Systems
group of University of Bonn prepared a MAV demonstration and attended
parts of the lectures.

1.2.2 Dissemination

Before the start of the school, a press release was issued by Fraunhofer
IAIS1, which increased the visibility of the school and led to interviews with
journalists, e.g. of the speaker Angela Schoellig by Deutschlandradio.

1.2.3 Event organization

The event took place in Schloss Birlinghoven, Sankt Augustin, Germany
from Monday, August 24th to Friday August 28th, 2015. Fig. 1 gives some
impressions. The venue featured a highly decorated main hall for the lec-
tures, which was equipped with tables, electric power, and wireless network
(Fig. 1a). Coffee and cakes were served twice a day in the hall next to the
main lecture hall. Smaller rooms were available for storing and preparing
equipment. Lunch was catered at the cafeteria of the Fraunhofer Campus
Birlinghoven, in close vicinity of the castle. Participants could also use the
large terrace of the castle and its park. A total of 67 persons attended the
school at least partially. Fig. 1f shows a group photo.

1Press release of Fraunhofer IAIS on TRADR Summer School on Autonomous Micro
Aerial Vehicles https://idw-online.de/de/event51127
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1.2.4 Scientific program

The summer school was opened with a presentation from the organizers,
which also introduced the participants to the TRADR project. Eight invited
speakers were teaching, see http://www.iais.fraunhofer.de/6257.html

and Sec. 2.2 for the schedule. Each speaker delivered a 90 minute lecture.
Table 1 summarizes the topics. The abstracts of the lectures are listed in
Sec. 2.1. All lectures, except for the last one, were followed by a 90 minute
exercise, where the students solved tasks with provided software or had
the opportunity to try MAVs provided by AscTec (Fig. 1c,d). In addition,
participants were encouraged to bring own micro aerial vehicles and had
the possibility to exhibit and demonstrate them (Fig. 1e). Furthermore,
participants had the opportunity to present their research in posters and
to advertise these with poster teasers. About 15 posters were presented
(Fig. 1b).

All lecture slides are available on the web, http://www.iais.fraunhofer.
de/6257.html. The slides are also included in the Annex of this deliverable.
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Speaker(s) Topic

Rainer Worst, Hart-
mut Surmann, Sven
Behnke, Fraunhofer
IAIS

Welcome, Project TRADR Long-Term Human-
Robot Teaming for Robot-Assisted Disaster Re-
sponse

Michael Achtelik,
Ascending Tech-
nologies, Germany

MAVs - Daily Operations and Practical Appli-
cations

Sebastian Scherer,
Carnegie Mellon
University, USA

Motion Planning for Aerial Robots

Cyrill Stachniss,
University of Bonn,
Germany

Graph-based Simultaneous Localization and
Mapping

Angela Schoel-
lig, University of
Toronto, Canada

Controls for Multi-Rotor Vehicles: From Model-
Based to Learning-Enabled Approaches

Igor Gilitschen-
ski, ETH Zurich,
Switzerland

Advances in Nonlinear Dynamic State Estima-
tion

Guido de Croon, TU
Delft, Netherlands

Vision for Autonomous Flight of Light-weight
Micro Air Vehicles

Daniel Cremers, TU
Munich, Germany

Direct and Dense 3D Reconstruction from Au-
tonomous Quadrotors

Anibal Ollero, Uni-
versity of Sevilla,
Spain

Aerial Robotic Manipulation: Control, Percep-
tion and Planning Functionalities

Table 1: List of invited speakers and the lectured topics.
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a) b)

c) d)

e) f)

g) h)

Figure 1: Impressions from the 2015 TRADR Summer School. a) Lecture
hall in Schloss Birlinghoven. b) Discussion during poster session. c) Practi-
cal exercise with AscTec copter. d) AscTec copter. e) Discussing an exhibit.
f) Group photo in front of Schloss Birlinghoven. g) Excursion to Drachenfels.
h) Group photo on top of Drachenfels.
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1.2.5 Social program

The social program consisted of

• a welcome reception on Monday evening,

• a visit of the Museum for German History in Bonn, followed by a
guided tour though the UN campus and dinner in the park restaurant
Rheinaue on Tuesday evening,

• an excursion to Königwinter by boat on the river Rhine (Fig. 1g) and
a hike to the top of the Drachenfels (Fig. 1h), followed by a dinner in
Königswinter on Wednesday afternoon and evening, and

• a guided tour through the historic city center of Bonn, followed by a
dinner at a brewery in the city center on Thursday evening.

1.2.6 Results

The 2015 TRADR summer school was a big success. Only one registered
participant dropped out due to illness. The program was run according
to the announced schedule. All speakers delivered their lectures and the
participants gave very positive feedback on the quality of the presentations
and the usefulness of the exercises.

The poster sessions, exhibits, coffee breaks, and lunches gave many
opportunities for in-depth discussions on the many issues related to au-
tonomous micro aerial vehicles. Not the least, the social program facilitated
that participants got to know each other better, established new friendships
and collaborations, some of which will certainly be beneficial for the remain-
ing work in TRADR. Another positive outcome was the high visibility of
the TRADR project in the autonomous MAV community.
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2 Annexes

2.1 Programme

This annex lists the talk abstracts provided by the speakers. The photos
were recorded during the summer school.

Opening Presentation and TRADR Overview

Rainer Worst, Fraunhofer IAIS, Germany
The talk introduces the European FP7 integrated research project TRADR
- Long-Term Human-Robot Teaming for Robot-Assisted Disaster Response,
which organizes and sponsors the 2015 Summer School on Autonomous Mi-
cro Aerial Vehicles.

Lecture 1: MAVs Daily Operation and Practical Applications

Michael Achtelik, Ascending Technologies, Germany
Based on real applications, we will show what is already possible with MAVs
and how they are used by professional customers. Showing sample applica-
tions, we will point out the key requirements for todays and future applica-
tions. Furthermore the use of MAVs in the TRADR project will be shown
and key requirements derived. We will show state of the art flight control
systems and onboard sensing capabilities. In the second part, the attendees
will have the opportunity to gather hands-on experience on new and existing
MAVs.

Lecture 2: Motion Planning for Aerial Robots

Sebastian Scherer, Carnegie Mellon University, USA
The goal of this lecture is to convey the problem and fundamental tech-
niques that are required for fast and safe motion planning of autonomous
aerial vehicles. This includes state of the art results for motion planning
and fundamentals of the motion planning problem and approach for flying
robots. The talk will present the problem representation, how these repre-
sentations influence the approach, and examples of different representative
approaches such as optimization, sampling-based, and graph-search algo-
rithms. The lecture will be followed by a tutorial where the students can
explore the ideas presented in a Matlab planning toolbox.

Lecture 3: Graph-based Simultaneous Localization and Map-
ping

Cyrill Stachniss, University of Bonn, Germany
Being able to build a map of the environment and to simultaneously local-
ize within this map is an essential skill for flying as well as wheeled robots
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navigating in unknown environments. This so-called simultaneous local-
ization and mapping or SLAM problem has been investigated in robotics
over the last two decades and efficient approaches have been proposed. One
intuitive way of formulating SLAM is to use a graph whose nodes corre-
spond to the poses of the robot at different points in time and whose edges
represent constraints between the poses. The latter are obtained from ob-
servations of the environment or from movements. Once such a graph is
constructed, the map can be computed by finding the spatial configuration
of the nodes that is mostly consistent with the measurements modeled by
the edges. In this tutorial, we provide an introductory description to the
graph-based SLAM problem. We discuss a state-of-the-art solutions that is
based on least-squares error minimization and exploits the structure of the
SLAM problems during optimization. The goal of this tutorial is to enable
the reader to implement the proposed methods from scratch.

Lecture 4: Controls for Multi-Rotor Vehicles: From Model-
Based to Learning-Enabled Approaches

Angela Schoellig, University of Toronto, Canada
In my lecture, I will provide the fundamentals of model-based controls for
multi-rotor vehicles. I will highlight how non-idealities such as time delays
and modeling errors affect the flight performance. Finally, I will introduce
some recent learning-based controls approaches, which achieve high perfor-
mance despite modeling errors.

Lecture 5: Advances in Nonlinear Dynamic State Estimation

Igor Gilitschenski, ETH Zurich, Switzerland
Since the development of the Kalman Filter, it has become one of the most
famous and widely used sensor fusion algorithms. However, the underlying
assumption of linear dynamics is not satisfied by most real-world systems.
Thus, in this talk, we will revisit classical nonlinear filtering approaches and
provide an introduction to some more-recent filtering techniques.

Typically, linearization of system and measurement models is performed
in order to make consideration of nonlinear systems possible which is known
as the extended Kalman filter (EKF). The last two decades have witnessed a
rapid development of novel nonlinear filtering techniques that are inherently
better suitable for consideration of nonlinear systems. These techniques
improve state estimation by better considering nonlinear system models and
nonlinear underlying domains.

First, consideration of nonlinear system and measurement models is im-
proved, e.g., by making use of deterministic sampling based nonlinear fil-
tering techniques that do not require the computation of derivatives (thus,
they are sometimes referred to as derivative-free filters). Second, a sound
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consideration of nonlinear underlying state spaces is possible by making use
of probability distributions that are defined on these state spaces rather
than assuming Gaussians. This is made possible by making use of direc-
tional statistics, which is a subfield of statistics that considers directional
quantities such as angles or orientations. Both classes of approaches will be
addressed by describing their functionality and enabling the participants to
apply them in dynamic state estimation problems.

Lecture 6: Vision for Autonomous Flight of Light-weight Mi-
cro Air Vehicles

Guido C. H. E. de Croon, TU Delft, Netherlands
The fundamental challenge for achieving autonomous flight with light-weight
(< 50 gram) Micro Air Vehicles derives from the severe limitations in the
onboard energy, sensors and processing. This argues for a minimal sensor
suite and efficient algorithms for vision and control. In this lecture, I will
mostly focus on a bio-inspired approach, in which optical flow cues such as
time-to-contact and ventral flow are used directly for control. Furthermore,
I will highlight how optical flow can be complemented with different, visual
appearance cues. I will place the discussed methods in the context of the
DelFly Explorer, a fully autonomous 20-gram flapping wing MAV.

Lecture 7: Direct and Dense 3D Reconstruction from Au-
tonomous Quadrotors

Daniel Cremers, TU Munich, Germany
The reconstruction of the 3D world from images is among the central chal-
lenges in computer vision. Starting in the 2000s, researchers have pioneered
algorithms which can reconstruct camera motion and sparse feature-points
in real-time. In my talk, I will show that one can autonomously fly quadro-
tors and reconstruct their environment using onboard color or RGB-D cam-
eras. In particular, I will introduce spatially dense methods for camera
tracking and reconstruction which do not require feature point estimation,
which exploit all available input data and which recover dense geometry
rather than sparse point clouds. This is joint work with Jakob Engel, Vla-
dyslav Usenko, Jan Sthmer, Martin R. Oswald, Frank Steinbrcker, Christian
Kerl, Erik Bylow, Jrgen Sturm and Jrg Stckler.

Lecture 8: Aerial Robotic Manipulation: Control, Perception
and Planning Functionalities

Anibal Ollero, University of Sevilla, Spain
The presentation will start with a general view of aerial robots physically
interacting with the environments and with other aerial robots. This will
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include load transportation and deployment. Then aerial robots with ma-
nipulation capabilities in the FP7 ARCAS project will be presented by in-
cluding both multirotor systems and helicopters equipped multi-joint (6 or
7 Degrees of Freedom) arms. The control systems of the aerial robots with
the arms will be described. Moreover, both perception and planning func-
tionalities of the aerial robots will be summarized. The presentation will
also introduce the aerial cooperative assembly functionalities in the ARCAS
project. The last part of the presentation will be devoted to introduce the
AEROARMS H2020 project devoted to aerial robots with multiple arms for
inspection and maintenance applications, with particular attention devoted
to the application in oil and gas industries and other new aerial robotic
manipulation projects at the University of Seville and CATEC.
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TRADR Summer School
Autonomous Micro Aerial Vehicles 

Castle Birlinghoven, Sankt Augustin, Germany, August 24th-28th 2015, Hosted by the 
Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS.
Co-financed by the EU Project TRADR (FP7-ICT-609763). 

Speakers

Angela Schoellig, 
University of Toronto, Canada 

Aníbal Ollero, 
University of Sevilla, Spain 

http://www.iais.fraunhofer.de/6257.html
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Cyrill Stachniss, 
University of Bonn, Germany 

Daniel Cremers, 
TU Munich, Germany 

Guido C. H. E. de Croon, 
TU Delft, Netherlands  

Igor Gilitschenski, 
ETH Zurich, Switzerland  

http://www.iais.fraunhofer.de/6257.html
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Michael Achtelik, 
Ascending Technologies, Germany  

Sebastian Scherer, 
Carnegie Mellon University, USA  

Sven Behnke, 
University of Bonn, Germany 

Rainer Worst
Fraunhofer IAIS, Germany 

http://www.iais.fraunhofer.de/6257.html
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2.2 Summer School Main Webpage

This annex includes the main web page of the summer school http://www.
iais.fraunhofer.de/6257.html.
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TRADR Summer School on Autonomous 
Micro Aerial Vehicles 

Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS 

 

 

August 24th-28th 2015, Schloss Birlinghoven 

Micro aerial vehicles (MAV) such as multicopters have become a popular research tool in recent years 
and are used in an increasing number of application domains such as aerial photography and inspection 
tasks. Most MAVs are remotely controlled or follow GNSS waypoints in obstacle-free heights. Many tasks 
require navigation in complex 3D environments, close to obstacles, however. Hence, the degree of 
autonomy of the MAVs must be increased.  

The objective of the school is to give students deep insights into the currently leading approaches to 3D 
environment perception, mapping, navigation planning, and control of autonomous MAVs. Lectures by 
internationally leading experts will provide the necessary theoretical background for hands-on exercises 
with MAVs. 



 

Program 

The program is based on three pillars:  

 Theory: Ranging from state estimation based on multimodal sensors and environment mapping by 

cameras and laser scanners over control of dynamic flight, obstacle avoidance, navigation planning, 

and exploration to contact with the environment and aerial manipulation.  

 Case studies: Leading micro aerial systems for research on autonomy such as Ascending 

Technologies Firefly, the “Mapping on Demand” and InventAIRy copters of University of Bonn, the 

multirotors developed at CMU, the aerial manipulators of University of Seville, and the DelFly flapping 

wing MAVs of TU Delft will be presented.        

 Practical exercises: Students will apply the theory in hands-on tutorials. Ascending Technologies will 

provide sensor equipped Firefly copters for these. Participants are encouraged to also bring their own 

micro aerial vehicles. Space for indoor and outdoor experiments with autonomous micro aerial vehicles 

will be available. 

  



Venue 

 

Fraunhofer Institute Center Schloss Birlinghoven 
53757 Sankt Augustin  
Germany  

Travel directions  

Map link 

Schedule 

Monday, 24.8.2015 

11:00 Registration opens 

11:30 Lunch opens 

13:00 - 
14:00 

Rainer Worst, Hartmut Surmann, Sven Behnke: 
Welcome, Project TRADR Long-Term Human-Robot Teaming for Robot-Assisted Disaster 
Response  

14:00 - 
15:30 

Lecture Michael Achtelik: 
MAVs - Daily Operations and Practical Applications  

15:30 Coffee break 

16:00 - 
17:30 

Excercise Michael Achtelik 

17:30 - 
18:00 

Poster teaser (Participants are welcome to display their research in a poster and advertise it 
with a three-slides three minutes teaser presentation) 

18:00 - Welcome reception 

 



Tuesday, 25.8.2015 

9:00 - 
10:30 

Lecture Sebastian Scherer: 
Motion Planning for Aerial Robots  

10:30 Coffee break 

11:00 - 
12:30 

Exercise Sebastian Scherer 

12:30 Lunch 

14:00 - 
15:30 

Lecture Cyrill Stachniss: 
Graph-based Simultaneous Localization and Mapping  

15:30 Coffee break 

16:00 - 
17:30 

Exercise Cyrill Stachniss 

18:00 -  Evening program and dinner 

Wednesday, 26.8.2015 

9:00 - 
10:30 

Lecture Angela Schoellig: 
Controls for Multi-Rotor Vehicles: From Model-Based to Learning-Enabled Approaches  

10:30 Coffee break 

11:00 - 
12:30 

Exercise Angela Schoellig 

12:30 Lunch 

14:00 -  Excursion and dinner 

Thursday, 27.8.2015 

9:00 - 
10:30 

Lecture Igor Gilitschenski: 
Advances in Nonlinear Dynamic State Estimation  

10:30 Coffee break 

11:00 - 
12:30 

Exercise Igor Gilitschenski 

12:30 Lunch 

14:00 - 
15:30 

Lecture Guido de Croon: 
Vision for Autonomous Flight of Light-weight Micro Air Vehicles  

15:30 Coffee break 



16:00 - 
17:30 

Exercise Guido de Croon 

18:00 -  Evening program and dinner 

Friday, 28.8.2015 

9:00 - 
10:30 

Lecture Daniel Cremers: 
Direct and Dense 3D Reconstruction from Autonomous Quadrotors  

10:30 Coffee break 

11:00 - 
12:30 

Lecture Anibal Ollero: 
Aerial Robotic Manipulation: Control, Perception and Planning Functionalities  

12:30 Lunch 

14:00 - 
15:30 

Exercise Daniel Cremers 

15:30 - Farewell coffee 

Speakers 

 Michael Achtelik, Ascending Technologies, Germany  

 Daniel Cremers, TU Munich, Germany  

 Guido C. H. E. de Croon, TU Delft, Netherlands  

 Igor Gilitschenski, ETH Zurich, Switzerland  

 Aníbal Ollero, University of Sevilla, Spain  

 Sebastian Scherer, Carnegie Mellon University, USA  

 Angela Schoellig, University of Toronto, Canada 

 Cyrill Stachniss, University of Bonn, Germany 

Application Procedure for Participants 

The number of participants is limited.  
Interested students and researchers needed to apply for participation prior to the application deadline 
through EasyChair. 

Registration Fees 

 Regular: 500 €  

 PhD students and students: 300 €  

 Registration information will be sent to accepted applicants. 



Accomodation 

 Easy to reach by bus is Hotel Hangelar  

 Easy to reach by car is Waldcafe Hotel, Holzlar  

 Many hotels are available in Bonn, about 30 minutes by public transport.  

o New and directly at the main train station is InterCityHotel Bonn (85€/night single room, including 

breakfast code AMAV2015 until July 27th).  

o Close to the S66 city train is Hotel Aigner 81€/night single rom including breakfast with code 

AMAV2015.  

o For low-budget participants, the Ibis Hotel Bonn** is recommended. 

 In Siegburg, Hotel Herting is located next to the train station (S66 connection), 79€/night including 

breakfast with code AMAV2015. 

Important Dates 

 Application for participation: June 20th, 2015 (closed)  

 Acceptance decision: June 30th, 2015 (sent)  

 Registration deadline: July 31st, 2015  

 Summer school: August 24th-August 28th, 2015 

Organizers 

 Sven Behnke, University of Bonn / Fraunhofer IAIS  

 Hartmut Surmann, Westfälische Hochschule Gelsenkirchen / Fraunhofer IAIS  

 Rainer Worst, Fraunhofer IAIS  

 Birgit Dorn (local arrangements), Fraunhofer IAIS 

 
Acknowledgement 
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2.3 Lecture materials

This annex includes all the lecture materials.
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Rainer Worst (Fraunhofer)
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Motivation

• Robot-assisted disaster response
• Robots can save lives

• Human-robot teamwork 
• From robots as tools to robots as interdependent team-members

• Long-term: disaster response takes time
• NIFTi project deployment in Mirandola 2012: 1 week

• Fukushima: more than a year

• Human-robot team performs multiple sorties and missions

• Situation changes

• Core challenge is to create persistent situation 

awareness
• Persistent models of perception and action

• Persistent multi-robot action models

• Persistent models for human-robot teaming

• Industrial accident scenario
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Real life scenario

3 © 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

Roadmap

4

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

Roadmap: complexity scaling

5

Static Dynamic

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

User-centric methodology

6

Yearly cycles
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TRADR Work Package Structure

7

WP1:  Persistent 

models for perception

WP2:  Persistent 

models for acting

WP4:  Persistent models 

for multi-robot 

collaboration

WP5:  Persistent 

models for human-

robot teaming

WP6:  System 

framework and 

integration

WP7: User needs 

analysis and scenario-

based evaluation

WP8: 

Dissemination 

and impact

Long-term human-robot 

teaming for robot-

assisted disaster 

response

WP3:  Persistent models 

for distributed joint 

situation awareness

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

TRADR Year 1

8

Multiple asynchronous sorties (1 UGV, 1 UAV) to

assess a large-scale static disaster

TRADR Joint Exercise, September 2014

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu9

WP1: Persistent Models for Perception

• Adaptive traversability (implicit terrain classification)

• New approach to 3D localization and mapping

• Fusing data with different rates and error characteristics

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

WP2: Persistent Models for Action

• UGV

• Standard teleoperation of UGV and Arm

• Tensor based voting and D*-Lite based 

path planning combined with Adaptive 

Traversability Flipper Control 

• UAV

• Work towards near obstacle UAV operation

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu11

WP3: Persistent Models for Situation Awareness
• Evaluating and modeling national command structures

• Assessment and evaluation of TREX and identification 

of requirements towards development of new TRADR 

Display System (TDS)

• Design and prototypical implementation of OCU 

(Operator Control Unit) 

• Framework for the development of a flexible speech-

enabled multimodal interface

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

• Multi-robot task allocation

• Task switching in robot cognitive control

• Processing necessary to enable higher

level planning

• Augmented Reality Environment for mobile 

robots

WP4: Multi-Robot Collaboration
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WP5: Human-Robot Teaming

• Cognitive task load modeling and 

dynamic task allocation

• Better understanding of human-robot 

teamwork

• Formal task modeling and investigation of coordination 

requirements

• Agent-based modeling

• Ontology for teamwork in search & rescue

• Agent-based framework design

• Tools for modeling and experiments 

• Natural language reporting

13 © 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

• Re-design of 

UGV platform 

and introduction 

of new UAVs

1

4

• Migration from

NIFTi to TRADR 

incl. software

updates

• Integration of an 

operable system 

for TJEx 2014

WP6: Framework and Integration

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

WP7: User Needs and Evaluation 

15

• Specification of the socio-technical design rationale
(use cases, requirements, scenarios)

• T-JEx: system evaluation & end-user studies
+ related end-user studies (value assessment workshop, gaze machine)

Outcomes T-JEx: 

• systems evaluation and qualitative user studies; 

identification of positive and negative aspects of 

the system

• identification of stakeholders, their values and 

value tensions

• assessment of gaze machine in USAR 

environment 

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

WP8: Dissemination and Impact

• Summer school 2014 in Prague

• Raising awareness among first responders

• Robot-assisted disaster response guidelines

16

© 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

TRADR Team at TJEx 2014 and…

17 © 2015 Ivana Kruijff-Korbayova / DFKI GmbH and the TRADR Team http://www.tradr-project.eu

… one particular team member at TJEx 2015

18



Amazing Technology!

Amazing Technology!

UAVs – Daily Operation and Practical 
Applications

/// Michael Achtelik and André Ryll

Amazing Technology!

About Ascending Technologies 
/// From X-UFO to Volocopter VC200.

Part of the hype!
/// Silverlit X-UFO

Amazing Technology!

Making history in aviation.
/// Volocopter VC200 – flight control unit based on AscTec Trinity Technology.

Amazing Technology!



/// Facts & figures

Founders have been working successfully on 

unmanned multi-rotor & autopilot technology 

since 2002.

Based in Krailling (Munich), Germany.

Founded in January 2007. 

About 60 employees.

Owner-managed.

2015: Intel first external investor 

& minority shareholder.

Production depth / manufacturing: 

In-house development & production.

About Ascending Technologies AscTec Research Line

References: US Air Force, NASA, SIEMENS, MIT, TUM, ETHZ, Intel, Google

/// Research 

platforms for …

Target: Flying 

robot 

researchers.

Flight dynamics

CV & SLAM

Swarming

Amazing Technology!

For Paramount Pictures.
/// Swarming flight of 30 AscTec Hummingbirds /// Skyline London.
/// Earth Hour Event 2013 /// Star Trek “Into Darkness” 

Amazing Technology! Amazing Technology!

World record & 2 x IARC Champion.
/// Longest Micro-UAV flight: 12:26:56.9 h. Cooperation with NASA-financed LaserMotive LLC.

/// International Aerial Robotics Challenge: Champion 2009, 2013
Amazing Technology!

AscTec Professional Line

References: AAIR, Cyberhawk, HUVR, Orbiton, Resource Group & Sky-Futures

Professional 

aerial sensing 

platform.

Target: 

Professionals, 

commercial 

users.

Inspection

Survey

HD imaging

Amazing Technology!

UAV Applications
/// Proven & tested in a magnitude of over 100,000 professional flying hours.



Amazing Technology!

UAV inspection & monitoring.
/// The AscTec Falcon 8 for efficient professional aerial industrial inspection.

/// The quick flight check.
Check your engines or faulty equipment more efficient.

Safety by precision – even at tight spots.

Amazing Technology!

/// Key Features & Benefits

AscTec Falcon 8 saves budget and time:
e.g. Live flare oil/gas inspection: up to -90 %.

Conventional methods are risky and 
expensive.

Minimizing downtime.

More quality and details due to aerial HD 
imaging. Thermal & RGB stills/videos.

Precise structure analysis & 
quick damage detection.

Low-noise & emission-free operations.

UAV inspection.

© Sky-Futures

/// The AscTec Falcon 8 for efficient professional aerial industrial inspection.

https://youtu.be/xAPZvp6C8P4

0:49-1:34

UAV inspection.
/// The AscTec Falcon 8 for efficient professional aerial industrial inspection.

Amazing Technology!Amazing Technology!

AscTec Trinity – Short version

https://www.youtube.com/watch?v=fsNGwSjSZd4

/// Key Features & Benefits
Quick initialization: No waiting, but 

prompt starting after switching on.

Enhanced efficiency in every operation: 

Faster takeoff, rising, flying, descending and 

landing possible.

Perfectly predictable flight behaviour & 

exactly reproducible waypoint navigation. 

Wind load balancing: 

Up to 15 m/s (GPS Mode: 12 m/s)

Robust against electromagnetic fields.

Inspection

© Ascending Technologies

https://vimeo.com/116945708



Amazing Technology!

UAV surveying & mapping.
/// The AscTec Falcon 8 for efficient professional aerial industrial inspection.

/// High accuracy & resolution.
36 Megapixel camera.

Perfect for volume calculation.

Amazing Technology!

© Ascending Technologies

/// Key Features & Benefits:

AscTec Falcon 8 is closing the gap between
fixed- and rotary-wing UAV.

Ease of use of a multi-rotor, 
but much more efficient.

Complex flight planning & Quick Survey 
(PC-less) based on waypoint navigation.

High area output. High resolution.

Precise position hold.

Land survey.

© Ascending Technologies

/// Key  Features & Benefits

AscTec Falcon 8 for monument & heritage
protection, topography & archaeology.

Reduction of budget and time.

E.g. retaining wall inspection: 12.000 sqm, 1.6 
mm resolution in 24 min. (Based on test
without AscTec Trinity) 

Accurate positioning with GPS. 
(Height or Manual Mode possible)

Robust against external influences.

Structural analysis

© Ascending Technologies

https://youtu.be/aNq-9xyzXhE

Amazing Technology!

Aerial search & rescue.
The AscTec Falcon 8 for remote sensing & crisis intervention.

/// The quick flight check.
Easy to handle and simple to control.

Ready to fly & up in minutes.

Amazing Technology!

/// Exploration in active zone.

Quick overview & mapping.

Transportable fully assembled.

Easy deployment

/// Remote sensing solution:

High-Performance GPS for weak signals 
in tight spots.

Various payloads 

Aerial search & rescue.



Amazing Technology!

Aerial search & rescue.

/// 2015-03-24: UAV deployment to major industry fire in Witten

Amazing Technology!

/// Case Study: Fire Department of Dortmund

Aerial search & rescue.
/// Case Study: Fire Department of Dortmund

images deleted because of copy right problems

/// Hot Spot Detection

Thermal camera + Raw data processing

Inside the hall (right)

Synchronous use of thermal and daylight 

camera

Outside overview (bottom)

images deleted because of copy right problems

Aerial search & rescue.
/// Case Study: Fire Department of Dortmund

Aerial search & rescue.
/// Case Study: Fire Department of Dortmund

/// Comparison between natural and thermal image 

/// Colors indicate relative temperature range spread over the lowest and highest measured temperature. 

images deleted because of copy right problems

/// Conclusion

“A fast taken foto as an overview of the scenario delivers application-

tactical information. In case of fire fighting, hot spots can be detected or 

the spread out of fire can be watched and prognosticated. It is important 

to provide the information as quickly as possible to the person who 

needs it for its tactical as well as operative approach. E.g. the fire fighter 

on the ladder. This can be fulfilled by small scaled UAVs, so called „out 

of the box“ solutions like the Falcon 8.”

Aerial search & rescue.
/// Case Study: Fire Department of Dortmund

Amazing Technology!

UAVs & the TRADR Project
/// Providing a new perspective



https://youtu.be/4z86nUlgEqc

1:05 – 2:01



Amazing Technology!

Moving Indoors & Close to Structures
/// Detecting and Avoiding Obstacles

Amazing Technology!Amazing Technology!

Intel keynote @ CES

https://youtu.be/Us0BqJvsF9k

3:15 - end

Amazing Technology!

Research Platforms and Projects
/// Stable and Robust Obstacle Avoidance:

The Holy Grail in UAV Technology?

3 industry-relevant challenges

Challenge 3: 
Plant servicing and inspection

3 Stages of increasing complexity:

European Robotics Challenge (EuRoC)

Simulation 
Contest

•Qualification (34 teams registered from Europe)

•Team up with Industrial Partner and his use-case

Realistic Labs

•Experiments with real platforms in realistic lab 
environment

•Tasks based on submitted use-cases

Field Tests

•Demonstrate pilot experiments on end-user site

• EuRoC Winner

https://youtu.be/8z8FAF2qJDA

EuRoC Qualification impressions

- Sorry, video not on youtube



New Platform for EuRoC and TRADR

Configurations:

Quad

Hex

9” propellers

11” propellers

AscTec Trinity flight controller

Available summer 2016

Beta Series for TRADR and EuRoC 2015

The new  UAV platform for cutting edge research:

Payloads up to 1.5kg

Total weight below 4kg

Flight Time: >20mins

Folding propellers

Highly efficient motor controllers

Detachable motor booms

Redundant flight controllers

Redundant smart batteries

User-Programmable AscTec Trinity

Standardized mechanical interface

AscTec Neo – Key Features

AscTec Neo – Dimensions and Flight Time AscTec Neo – Key Features

AscTec AutoPilot

Dual processor approach

Safe evaluation of custom algorithms

Fallback to single processor (LLP) 
always possible (in flight)

2x ARM7 processor @ 58MHz

One processor (almost) freely
programmable by end-user (HLP)

AscTec Trinity

3x fully equipped processors + all 
sensors

Redundant flight control at all times

Two AscTec Trinity used as „LLP“

Fallback to redundant LLP

3x Cortex-M4 + FPU @ 180MHz

One AscTec Trinity fully user-
programmable (HLP)

AscTec Neo – Flight controller comparison

Mechanical

Standardized 80x80mm mount on all 
payloads

Connection struts are side-accessible
Remove one payload without

dismounting all payloads above it

Power Outlets

Battery voltage (14 – 16.8V)

12V, 2A

5V, 2A

AscTec Neo - Interfaces



Electrical

UART: up to 2

I2C: up to 2

SPI: 1

CAN: 1

PWM: 2

USB: 1 (host or client)

AscTec Neo - Interfaces

Beta version!

Intel NUC with Core i7

360° Intel RealSense Sensor-Ring

Atomboard

Laser Scanner

Various camera mount options

Optical Flow Sensor

Propeller Protection

AscTec Neo – Planned Payloads

Only uses free tools

Eclipse

GCC 4.9

OpenOCD

STM32F4 microcontroller

Recommended RTOS: ChibiOS (v3)

Bare Metal programming possible

Embedded Debugging

with Thread awareness

Access to all sensors on the user-
programmable Trinity

Acceleromter

2x Gyroscope

Barometer

Compass

Access to raw and fusioned data from
the other Trinitys

Various control options

AscTec Neo - SDK

Amazing Technology!

/// Your flight plan:
/// New career?

Mitarbeiter UAV Entwickler / In Für Robotik 
– Mit Schwerpunkt Sensordatenverarbeitung / Regelungstechnik

Mitarbeiter UAV Hardware Entwickler / In – Embedded Software Entwickler / In

Mitarbeiter UAV Entwicklungsingenieur / In Hochfrequenztechnik / Embedded Elektronik

Mitarbeiter UAV Softwareentwickler / In

Softwareentwickler Für Anwendersoftware

Entwicklungsingenieur Embedded Elektronik

Application Engineer

Mitarbeiter UAV Produktion

Produktionshelfer Im Bereich Bestückung

Werkstudent Entwicklung

Job Opportunities

/// Address for applications

Mrs Natalie Achtelik 

Ascending Technologies GmbH 

Konrad-Zuse-Bogen 4 

82152 Krailling Germany 

Please direct your application to:

jobs@asctec.de
Amazing Technology!

Let‘s go out and Fly
/// Try the AscTec Neo and Falcon yourself



Motion Planning for Flying Robots

Sebastian Scherer
http://theairlab.org

at the Field Robotics Center
08/25/2015

air lab Outline

• Introduction
• Problem
• Abstraction and Approach
• Results
• Summary
• Exercise

2

Why autonomy?
Increase Efficiency of Operations

3

<1

Drone	  Cockpit,	  Brian	  William	  Jones	  ,http://goo.gl/G73vhs

>=2

Increase Safety

Object	  
Collisions

50%

Weather
20%

Darkness
30%

Accident	  Causes

Situational	  
Awareness

26%
Engine	  Failure

18%

Instructional	  
Mishaps
20% Miscellanous	  

Human	  Factors
23%

Helicopter	  Accident	  Causes

(United	  States	  Industry	  study	  by	  Honeywell	  2010,	   http://goo.gl/R06naI)

4

Improve Applications 
such as Cargo Delivery

5

Drone	  Delivery,	  Netflix,	  http://youtu.be/ucz3JpvDQjk

Improve Applications 
such as Cargo Delivery

6AACUS	  Demonstration,	  Office	  of	  Naval	  Research,	  http://goo.gl/JtMkNm



Enable New Applications

7

Water	  Drop	  by	  Helicopter	  at	  Fukushima,	  NHK	  World	  TV,	  approx.	  10am	  JST	  03/16/2011,	  http://goo.gl/NHlGek

Enable New Vehicle Designs

8

Flying	  Car,	  Terrafugia,	  http://goo.gl/Aiyd5R ARES,	  DARPA,	  http://goo.gl/O2CDCL

Why is Autonomy Difficult?

9

Why is Autonomy Difficult?

10

4mm

>100’s meters

Why is Autonomy Difficult?

11

Land	  here?

Goal
Make a robotic pilot that is safer and more 
efficient than human pilots or birds.

12
(Manual	  Flight)



Research Areas
PlanSense

Vehicle 
(Helicopter) Control (Act)

Sensors
(Lidar,

Cameras)

Terrain Classification

Semantic Perception

Efficient Mapping

Fast Obstacle Avoidance

Environment Exploration

Sensor Motion Planning

13

2007

2006

2008

2009

2011

2010

<100g ~1kg ~10’s	  kg ~100’s	  kgPayload >1000	  kg

2012

2013

2014

14

Landing

Shipdeck
Tracking

Bridge
Inspection

Indoor
Exploration

Obstacle
Avoidance

River
Mapping

Emergency
Landing

Flying
Cars

Small: Autonomous Flight inside Smoke-Filled Ship

15Fang	  and	  Scherer,	   ICRA	  2015,	  Fang	  et	  al.	  FSR	  2015,	  Holtz	  and	  Scherer	  FSR	  2015	  

Medium:Autonomous Self-Guided River Exploration

16Nuske et	  al.	  ,	  JFR	  2015

Bridge Inspection with Micro Aerial Vehicles

17Yoder	  and	  Scherer	  FSR	  2015

Large: Autonomous Approach and Landing

18
Choudhury	   et	  al.	  AHS	  Forum	  2014,	  and	  other	  work	  



Each System Operates in Different Environments 
and Has a Different Motion Planning Approach

• Why don’t we have an ultimate motion 
planning system that works well for all 
applications?

• What is common and what is different 
between applications?

• What are potential approaches?

19

Outline

• Introduction
• Problem
• Abstraction and Approach
• Results
• Summary
• Exercise

20

Motion Planning Problem

React in real-time to previously unknown 
obstacles, avoid no-fly-zones, and land.

21

Land	  here.

Helicopter

Obstacles

No-‐Fly	  
Zone	  
(NFZ)

Assumptions
Here:
- Little uncertainty
- No exploration actions necessary

Variations on the problem
System uncertainties:
- Position
- Sensing
- Action
Need to gather data about the world:
- Maximize information gain
- No explicit goal state
- Viewpoint planning or active exploration

22

The Trajectory Planning Problem

Trajectory Planning Problem and
Approach Details

Sanjiban Choudhury, Sebastian Scherer, and Michael Piedmonte

1 Overview

In this paper we show the motion planning problem addressed by the trajectory executive and
our approach. We detail several of the ideas briefly described during the PDR and expand on the
exact cost functions we use and how they are used with the trajectory executive and trajectory
planner ensemble.

The goal of the trajectory planner is to find a path that respects the vehicle and obstacle
constraints while optimizing a cost function to find the “best” path. The trajectory planning
problem is defined by a set of initial conditions, constraints, and a cost functional. The trajec-
tory planning problem can be formally stated as follows, where all quantities are in SI (meters,
radians) units:

f ind �(t) =
�

x(t),y(t),z(t),⇥(t), t f
⇥

minimize : J =
´ t f

0 c(�(t))dt + c(�(t f ))
constraints : �(0) = �0

�(t f ) = � f

h(�(t), ˙�(t), ¨�(t), . . .) = 0
g(�(t), ˙�(t), ¨�(t), . . .) � 0

J < �

(1)

1. �(t) is the time parameterized command trajectory of the coordinates of the centre of
mass of the helicopter and the heading of the vehicle, where t f is the final time [s].

2. J is the cost function which is a function of the trajectory �(t) as well as the terminal
point �(t f )

3. �(0) and �(t f ) are the boundary value constraints of the trajectory
4. h(. . .) is a set of equality constraints which are of non-holonomic nature
5. g(. . .) is a set of bounds conveying the limitations of the system

In addition to the problem itself the planning approach we choose needs to respect the system
requirements such as limited computation and real-time reaction to new information. We want
the approach to be simple enough that it is verifiable. While the components of our planning
system typically exist in any planning system the explicit separation in our approach enables us
to explicitly analyze each part separately. The trajectory executive defines the problem, selects
the path and guarantees safety while a set of one or more planning algorithms find a trajectory
that is not necessarily guaranteed to be safe.

1

Time	  parameterized	  trajectory

Cost	  function

Boundary	  value	  constraints

Non-‐holonomic constraints

Cost	  function	  constraints
System	  limitations

Variant	  of	  the	  optimal	  control	  problem	   constrained	  to	  a	  trajectory

Note	  that	  typically	  J	  is	  partially	  known	  and	  discovered	  on	  the	  fly.

Example

�(t)

�(t)

�0 �f
J

h(�(t), �̇(t), �̈(t), ...) = 0

g(�(t), �̇(t), �̈(t), ...)  0



Planning Problem: Cost Functions

1. Time	  to	  Mission	  Completion

2. No	  Fly	  Zone

Figure 1: Trajectory Planner Architecture.

2 Cost functions of trajectories

In this section, we introduce the component cost functions that convey the need to minimize risk
as well as to reach the goal point as quickly as possible. The cost functions and the dynamics
are the necessary components that define the planning problem.

2.1 Cost functions

The cost functions belong to 4 categories. They are as follows
1. Time to mission completion
This cost function conveys the need to minimize mission completion time. It is formulated

as

J1 = t f

where t f is the final time. t f is inherently available since the planning algorithms produces time
parameterized trajectories �(t).

2. Distance to obstacle
This cost conveys the need to keep the vehicle safe by penalizing proximity to obstacles

depending on the speed. It is formulated as

J2 =

ˆ

(dmax �min(dmax,dobs(t)))2

2dmax
v(t)dt

where dobs(t) is the nearest distance to the obstacle from �(t), dmax is the saturation limit
of the distance calculation, v is the speed of the vehicle. The nearest distance to obstacle is
obtained from the occupancy grid by applying the Limited Incremental Distance Transform as
proposed by Scherer et al. [13]. This algorithm efficiently updates a grid storing distances to the

2

Reference

Tracked

−100 −80 −60 −40 −20 0 20 40 60 80 100

−20
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WIND 40 knots

Reference

Tracked

(a) (b)

Figure 2: Vehicle flying at 100 knots in a wind of 20 knots (a) Turning into the wind requires a larger
bank angle in order to compensate the drift (b) Turning with the wind requires much less effort
and causes much less deviation.

J2 =

�
� ⇥(t) ⇥ XNFZ

0 otherwise

where XNFZ is the volume inside a no fly zone, including the boundary.
No fly zones are polygons provided to the planner - there are simple analytical functions to

check if a point lies within a polygon. The reason this cost is binary in form is because there is
no risk criteria attached with it. The trajectory is expected to hug the wall of the no fly zone and
not waste any more additional time avoiding it since the no fly zones are assumed to contain
the appropriate C-space buffer.

4. Wind
This cost conveys the desire to respect the constraints imposed by the wind conditions. At

high speeds, this influences the heading rate tracking capabilities while at lower speeds the case
is slightly more severe and may lead to loss of tail rotor effectiveness. Thus two cost functions
are formulated. At higher speeds,

J4,high =

ˆ

max(0,v(t)⇤̇(t)sin(⇤(t)�⇤w))dt

where ⇤w is the direction of the wind in the inertial frame. This cost function penalizes
turning against the wind. Turning with the wind and against it leads to two very different
trajectories and required control effort as shown in Fig. 2.

At low speed, an effect known as Loss of Tail Rotor Effectiveness (LTE) can occur, which
can result in a rapid heading rate and lead to loss of control. Fig. 3 (a) shows the tail rotor
effectiveness chart for varying relative wind angle and speed, for vehicle speed below 30 knots.
The tail rotor margin can be framed as the following cost function

J4,low =

�
� �T (t) < 20
´

(100��T (t))dt otherwise

3

2.2 Combined Objective

The individual cost functions are assigned weights and summed to create an overall cost func-
tion. This is as follows

Jtotal = �
i

wiJi

where Ji is the cost function of the ith category and wi is the weight of the corresponding cost
function.

For the April PDR, a subset of the cost functions were used. The weights are as follows

Ji wi

J1 6.0
J2 1.0
J3 1.0
J4 0.0 (disabled)

3 Vehicle Dynamic Model

The space of all possible command trajectories its restricted by non-linear differential con-
straints imposed by the dynamics of the vehicle and the limits of the controller. The goal of the
trajectory planner is to compute a trajectory satisfying these constraints while optimizing the
overall cost function. The trajectory planner should also check the closed loop performance of
the vehicle, since the actual motion of the helicopter will slightly deviate from the commanded
trajectory. We briefly expand on each of these issues.

3.1 Dynamic constraints on trajectory

In Eq. 1, constraints h and g are derived from vehicle dynamics and controller limits. They are
as follows:

1. The non-holonomic equality constraints h(. . .) are that the trajectory should represent
coordinated flight where the vehicle has no side slip (above 20 knots). This implies that
heading ⇥ and roll � are constrained to be

⇥ = tan�1 ẏ
ẋ

� = tan�1 v⇥̇
g

(2)

where v is the velocity and g is the gravitational constant.
2. The inequality constraints g(. . .) on the trajectory are based on the controller limits, i.e.

the space of feasible trajectories that can be tracked by the controller. This implies roll
� , roll rate �̇ , heading rate ⇥̇ , forward velocity v, vertical velocity vh and acceleration v̇
are constrained to be

� ⇥ �max

�̇ ⇥ ˙�max

v̇ ⇥ amax

⇥̇ ⇥ ⇥max

v ⇥ vmax

vh ⇥ vh,max

(3)
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3. Time	  to	  Collision
• Representation	  of	  collision	  risk

• Scales	  with	  velocity

• Based	  on	  reachability	  volume

• Approximated	  by	  a	  pyramid

Planning Problem: Cost Functions

J = 1

XNFZ

�  �max, �̇  ˙�max, v̇  amax,  ̇   max, v  vmax, vh  vh,max

ẋg = Va cos( (t)) + Vw,x

ẏg = Va sin( (t)) + Vw,y

min

ˆ tm

t0

kq̇(t)k2
+

��� ̇(t)
���

2

dt

�T = F( r, vr)

 r

vr

= 1, dobs < dcritical

treach
c = min

Xobs2R(t,x0)
t

1

(Reachability)

J3 =

(
(tmax � treach

c )2

1 dobs < dcritical

Obstacle Representation

Sensor 
Model

Range vector
measurement

P(o | m)

Obstacle

3D Evidence Grid

Updating an Evidence Grid Cell
• Each cell is assumed to be 

independent and contains 
the belief of occupancy of 
the volume

• The belief can be updated 
as follows (assuming the 
prior P(m)=0.5):

• However usually a log-odds 
representation is used:
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b0(m) = 1 �
⇣
1 + P (m|o)

1�P (m|o) · b(m)
1�b(m)

⌘�1

b
0
(m) = b(m) + ln P (m | o) � ln (1 � P (m | o))

Foessel02

Air	  Vehicle	  (Top	  View,	  3D	  Slice)

A typical Sense, Plan, and Act Cycle
(Comparison between Ground and Air Robots)

Ground	  Robot	  (2D	  Top	  View)

3D

O(dmax
2):

dmax=5	  	  	  ≈	  25	  cells
dmax=20	  ≈	  400	  cells	  

O(dmax
3):

dmax=5	  	  	  ≈	  125	  cells
dmax=20	  ≈	  8000 cells

Legend:Red =	  large/obstacle	  Blue	  =	  small/freeNuske et	  al.	  ,	  JFR	  2015,	  Scherer09

A Completely Incremental Framework for
Planning

Evidence	  Grid
Filtering:

List	  of	  Updated
Obstacle	  Classifications

Limited	  Incremental
Distance	  Transform:
List	  of	  Updated
Cell	  Costs

Incremental	  
Planning	  Algorithm:

Updated	  Plan

Obstacle	  Map Cost	  Map

Plan

Nuske et	  al.	  ,	  JFR	  2015,	  Scherer09



How does one handle large 
environments and speeds?
• Full-scale helicopter at 60 m/s. 

Mission lengths ~ 400km.
• Scrolling buffer grids:

• r, rz = resolution, n,m = map size,
• x,y,z = coordinates, I,j,k = map 

indices
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i = rx mod n

j = ry mod n

k = rzz mod m

Nuske et	  al.	  ,	  JFR	  2015

Questions

• What are some of the pros/cons of this 
type of approach for filtering?

• What are alternative approaches to 
represent the world what are their 
advantages and disadvantages?
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Planning Problem: Constraints
1.	  Dynamics

2.	  Actuator	  Limits

(3.	  Wind)

2.2 Combined Objective

The individual cost functions are assigned weights and summed to create an overall cost func-
tion. This is as follows

Jtotal = �
i

wiJi

where Ji is the cost function of the ith category and wi is the weight of the corresponding cost
function.

For the April PDR, a subset of the cost functions were used. The weights are as follows

Ji wi

J1 6.0
J2 1.0
J3 1.0
J4 0.0 (disabled)

3 Vehicle Dynamic Model

The space of all possible command trajectories its restricted by non-linear differential con-
straints imposed by the dynamics of the vehicle and the limits of the controller. The goal of the
trajectory planner is to compute a trajectory satisfying these constraints while optimizing the
overall cost function. The trajectory planner should also check the closed loop performance of
the vehicle, since the actual motion of the helicopter will slightly deviate from the commanded
trajectory. We briefly expand on each of these issues.

3.1 Dynamic constraints on trajectory

In Eq. 1, constraints h and g are derived from vehicle dynamics and controller limits. They are
as follows:

1. The non-holonomic equality constraints h(. . .) are that the trajectory should represent
coordinated flight where the vehicle has no side slip (above 20 knots). This implies that
heading ⇥ and roll � are constrained to be

⇥ = tan�1 ẏ
ẋ

� = tan�1 v⇥̇
g

(2)

where v is the velocity and g is the gravitational constant.
2. The inequality constraints g(. . .) on the trajectory are based on the controller limits, i.e.

the space of feasible trajectories that can be tracked by the controller. This implies roll
� , roll rate �̇ , heading rate ⇥̇ , forward velocity v, vertical velocity vh and acceleration v̇
are constrained to be

� ⇥ �max

�̇ ⇥ ˙�max

v̇ ⇥ amax

⇥̇ ⇥ ⇥max

v ⇥ vmax

vh ⇥ vh,max

(3)
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ẋ
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heading

roll
Coordinated	  vehicle	  motion	  with	  
no	  sideslip	   (above	  20	  knots)

J = 1

XNFZ

�  �max, �̇  ˙�max, v̇  amax,  ̇   max, v  vmax, vh  vh,max

1

J = 1

XNFZ

�  �max, �̇  ˙�max, v̇  amax,  ̇   max, v  vmax, vh  vh,max

ẋg = Va cos( (t)) + Vw,x

ẏg = Va sin( (t)) + Vw,y

1

J = 1

XNFZ

�  �max, �̇  ˙�max, v̇  amax,  ̇   max, v  vmax, vh  vh,max

ẋg = Va cos( (t)) + Vw,x

ẏg = Va sin( (t)) + Vw,y

1

Related	  motion	   in	  airmass	  to	  
ground	   track	  – constrains	  the	  
minimum	   radius	  of	  curvature.

Va = Forward speed

R = Turning radius

� = Roll angle

 = Heading angle

pn, pe = North, east position

cn, ce = Center of turn

Coordinated Turn Equations

34

R =
V 2

a

g tan�

cn = pn + R cos( � s
⇡

2
)

ce = pe + R sin( � s
⇡

2
)

p0n = cn + R cos( + s
⇡

2
���)

p0e = ce + R sin( + s
⇡

2
���)

�� =
Va

R
�t

Turning	  Radius
Center	  of	  Turn

Change	  in	  Angle New	  Position

Outline

• Introduction
• Problem
• Abstraction and Approach
• Results
• Summary
• Exercise
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The Trajectory Planning Problem

Trajectory Planning Problem and
Approach Details

Sanjiban Choudhury, Sebastian Scherer, and Michael Piedmonte

1 Overview

In this paper we show the motion planning problem addressed by the trajectory executive and
our approach. We detail several of the ideas briefly described during the PDR and expand on the
exact cost functions we use and how they are used with the trajectory executive and trajectory
planner ensemble.

The goal of the trajectory planner is to find a path that respects the vehicle and obstacle
constraints while optimizing a cost function to find the “best” path. The trajectory planning
problem is defined by a set of initial conditions, constraints, and a cost functional. The trajec-
tory planning problem can be formally stated as follows, where all quantities are in SI (meters,
radians) units:

f ind �(t) =
�

x(t),y(t),z(t),⇥(t), t f
⇥

minimize : J =
´ t f

0 c(�(t))dt + c(�(t f ))
constraints : �(0) = �0

�(t f ) = � f

h(�(t), ˙�(t), ¨�(t), . . .) = 0
g(�(t), ˙�(t), ¨�(t), . . .) � 0

J < �

(1)

1. �(t) is the time parameterized command trajectory of the coordinates of the centre of
mass of the helicopter and the heading of the vehicle, where t f is the final time [s].

2. J is the cost function which is a function of the trajectory �(t) as well as the terminal
point �(t f )

3. �(0) and �(t f ) are the boundary value constraints of the trajectory
4. h(. . .) is a set of equality constraints which are of non-holonomic nature
5. g(. . .) is a set of bounds conveying the limitations of the system

In addition to the problem itself the planning approach we choose needs to respect the system
requirements such as limited computation and real-time reaction to new information. We want
the approach to be simple enough that it is verifiable. While the components of our planning
system typically exist in any planning system the explicit separation in our approach enables us
to explicitly analyze each part separately. The trajectory executive defines the problem, selects
the path and guarantees safety while a set of one or more planning algorithms find a trajectory
that is not necessarily guaranteed to be safe.

1

Time	  parameterized	  trajectory

Cost	  function

Boundary	  value	  constraints

Non-‐holonomic constraints

Cost	  function	  constraints
System	  limitations

What	  are	  potential	  approaches	  
to	  solve	  this	  problem?



How do we discretize the problem?

(Not	  always	  explicitly	  constructed)

sstart sgoal

s1

s3

s2

s4

How	  do	  you	  
define	  a	  edge?

How do we find the best path through the 
graph?

sstart sgoal

s1

s3

s2

s4

Edge Costs
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sstart sgoal

s1

s3

s2

s4

c(sstart ,s1)=4

5

3

3

5 5

3

2

• Cost between two nodes. (Can also have vertex costs but typically 
only edge.)

• Cost c(s,s’) depends on the cost of the objective J of the trajectory
segment of the edge s->s’

• Calculating c(s,s’) can be expensive (collision checking)

Calculating the least-cost path

g(s) cost of the least-cost path. Optimal g
satisfies:
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g(s) = min
s02pred(s)

g(s0) + c(s0, s)

sstart sgoal

s1

s3

s2

s4

4

5

3

3

5 5

3

2

g=0

g=4

g=5

g=7

g=8

g=9

Finding the Least-Cost Path: Backtracking

• Start at the goal and greedily backtrack to 
start:
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sstart sgoal

s1

s3

s2

s4

4

5

3

3

5 5

3

2

g=0

g=4

g=5

g=7

g=8

g=9

s00 = argmins02pred(s)(g(s0) + c(s0, s)

What are the main questions?
Fixed time/memory budget (real-time planning):
1. What vertices to create?
2. Where to search?
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sstart sgoal

s1

s3

s2

s4

?

?

?

?

?



3 Representative approaches:

• Regular graph search: A*-grid search
• Sampling-based: RRT*
• Trajectory optimization: CHOMP

43

A* Compute optimal g and heuristic h
1. What vertices to create?

Based on heuristic and cost g+h
2. Where to search?

Look at priority queue
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sstart sgoal

s1

s3

s2

s4

g(s)

h(s)

Cost	  of	  the	  best	  path	  
from	  the	  start	  so	  far.

Underestimate	  of	  
the	  cost	  to	  go.

Admissible Heuristic Function h

• Popular function: Euclidean distance

h(s):
• Admissible: h(s)≦c(s,sgoal)
• Consistent (satisfies triangle inequality):
– h(sgoal,sgoal)=0 and for all other states: 
– h(s)≦c(s,succ(s))+h(succ(s))
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A* Search

Update g based on the smallest g+h cost:
A*:

g(sstart)=0; g(s≠sstart)=∞; OPEN={sstart}

while(sgoal ≠ s)
remove s with the smallest g(s)+h(s) from OPEN
expand s
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A* Properties

• Resolution-complete and optimal
• Minimum number of state expansions

47

Questions

• What graph should you create?
• What resolution to pick?
• How do you expand it?
• Performance depends on 
– Graph: Branching factor/Abstraction of the 

system
– Quality of the heuristic for the system and 

environment
– Match of the graph abstraction to the 

environment 

48



Going Deeper
• How do you incorporate dynamics into your graph? 
– State lattice: [Pivtoraika09]
– Maneuver Automaton: [Frazzoli02]

• What are more interesting heuristics for dynamical 
systems? 
– Precompute heuristics [Knepper06]
– Dubin’s heuristic [Dubins57]

• How do we repair rather than redo the search for the 
changing graph?
– D* Lite [Koenig02]
– Anytime D* [Likhachev05]
– Anytime Search [Hansen07]
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Sampling Based Planning

• Where should you put your graph?
• What resolution to pick?
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sstart sgoal

s1

s3

s2

s4

sstart sgoal

s1

s3

s2

s4

sstart sgoal

s1

s3

s2

s4

sstart sgoal

s1

s3

s2

s4

sstart sgoal

s1

s3

s2

s4

Sample the Environment (in an Increasingly Denser 
Fashion) and Connect the Samples to Construct a 
Tree to Find a Path to the Goal (RRT*)

sstart sgoal

Sample a Potential Location to Expand To
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sstart sgoal

Add Edge to Connect to Graph
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sstart sgoal

Add Edge to Connect to Graph
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sstart sgoal

s1



Add Edge to Connect to Graph and 
Repeat
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sstart sgoal

s1

Some Iterations Later…

56

sstart sgoal

s3

s1 s2

s4

snew

sstart sgoal

s3

s1 s2

s4

snew

Look at the neighbors within r
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r

Connect
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sstart sgoal

s3

s1 s2

s4

snew

Check outgoing edges for lower costs
(Rewiring)
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sstart sgoal

s3

s1 s2

s4

snew
r

Change the Parent and Fix Tree
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sstart sgoal

s3

s1 s2

s4

snew



Change the Parent and Fix Tree
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sstart sgoal

s3

s1 s2

s4

snew

RRT* Algorithm (Concept)
V = sstart; E={}
for i=1…n

snew = getNewValidRandomSample()
Snear = getVerticesWithin( r(i) )
(smin,Jmin) = getLowestCostNeighbor(Snear)
E = E ∪ (smin, snew), S = S ∪ snew

E = rewireTree(E, Snear)
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Radius
card(V)= number of vertices, d =
number of dimensions

Ratio	  of	  the	  volume	  to	  
the	  volume	  of	  the	  unit	  
sphere.
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r = �RRT⇤

⇣
log (card(V ))

card(V )

⌘1/d

�RRT⇤ = 2
�
1 + 1

d

�1/d
(µ(Xfree)/⇣d)

1/d

µ(Xfree)/⇣d

Why rewire the tree?

• Remove unnecessary detours
• Optimize for the minimum cost rather than 

committing to connections to early.
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Questions

• What is expensive in this algorithm?
• What about r if our robot is motion 

constrained?
• How can one incorporate heuristics?
• In what environments will this algorithm 

perform well?
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Going Deeper

• Why does this particular choice of r lead 
to optimum plans? [Karaman11]

• What if we consider a batch of samples to 
expand and keep a heuristic? 
[Gammell15]

• What if we one to have alternative routes 
instead of just the best route? 
[Choudhury13 ]
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Trajectory Optimization (CHOMP)

• Exploit the first order 
information available about 
the trajectory

• Perturb an initial guess to 
minimize the cost function

• Example on left:
– Straight line initial guess
– Several optimization steps

67
Zucker13

Going Back To Our Graph Example:

sstart sgoal

Add Vertices based on the Gradient
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sstart sgoal

Add Vertices based on the Gradient
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sstart sgoal

Cost Function

• Want the trajectory to 
be smooth to be 
executable by the 
robot and reach the 
goal

• Avoid obstacles

71

Key Idea

• Minimize the update to the trajectory with 
a smooth perturbation of the trajectory

• For example minimize the amount of 
velocity or acceleration added

=> Perform steepest descent in trajectory 
space
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⇠k+1 = ⇠k � 1

�
M�1gk



Measuring the Difference in Trajectory 
Space
Depends on your 
representation.

Example M for 
waypoints:
Finite difference 
between waypoints 
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M

74⇠k+1 = ⇠k � 1

�
M�1gk

gk

M�1

1

�
M�1gk

Questions?

• Is it complete and optimal?
• How could include dynamic constraints in 

the trajectories (other than projection)?
• Why is it an effective method for air 

vehicles?
• How could you include other planning 

approaches in the optimization?
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Going Deeper

• Enforcing constraints on the trajectory? 
Project back along same space

• More challenging or larger environments? 
[He2013]

• Other trajectory optimization approaches? 
[Kolter09]
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Planner Ensemble Idea

Dynamics
Filter

End 
Game

Library

RRT*-AR

Optimizer

Partially	  
feasible
paths

Feasible
trajectories

Planner Ensemble

Plans	  high	  fidelity	   final	  
descent	  trajectories

Smooths out	  	  
trajectories	  for	  
dynamic	  feasibility

Planning Problem 
Representation

Trajectory 
Executive

Trajectory
to	  FCS

Emergency 
Maneuver 

Library

Picks	  trajectories	  
and	  ensures	  safety

Vehicle	  Dynamics
Lookup

77
Choudhury	   et	  al.	  AHS	  Forum	  2014	  

Conceptual Illustration of Trajectory Planner

Obstacle	  enters	  sensor	  range



Conceptual Illustration of Trajectory Planner

Obstacle	  mapping	   updates	  occupancy	  grid

Conceptual Illustration of Trajectory Planner

Planners	  receive	  start	  pose	  (lookahead)	  and	  goal	  pose

Goal

Conceptual Illustration of Trajectory Planner

Each	  planners	  computes	  a	  trajectory	  and	  gives	  it	  to	  the	  
executive

Conceptual Illustration of Trajectory Planner

Executive	  selects	  planner	  2	  trajectory	  as	  optimal	  path

Conceptual Illustration of Trajectory Planner

Executive	  retains	  other	  paths	  as	  alternate	  routes
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Ensemble/Executive result

84
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Dynamics Filter –
Producing feasible paths
Dynamic’s	  Filter

• Accepts	  a	  partially	  feasible	  
trajectory	  and	  filters	  it	  to	  be	  fully	  
dynamically	  feasible.

• Dynamics	  have	  non-‐linear	  
constraints	  – no	  analytical	  solution	  
exists

• Thus	  planners	  plan	  dubin’s	  curve	  
(analytic)	  which	  is	  filtered	  to	  be	  
within	  a	  funnel	  around	  the	  original	  
path.

85Choudhury	   and	  Scherer,	   ICRA	  2015	  
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Avoiding a Mountain in the Flight Path

87

Planning Result for Optimizer.

88

The optimizer can smoothly avoid the mountain 
and is selected because the cost optimal

89

Obstacle Avoidance with a No-Fly-Zone: 
Comparison between RRT* and Optimizer

90



RRT*-AR Path is Picked Because the 
Optimizer Gets Stuck in a Local Minimum

91
92

Trajectory Planner Design

Dynamics
Filter

End 
Game

Library

RRT*-AR

Optimizer

Partially	  
feasible
paths

Feasible
trajectories

Planner Ensemble

Plans	  high	  fidelity	   final	  descent	  
trajectories

Smooths out	  	  
trajectories	  for	  
dynamic	  feasibility

Planning Problem 
Representation

Trajectory 
Executive

Trajectory
to	  FCS

Emergency 
Maneuver 

Library

Picks	  trajectories	  
and	  ensures	  
safety

Vehicle	  Dynamics
Lookup
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Emergency Maneuver Library –
Defining Safety

Known	  Volume

Known	  Obstacles
Safe	  Trajectory

93

Emergency Maneuver Problem

Time	  parameterized	  trajectory
Known	  Volume	  at	  time	  t
Known	  Obstacles	  at	  time	  t
Boundary	  value	  constraints
Non-‐holonomic	  equality	  constraints

Inequality bounds	  specifying	  system	  
limitations

Trajectory Planning Problem and
Approach Details
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1 Overview

In this paper we show the motion planning problem addressed by the trajectory executive and
our approach. We detail several of the ideas briefly described during the PDR and expand on the
exact cost functions we use and how they are used with the trajectory executive and trajectory
planner ensemble.

The goal of the trajectory planner is to find a path that respects the vehicle and obstacle
constraints while optimizing a cost function to find the “best” path. The trajectory planning
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Safety	  Constraint
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Example Use Case

Planned	  Trajectory
Known	  Space
Current	  Laser	  Coverage

Safe	  Emergency	  Maneuver
Unsafe	  Emergency	  Maneuver
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Example Use Case

Planned	  Trajectory
Known	  Space
Current	  Laser	  Coverage

Safe	  Emergency	  Maneuver
Unsafe	  Emergency	  Maneuver
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Approach: Emergency Library is 
Computed Offline to Enable Verification

Set	  of	  dynamically	  feasible	  control invariant trajectories
Number	  of	  trajectories	  allowed	  in	  the	  set
Probability of	  at	  least	  one	  trajectory	  in	  the	  set	  being	  
unoccupied
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The Emergency Maneuver Set
can be Found Greedily

Set	  of	  dynamically	  feasible	  control invariant trajectories
Number	  of	  trajectories	  allowed	  in	  the	  set
Probability of	  at	  least	  one	  trajectory	  in	  the	  set	  being	  
unoccupied

The	  general	  optimization	  problem	  is	  NP	  hard
We	  greedily	  generate	  a	  set,	  while	  proving	  a	  sub-‐
optimality	  bound	  on	  the	  greedy	  optimization

100Arora	  et	  al.,	  AHS	  2014	  

Example Emergency Maneuver Library
Library  at  50  m/s  for  Swerving  (maximum  unknown  obstacle  width  30m)

Library  at  25  m/s  for  Stopping

Y

X

Z

X

Y

Z

Y

Y

Top  View

Top  View

Frontal  View

Frontal  View

Parameters:  wind  speed  =  0  knots 101

Example Simulation Result

102



Flight Test Result
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Outline

• Introduction
• Problem
• Abstraction and Approach
• Results
• Summary
• Exercise
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Are we done?

- Fragile (e.g. ignoring position, execution 
and sensor uncertainties) 

è Robust

- Static (e.g. ignoring wind, changing 
capability of robot)

è Adaptive

- Myopic (e.g. limited sensor range, overly 
simplified inference about the world)

è Deliberate
105

l Safety assessment 
restricted by limited 
sensor capabilities

l Obstacle detection 
range and size is 
proportional to range

l How can we still show 
safety if small obstacles 
can appear close to the 
robot?

Robust: Safety in Partially-Known Environments 
Depends on the Sensor Capability

Known	  Volume

Known	  Obstacles
Safe	  Trajectory
Obstacle	  detected	  
at	  short	  range.

Althoff and	  Scherer,	   ICRA	  2015

Adaptive: Adapting to Changing 
Abilities of the Robot

107

• Ignoring the changing 
capabilities of the system 
reduces robustness

• Need to adapt to changes 
in robot capability (wind, 
obscurants, localization) 
to enable long-term 
autonomy

• How can the behavior of 
the system adapt to 
unmodelled changes?

Compute Reachable Sets of the Emergency Trajectories to 
Guarantee Safety with Execution Uncertainties

• Online: Compute reachable set of nominal trajectory (<5s 
trajectory time)

• Offline: Compute reachable set of emergency trajectory (<70s)
• Concatenate the nominal and emergency trajectory to form a 

Robust Control Invariant Set.

Althoff,	   Althoff,	   Scherer	  IROS	  2015



Performance of planning algorithm 
depends on the environment
• Can we learn the best ensemble?
– Learn the best planner
– Learn the second planner with the highest 

marginal gains …

• Can we build a combined trajectory 
optimization/search-based planner that 
adapts?

• Can we extend the ensemble idea to other 
applications? (For example odometry)

109
Choudhury,	   Arora,	  Scherer	  ICRA	  2015,	  Holtz	  and	  Scherer	  FSR	  2015

Learnt planner ensemble

Choudhury,	   Arora,	  Scherer	  ICRA	  2015

Deliberate: Incorporating Semantic 
Information in Decision Making
• Behavior of vehicle is limited by the information 

available to the planning algorithms
• Semantic information can improve the performance 

and autonomy of the system
• How  do we incorporate semantic information 

effectively?

111

~100’s meters
Safe Distance
~10’s meters

Dense Semantic Classification
Fully Connected Deep Networks

Long,	  Shelhamer and	  Darrell,	  CVPR	  2015

Real-time Semantic Classification for 
Scouting using Deep Learning

113

Semantics at Close Range -VoxNet

[1]	  Maturana	  and	  Scherer,	   ICRA	  2015	  
[2]	  Maturana and	  Scherer,	   IROS	  2015



Landing Zone Detection with 3D LIDAR

115

Summary

• Reviewed the planning problem 
for autonomous flying robots

• Considered several algorithms 
and the idea of planning 
ensembles

• Which approaches are successful 
is highly dependent on your 
environment and dynamical 
system
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Toolbox Setup
1. Install MATLAB (no toolboxes necessary)
2. Download MATLAB toolbox. In a command line execute:
git clone 
https://bitbucket.org/castacks/matlab_planning_toolbox.git

(Supported platforms: Mac, Linux, and 
Windows, for Windows you also need Visual C++)

3. Go to 
https://bitbucket.org/castacks/matlab_planning_toolbox
and follow the directions.
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Outline

• Introduction
• Problem
• Abstraction and Approach
• Results
• Summary
• Exercise
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Goals
1. Setup the toolbox (10 min)
2. Get familiar with the different planning 

algorithms from the lecture (20 min)
3. Explore the concept of environment 

dependence for planning algorithms 
(20 min)

4. Planning Challenge (40 min)

119

1. Toolbox Setup
1. Install MATLAB
2. Download MATLAB toolbox. In a command line execute:
git clone git@bitbucket.org:castacks/matlab_planning_toolbox.git

(Supported platforms: Mac, Linux, and 
Windows, for Windows you also need Visual C++)

3. Go to 
https://bitbucket.org/castacks/matlab_planning_toolbox
and follow the directions.

120



1. Matlab Toolbox Overview

• Run init_setup.m to setup paths and 
compile mex files

• Folders
– global_search:  Sampling and grid planners
– local_search: Trajectory optimization
– cost_functions: Tools to setup and evaluate 

cost functions
– environment_generation: Tools to generate 

environments
– saved_environments: Different maps

121

2. Get familiar with the different planning 
algorithms
Different examples are located here:
planning_experiments/detailed_examples/
1. example_astar.m
2. example_chomp.m
3. example_rrtstar.m

122

2. Questions

• How do the different algorithms behave?
• What happens if you vary the parameters?
• What happens if you inflate the heuristic? 

(Turn A* into Weighted-A*)
• How do you turn RRT* into RRT?

123

3. Run Algorithms on this Matrix 

CHOMP A* RRT*

Env 1

Env	  2

Env	  3

124

Where	  do	  the	  algorithms	  work?	  

Fill	  out	  the	  matrix.

3. Assumptions so Far:

• No dynamics
• Start
• Goal
• No changing environment
• No time budget/real-time

125

4. Planning Challenge
Use this file: 
planning_experiments/planning_challenge/run_planner_challenge.m

Prize: Fame and a large pack of gummy bears!

You can use at most 2 planning algorithms

• Develop your own planning approach on the training 
set.

• The test set will be released in the last ten minutes. 
Please write your score on the white board and we will 
announce the winner after lunch.

126



4. Test Dataset

Please download this file und place the 
environments in the saved environments 
folder:
http://bit.ly/1Lu8BlD

Please report the lowest number.
First initials and day.
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Graph-Based SLAM 

Cyrill Stachniss 

2 

Graph-Based SLAM ?? 

3 

Graph-Based SLAM ?? 
SLAM = simultaneous localization and  
mapping 

4 

Graph-Based SLAM ?? 
SLAM = simultaneous localization and  
mapping 
 
graph = representation of a set of  
objects where pairs of objects are  
connected by links encoding relations  
between the objects 

5 

Is this relevant? 

6 

Yes, it is! 



7 

What is my goal  
for today?  

8 
Robot pose Constraint  

Graph-Based SLAM 

§  Nodes represent poses or locations  
§  Constraints connect the poses of the 

robot while it is moving 
§  Constraints are inherently uncertain 

9 

Graph-Based SLAM 

§  Observing previously seen areas 
generates constraints between non-
successive poses 

 

Robot pose Constraint  
10 

Idea of Graph-Based SLAM 

§  Use a graph to represent the problem 
§  Every node in the graph corresponds 

to a pose of the robot during mapping 
§  Every edge between two nodes 

corresponds to a spatial constraint  
between them 

§  Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the error introduced by the 
constraints  

11 

Graph-SLAM and Least Squares 

§  The nodes represent the state 
§  Given a state, we can compute what 

we expect to perceive 
§  We have real observations relating  

the nodes with each other 

12 

Graph-SLAM and Least Squares 

§  The nodes represent the state 
§  Given a state, we can compute what 

we expect to perceive 
§  We have real observations relating  

the nodes with each other 

Find a configuration of the  
nodes so that the real and  
predicted observations are  

as similar as possible  



13 

Graphical Explanation 

state 
(unknown) 

predicted  
measurements 

real 
measurements 

minimize the differences! 

14 

Error Function 
§  Error     is typically the difference between 

the predicted and actual measurement  
  

§  We assume that the measurement error has 
zero mean and is normally distributed  

§  Gaussian error with information matrix 
§  The squared error of a measurement 

depends only on the state and is a scalar 
  

15 

Goal: Find the Minimum 

§  Find the state x* which minimizes the 
error given all measurements 

global error (scalar) 

squared error terms (scalar) 

error terms (vector) 

16 

Goal: Find the Minimum 

§  Find the state x* which minimizes the 
error given all measurements 

 

§  A general solution is to derive the 
global error function and find its nulls 

§  In general no closed form solution 
  

17 

Assumptions 

§  A good initial guess is available  
§  The error functions are “smooth” in 

the neighborhood of the (hopefully 
global) minima 

§  Then, we can solve the problem by 
iterative linearizations 

18 

Solve Via Iterative 
Linearizations 
§  Linearize the error terms around the 

current solution/initial guess 
§  Compute the first derivative of the 

squared error function 
§  Set it to zero and solve linear system 
§  Obtain the new state (that is hopefully 

closer to the minimum) 
§  Iterate 



19 

Linearizing the Error Function 

§  Approximate the error functions 
around an initial guess x via Taylor 
expansion 

§  Reminder: Jacobian 

20 

Squared Error 

§  With this linearization, we can fix    
and carry out the minimization in the 
increments  

§  We replace the Taylor expansion in 
the squared error terms: 
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Squared Error 

§  With this linearization, we can fix    
and carry out the minimization in the 
increments  

§  We replace the Taylor expansion in 
the squared error terms: 

22 

Squared Error 

§  With this linearization, we can fix    
and carry out the minimization in the 
increments  

§  We replace the Taylor expansion in 
the squared error terms: 

23 

Squared Error (cont.) 

§  By grouping similar terms, we obtain: 

24 

Global Error 

§  The global error is the sum of the 
squared errors terms corresponding to 
the individual measurements 



25 

Global Error 

§  The global error is the sum of the 
squared errors terms corresponding to 
the individual measurements 

26 

Global Error 

§  The global error is the sum of the 
squared errors terms corresponding to 
the individual measurements 

27 

Quadratic Form 

§  We can write the global error terms as 
a quadratic form in 

§  Our goal is to minimize this function 
§  We need to compute the derivative of  
                w.r.t.        

 

28 

Deriving a Quadratic Form 

§  Given a quadratic form 
 

§  its first derivative is  
 

See: The Matrix Cookbook, Section 2.2.4  

29 

Quadratic Form 

§  We can write the linearized global 
error terms as a quadratic form in 

§  The derivative of                 w.r.t.       
is then: 

 

30 

Minimizing the Quadratic Form 

§  Derivative  
 
§  Setting it to zero leads to  

§  Which leads to the linear system 

 
§  The solution for the increment        is 



31 

Procedure on a Single Slide 

Iterate the following steps: 
§  Linearize around x and compute for 

each measurement 

§  Compute the terms for the linear 
system 

§  Solve the linear system 
  

§  Updating state 
32 

Let’s use that for SLAM 

33 
Robot pose Constraint  

Pose-Graph-Based SLAM 

§  Nodes represent poses or locations  
§  Constraints connect the poses of the 

robot while it is moving 
§  Constraints are inherently uncertain 
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Pose-Graph-Based SLAM 

§  Observing previously seen areas 
generates constraints between non-
successive poses 

 

Robot pose Constraint  

35 

The Pose-Graph 

§  It consists of n nodes   
§  Each     is a 2D or 3D pose (position 

and orientation of the robot at time ti) 
§  A constraint/edge exists between the 

nodes     and     if… 

36 

Create an Edge If… (1) 

§  …the robot moves from     to 
§  Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

§  …the robot observes the same part of 
the environment from     and from 

xi 

Measurement from     

xj 

Measurement from   
38 

Create an Edge If… (2) 

§  …the robot observes the same part of 
the environment from     and from 

§  Construct a virtual measurement 
about the position of     seen from  
 

Edge represents the position of     seen 
from     based on the observation  
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Transformations 

§  How to express     relative to      ? 
§  Express this through transformations 
§  Let      be transformation of the origin 

into 
§  Let        be the inverse transformation 
§  We can express relative 

transformation  
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Transformations 

§  How to express     relative to      ? 
§  Express this through transformations 
§  Let      be transformation of the origin 

into 
§  Let        be the inverse transformation 
§  We can express relative 

transformation 
§  Transformations can be expressed 

using homogenous coordinates 
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Homogenous Coordinates 

§  N-dim space expressed in N+1 dim 
§  4 dim. for modeling the 3D space 
§  To HC:  
§  Backwards: 

translation rotation rigid-body 
42 

Transformations 

§  Transformations can be expressed 
using homogenous coordinates 

§  Odometry-Based edge 
 

§  Observation-Based edge 

describes “how node i sees node j” 
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The Edge Information Matrices 

§  Observations are affected by noise 
§  Information matrix      for each edge 

to encode its uncertainty 
§  The “bigger”     , the more the edge 

“matters” in the optimization  
 

Question 
§  What should these matrices look like when 

moving in a long, featureless corridor? 
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Pose-Graph 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 

45 

Pose-Graph 

Goal: 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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The Error Function 
§  Error function for a single constraint  

§  Error as a function of the whole state vector 

§  Error takes a value of zero if 

xj referenced w.r.t. xi measurement 

47 

Error Minimization Procedure  

§  Define the error function 
§  Linearize the error function  
§  Compute its derivative  
§  Set the derivative to zero 
§  Solve the linear system 
§  Iterate this procedure until 

convergence 
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Linearizing the Error Function 

§  We can approximate the error 
functions around an initial guess    
via Taylor expansion 

with 
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 

       No, only on     and   
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 

       No, only on     and   
§  Is there any consequence on the 

structure of the Jacobian? 
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Derivative of the Error Function 

§  Does one error term           depend on 
all state variables? 

       No, only on     and   
§  Is there any consequence on the 

structure of the Jacobian? 
 Yes, it will be non-zero only in the   
 rows corresponding to     and 

53 

Jacobians and Sparsity 

§  Error           depends only on the two 
parameter blocks     and 

 
 
§  The Jacobian will be zero everywhere 

except in the columns of     and  

 54 

Consequences of the Sparsity 

§  We need to compute the coefficient 
vector    and matrix    : 

 
§  The sparse structure of      will result 

in a sparse structure of   
§  This structure reflects the adjacency 

matrix of the graph 
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Illustration of the Structure 

Non-zero only at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

... and at 
the blocks 

ij,ji 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

+ + … + 

+ + … + 
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Sparsity Effect on b 

§  An edge contributes to the linear 
system via      and   

§  The coefficient vector is: 

§  It is non-zero only at the indices 
corresponding to     and  
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Sparsity Effect on H 

§  The coefficient matrix of an edge is: 

 

§  Non-zero only in the blocks relating i,j  
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Sparsity Summary 

§  An edge ij contributes only to the  
§  ith and the jth block of   
§  to the blocks ii, jj, ij and ji of   

§  Resulting system is sparse 
§  System can be computed by summing 

up the contribution of each edge 
§  Efficient solvers can be used 

§  Sparse Cholesky decomposition  
§ Conjugate gradients 
§ … many others 
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All We Need… 

§  Vector of the states increments: 

§  Coefficient vector: 

§  System matrix: 

63 

… for the Linear System 

For each constraint: 
§  Compute error 
§  Compute the blocks of the Jacobian: 

 
§  Update the coefficient vector: 
 
§  Update the system matrix: 
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Algorithm 

65 

Real World Examples 

66 

The Graph with Landmarks 

Feature 

Pose 

Constraint 
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The Graph with Landmarks 

§  Nodes can represent: 
§ Robot poses 
§ Landmark locations 

§  Edges can represent: 
§ Landmark observations  
§ Odometry measurements 

§  The minimization 
optimizes the landmark 
locations and robot 
poses  

Feature 

Pose 

Constraint 
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§  Expected observation (x-y sensor) 

 

Landmarks Observation 

robot landmark 
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§  Expected observation (x-y sensor) 

 
§  Error function (in Euclidian space) 
 

Landmarks Observation 

robot landmark 
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Bearing Only Observations 

§  A landmark is still a 2D point 
§  The robot observe only the bearing 

towards the landmark 
§  1D Observation function 

 

robot landmark robot  
orientation 

robot-landmark 
angle 
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Bearing Only Observations 

§  Observation function 

§  Error function 

robot landmark robot  
orientation 

robot-landmark 
angle 
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The Rank of the Matrix H 

§  What is the rank of       for a  
2D landmark-pose constraint? 
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The Rank of the Matrix H 

§  What is the rank of       for a  
2D landmark-pose constraint? 
§  The blocks of      are a 2x3 matrices 
§        cannot have more than rank 2 
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The Rank of the Matrix H 

§  What is the rank of       for a  
2D landmark-pose constraint? 
§  The blocks of      are a 2x3 matrices 
§        cannot have more than rank 2 

                               

§  What is the rank of       for a  
bearing-only constraint? 
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The Rank of the Matrix H 

§  What is the rank of       for a  
2D landmark-pose constraint? 
§  The blocks of      are a 2x3 matrices 
§        cannot have more than rank 2 

                               

§  What is the rank of       for a  
bearing-only constraint? 
§  The blocks of      are a 1x3 matrices 
§        has rank 1 

76 

Where is the Robot? 

§  Robot observes one landmark (x,y) 
§  Where can the robot be relative to the 

landmark? 

The robot can be somewhere on 
a circle around the landmark 

It is a 1D solution space 
(constrained by the distance  
and the robot’s orientation) 
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Where is the Robot? 

§  Robot observes one landmark 
(bearing-only) 

§  Where can the robot be relative to the 
landmark? 

The robot can be anywhere 
in the x-y plane 

It is a 2D solution space 
(constrained by the robot’s 

orientation) 

78 

Rank 

§  In landmark-based SLAM, the system 
can be under-determined 

§  The rank of     is less or equal to the 
sum of the ranks of the constraints 

§  To determine a unique solution, the 
system must have full rank 
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Questions 

§  The rank of     is less or equal to the 
sum of the ranks of the constraints 

§  To determine a unique solution, the 
system must have full rank 

§  Questions: 
§ How many 2D landmark observations are 

at least needed to obtain the robot pose? 
§ How many bearing-only observations are 

at least needed to obtain the robot pose? 

80 

Under-Determined Systems 

§  No guarantee for a full rank system 
§  Landmarks may be observed only once 
§ Robot might have no odometry 

§  We can still deal with these situations 
by adding a “damping” factor to 

§  Instead of solving                     ,  
we solve 

   (H  + λ I) Δx = -b 
 
       What is the effect of that? 

81 

Levenberg Marquardt Idea 

§  Damping factor for  
§      
§  The damping factor       makes the 

system positive definite 
§  Weighted sum of Gauss Newton and 

Steepest Descent 
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Bundle Adjustment 

§  3D reconstruction based on images 
taken at different viewpoints 

§  Minimizes the reprojection error 
§  Often uses Levenberg Marquardt  
§  Developed in photogrammetry during 

the 1950ies 
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UAV Example 

84 

UAV Example 
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Summary 

§  The back-end part of the SLAM 
problem can be solved with GN or LM  

§  The     matrix is typically sparse 
§  This sparsity allows for efficiently 

solving the linear system 
§  There are several extensions 

(online, robust methods wrt outliers or 
initialization, hierarchical approaches, 
exploiting sparsity, multiple sensors) 

86 

Further Reading 

Least Squares SLAM 
§  Grisetti, Kümmerle, Stachniss, 

Burgard: “A Tutorial on Graph-based 
SLAM”, 2010 

§  Triggs et al. “Bundle Adjustment — A 
Modern Synthesis” 
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Thank you for your attention! 
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Slide Information 
§  These slides have been created by Cyrill Stachniss and Giorgio 

Grisetti evolving from different courses and tutorials we 
taught over the years between 2010 and 2015. 

§  I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

§  Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

§  My video recordings of my lectures on robot mapping are 
available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 

Cyrill Stachniss, 2015 
     cyrill.stachniss@igg.uni-bonn.de 
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What is Controls? 
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What is Controls? 

Angela Schoellig 4 

 

Angela Schoellig 5 Angela Schoellig 6 



 

 

What is Controls? 
Controls enables a machine to achieve a 
task without human interaction. Despite 
disturbances. 
 
 Self-regulating system. 
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How is this relevant for 
flying robots? 
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QUADROTOR CONTROL 
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Motor Turn Rates 

Motion 

Motor Controller 

Measured Turn Rates 

QUADROTOR CONTROL 
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Motor Turn Rates 

Motion 

Motor Ctrl 

Measured Turn Rates 

Body Turn Rate  
+ Thrust 

Rate Ctrl 

Gyroscopes  
(+Accelerometer) 

QUADROTOR CONTROL 
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Motor Turn Rates Motion 

Motor Ctrl 

Measured Turn Rates 

Body Turn Rate  
+ Thrust 

Rate Ctrl 

Gyroscopes  
(+Accelerometer) 

Angles 
+ Thrust 

Angle Ctrl 

Angle Measurements/ 
Estimates 

QUADROTOR CONTROL 
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Motor  
Turn Rates Motion 

Motor Ctrl 

Measured  
Turn Rates 

Body Turn  
Rate + Thrust 

Rate Ctrl 

Gyroscopes  
(+Accelerometer) 

Angles 
+ Thrust 

Angle Ctrl 

Angle Meas./ 
Estimates 

Position  
+ Yaw 

Position Ctrl 

Position +  
Yaw 

Cost Function 

High-Level Task 

Features 

 

 

 
 
Allows us to focus on the high-level 
task. 



 

 

How does it fit together?  
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Aerial Manipulation 

Sensors 

Nonlinear 
State 

Estimation 

OVERVIEW 
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Motion 
Planning 

Controls 

Simultaneous 
Localization & 

Mapping 

Vision 3D 
Reconstruction 

Controls 

PERCEPTION 

ACTION 

Sensors 

Nonlinear 
State 

Estimation 

OVERVIEW 
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Motion 
Planning 

Controls 

Simultaneous 
Localization & 

Mapping 

Vision 3D 
Reconstruction 

Controls 

PERCEPTION 

ACTION 

OVERVIEW 
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Motion 
Planning 

Controls Controls 

PERCEPTION 

ACTION 

 

 

My goal for today! 
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GOAL 

 

 

Prepare you to design your own 
advanced controllers. 
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OUTLINE 

 

I. Model-Based Control 

Model-Free Vs. Model-Based Control 

 Quadrotor Model 

 Position Control Approach 

 Other Approaches 

 What Can Go Wrong? 

II. Learning-Enabled Control 

 Task-Dependent Learning 

 Task-Independent and Safe Learning 

III. Summary 
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BASICS 

GOAL OF CONTROLS:  
Want the error to go exponentially to zero as function of time. 

 

 

Example:   
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PLANT CONTROLLER 

Disturbance 

BASICS 

GOAL OF CONTROLS:  
Want the error to go exponentially to zero as function of time. 

 

 

Example:   
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Can be higher-order,  
but coefficients must be non-negative. 

BASICS 

Example:   
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Intuitive parameterization: 
• Damping ratio:  
• Natural frequency, related to rise time (10-90%): 

Feed-forward term. 

MODEL-FREE VS. MODEL-BASED CONTROL 

Plant: 

 

Model-free:  

 

 

 
Advantages? Disadvantages? 

• No model needed. 

• Performance depends on model parameters. 

• Need to tune gains to maximize performance.  
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MODEL-FREE VS. MODEL-BASED CONTROL 

Plant: 
 
Model-based:  
 
 
 
 
Advantages? Disadvantages? 
• Model needed. Model parameter errors? 
• Model-based part: cancels dynamics of the system. 
• Model-independent part: design/tune independent of the model.
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MODEL-FREE VS. MODEL-BASED CONTROL 
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Tracking error bounded…    

SUMMARY 

Model-free: 

• No model needed. 

• Performance depends on model parameters. Re-tune often… 

• Need to tune gains to maximize performance.  

 

 

Advantages? Disadvantages? 

• Model needed. Model errors? 

• Model-based part: cancels dynamics of the system. 

• Model-independent part: design/tune independent of the model. 
  

 

Angela Schoellig 26 

OUTLINE 

 

I. Model-Based Control 

Model-Free Vs. Model-Based Control 

 Quadrotor Model 

 Position Control Approach 

 Other Approaches 

 What Can Go Wrong? 

II. Learning-Enabled Control 

 Task-Dependent Learning 

 Task-Independent and Safe Learning 

III. Summary 
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QUADROTOR BASICS 
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Hover 

Pitch/Roll 

Ascend 

Yaw 

MODEL 
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Maps from body to  
inertial frame. 

MODEL 
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OUTLINE 

 

I. Model-Based Control 

Model-Free Vs. Model-Based Control 

 Quadrotor Model 

 Position Control Approach 

 Other Approaches 

 What Can Go Wrong? 

II. Learning-Enabled Control 

 Task-Dependent Learning 

 Task-Independent and Safe Learning 

III. Summary 
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PART 1:  VERTICAL CONTROL 
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PART 1:  LATERAL CONTROL 
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Define similarly for lateral direction: 

 

 

 

Transform into desired turn rates:  

 

 

 
    

OVERALL CONTROL 
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Define similarly for lateral direction: 

 

 

 

Transform into desired turn rates:  

 

 

 
    

 
 
 
 
 
 
 
Body rate controller:  
 
 
 
    

OUTLINE 

 

I. Model-Based Control 

Model-Free Vs. Model-Based Control 

 Quadrotor Model 

 Position Control Approach 

 Other Approaches 

 What Can Go Wrong? 

II. Learning-Enabled Control 

 Task-Dependent Learning 

 Task-Independent and Safe Learning 

III. Summary 
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OTHER APPROACHES 

• Linear controller based on linearized system [Gurdan, et al. 
2007][Boubadallah, 2007][Hoffman et al., 2008]  

 

• LQR  

 

• Backstepping 

 

• Exact linearization, differentially flat system [Mellinger] 

 

• L1 adaptive control  
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OUTLINE 

 

I. Model-Based Control 

Model-Free Vs. Model-Based Control 

 Quadrotor Model 

 Position Control Approach 

 Other Approaches 

 What Can Go Wrong? 

II. Learning-Enabled Control 

 Task-Dependent Learning 

 Task-Independent and Safe Learning 

III. Summary 
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LIMITATIONS 

Latency 
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LIMITATIONS 

Latency 
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Predict the vehicle position at the time the input arrives at the vehicle. 

LIMITATIONS 

Latency 
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Circle motion at 4 m/s. 

LIMITATIONS 

Offsets 
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Calibrate during hover. 

LIMITATIONS 

1. Triple flip with a quadrotor. 

 

 

2. Time-optimized slalom. 

 

 

3. Fast path following with a ground vehicle. 
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Aggressive Maneuvers 
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MOTIVATING EXAMPLE 
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EXPLANATION 

• Unmodelled dynamics 

• Unknown external disturbances (e.g., environment conditions such as surface 
material, topography or weather) 
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Model inaccuracies limit achievable performance! 
 

 

CLAIM 
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Learning/adaptation enables safe, high-
performance motions in uncontrolled, unknown 

or changing environments. 
 
 

DYNAMICS CONTROLS MACHINE 
LEARNING ROBOTICS 

RESEARCH FOCUS 
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Prior 
information 
 
– Which motions 

are feasible?  
– How to plan 

collision-free 
motions? 

+ Current sensor 
measurement 
 
– How to guide 

the vehicle 
along a desired 
path? 
 

+ Past experiment 
data 
 
– Can the 

performance be 
improved by 
leveraging past 
data? 

Towards robotics 
applications. 



FRAMEWORK 
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SYSTEM 

Input 

Disturbance 

Output 

LEARNING 

Angela Schoellig 

Improve the controls performance by learning from 
data. 

OUTLINE 

 

I. Model-Based Control 

Model-Free Vs. Model-Based Control 

 Quadrotor Model 

 Position Control Approach 

 Other Approaches 

 What Can Go Wrong? 

II. Learning-Enabled Control 

 Task-Dependent Learning 

 Task-Independent and Safe Learning 

III. Summary 
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1 | TASK-DEPENDENT LEARNING 

1. TRIPLE FLIPS 

 

 

 

 

 

 

Lupashin, Schoellig, Sherback, D’Andrea, “A simple learning 
strategy for high-speed quadrocopter multi-flips,” ICRA 2010. 
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Task  Executing a given motion. 
Data Incorporation  Adaptation of input parameters. 

model Iter 1 Iter 70 

APPROACH 
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A Priori Knowledge  First-principles model, input constraints, 
parameterized input trajectory 

1 | APPROACH 
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1600 deg/s triple flip – 70 iterations 

acceleration 

start rotate 

stop rotate 

recovery 

A Priori Knowledge  First-principles model, input constraints, 
parameterized input trajectory 

1 | APPROACH 
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Algorithm  Policy gradient method 



APPROACH 
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model Iter 1 Iter 70 

3| TASK-DEPENDENT LEARNING 

2. FINITE-TIME TRAJECTORY 
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Task  Executing a given motion. 
Data Incorporation  Adaptation of full discretized input trajectory. 

CONTROL 
INPUT 
(Desired 
position) 

OUTPUT 
(Measured 
position) 

Slalom racing  
example. 

3| APPROACH 
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1. Extract system model from numeric simulation 

2. Estimate model error/systematic offset along trajectory 

3. Update input trajectory 

 

SYSTEM INPUT OUTPUT 

MODEL ERROR 
ESTIMATION 

Estimated 
Disturbance 

UPDATED 
INPUT 

INPUT UPDATE 

APPROACH 
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Prerequisites: 
• Coarse model  

• Desired output trajectory 

 

Linear mapping from numeric simulation of coarse model: 

 

 

 

A Priori Knowledge First-principles model, input and state constraints, 
desired output trajectory 

SYSTEM INPUT 
OUTPUT 
CONSTRAINTS 

APPROACH 
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Iteration-Domain Model: 
• For each trial 

 
 

 
Disturbance estimate: Kalman filter in the iteration domain 

• From        execution get      and estimate  
 

Input update: minimize expected tracking error  
 

 
 

 
 

 
 

Algorithm  Optimization-based Iterative Learning 

trial-uncorrelated, zero-
mean Gaussian noise 

unknown recurring 
disturbance 

subject to Convex optimization 



3| RESULT 
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TASK-DEPENDENT LEARNING 
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Task  Executing a given motion. 
Data Incorporation  Adaptation of input parameters. 

If task changes,  
learning is started  

from scratch! 

OUTLINE 

 

I. Model-Based Control 

Model-Free Vs. Model-Based Control 

 Quadrotor Model 

 Position Control Approach 

 Other Approaches 

 What Can Go Wrong? 

II. Learning-Enabled Control 

 Task-Dependent Learning 

 Task-Independent and Safe Learning 

III. Summary 
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TASK-INDEPENDENT LEARNING 

LEARNING-BASED MODEL PREDICTIVE 
CONTROL 
 
 
 
 
 
Ostafew, Schoellig, Barfoot, “Learning-based 
nonlinear model predictive control to improve 
vision-based mobile robot path-tracking in 
challenging outdoor environments,” ICRA 2014. 
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Task  Executing a set of motions. 
Procedure  Continuous operation. 
Data Incorporation  Adaptation of system model and feedback controller. 

Prof. Tim Barfoot Chris Ostafew 

State-space model with state- and input-dependent disturbance model: 
 
 
 
 
 
Using a Gaussian Process to estimate the disturbance function. 
 

LEARNING-BASED MODEL PREDICTIVE CONTROL 
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LEARNING-BASED MODEL PREDICTIVE CONTROL 
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Your name 68 

TASK-INDEPENDENT LEARNING 
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• Disturbance modelled as function of state and input using a Gaussian Process. 

• Learning data can be transferred from one task to another. 

• Uncertainty estimate is not considered, safety during learning not guaranteed. 

 

 

SAFE, TASK-INDEPENDENT LEARNING 

ROBUST LEARNING CONTROL 

• Guarantee stability while improving 
performance [1] 

 

[1] Schaal, Atkeson, “Learning control in robotics,” IEEE 
Robotics & Automation Magazine, 2010. 
 

Berkenkamp, Schoellig, “Learning-based robust control: 
guaranteeing stability while improving performance,” 
Machine Learning in Planning and Control of Robot 
Motion Workshop, IROS 2014. 
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Procedure  Continuous operation. 
Data Incorporation  Adaptation of system model and feedback controller. 

Felix Berkenkamp 

SO FAR… 
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Robust control 

• Specify prior uncertainty  
in model  

• Guarantee stability and 
performance for all possible 
models 

Online learning 

• Learn from online data 

• Improve the model 

True model 

Nominal 
model 

Set of possible 
models 

True model 

Nominal 
model 

Online learning 

THE MISSING LINK 
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Robust 
Control 

Online 
learning 

Learning-
based Robust 

Control 

Models 
uncertainty    
Guarantees 
stability    
Improves 
online    

True model 

Nominal 
model 

Set of possible 
models 

Online 
learning 

True model 

Nominal 
model 

Set of possible models 



APPROACH 
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• Gaussian Process: Online learning 

• Robust Control:  Guaranteed stability / performance 

 

True model 

Nominal model 

  

Set of possible models 
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SAFE, TASK-INDEPENDENT LEARNING 
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• Combined Gaussian Process learning with Linear Robust Control 

• Enables controller performance to improve online while providing stability 
guarantees 

True model 

Nominal 
model 

Set of possible 
models 

True model 

Nominal 
model 

Set of possible 
models 

DEVELOPMENT 
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Specific task, 
adaptation of a 
few input 
parameters 
only 

General task, full 
input trajectory 
adaptation 

Model learning, 
anytime learning. 

Learning with 
safety  
guarantees. 

True model 

Nominal 
model 

SAFE, TASK-INDEPENDENT LEARNING 

… more to come! 
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www.dynsyslab.org  
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MY GROUP 
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• #1 university in Canada, 
top 20 worldwide. 

• Founded in 1827. 
• Interesting outdoor flight 

opportunities, official 
flight licenses easy to get! 

DYNAMICS CONTROLS MACHINE 
LEARNING ROBOTICS 

SUMMARY 
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LEARNING HELPS US TO ACHIEVE… 

• High speed 
• High accuracy 
• Energy efficiency 

Excellence 

• Safe for the human 
• … the robot 
• … the environment 

Safety 
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THANK YOU 

 

For follow-up discussions, please contact me: 

 

 

Angela P. Schoellig 
web:  www.schoellig.name 

email:  schoellig@utias.utoronto.ca   
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EXCERCISE 

You get the task to fly the Parrot AR.Drone autonomously in an 
indoor motion capture system. 

 

• Measurements:   
Full vehicle state 

• Inputs to be computed:  
Roll, pitch (ZYX Euler angles), rate around body z-axis, z velocity 

 

Start with quadsim_user_interface.m 
Fill out DSLcontroller.m,   desiredstate.m,  parameters.m  
Do not change given parameters. 
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CHALLENGE 
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Fly a circle of 4m/s and 1m radius (e.g. sin(4t) ). 

• Calculate your tracking error  

 

 

 

 

Start with quadsim_user_interface.m 
Fill out DSLcontroller.m,   desiredstate.m,  parameters.m  
Do not change given parameters. 
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Motivation

Robotic Perception Mixed  and
Augmented Reality Autonomous MAVs
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1809 Karl  Friedrich  Gauss
“Theoria Motus Corporum Celestium”

Karl  Friedrich  Gauss
“Theoria Combinationis Observationum Erroribus Minimis Obnoxiae”

1823

1960 Rudolf  Kálmán
“A  New  Approach  to  Linear  Filtering  and  Prediction  Problems”,
Journal  of  Basic  Engineering

1962 Gerald  Smith,  Stanley  Schmidt,  Leonard  McGee
“Application  of  Statistical  Filter  Theory  to  the  Optimal  Estimation  of  Position  and  
Velocity  on  Board  a  Circumlunar  Vehicle”,  
Technical  Report,  National  Aeronautics  and  Space  Administration  (NASA)
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Dynamic  State  Estimation

True  System

Dynamic  System

Recursive  Estimator

Measurement  System

Prediction Measurement  Update

Delay

𝑥"#$

𝑥"
%

𝑥"#$
%

𝑥"#$&

𝑧"#$

𝑥"

𝑤" 𝑣"
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§ System  model

𝑥"#$ = 𝑨 ⋅ 𝑥" + 𝑤"

§ Measurement  model

𝑧" = 𝑯 ⋅ 𝑥" + 𝑣"
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Kalman  Filter:  Considered  Model

system  state system  noise

system  matrix

measurement  noise

measurement

measurement  function
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𝑥"#$
% = 𝑨 ⋅ 𝑥"& + 𝐸(𝑤")

𝑷"#$
% = 𝑨 ⋅ 𝑷"& ⋅ 𝑨3 + 𝑸"
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Kalman  Filter:  Prediction

estimate  after  previous  updateestimate  after  prediction

covariance  after  prediction covariance  after  update

system  noise  covariance
(in  scalar  cases  sometimes  𝜎67)
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𝑥"& = 𝑥"
% + 𝑲 ⋅ 𝑧" − 𝑯 ⋅ 𝑥"

% 	  

𝑷"& = 𝑷"
% − 𝑲 ⋅ 𝑺 ⋅ 𝑲3	  

𝑺 = 𝑯 ⋅ 𝑷"
% ⋅ 𝑯3 + 𝑹" 	  	  

𝑲 = 𝑷"
% ⋅ 𝑯3 ⋅ 𝑺=$
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Kalman  Filter:  Update

Kalman  gain innovation

covariance  of  z

measurement  noise  covariance  
(in  scalar  cases  sometimes  𝜎>7)
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§ Identity  system  model
𝑥"#$ = 𝑥" + 𝑤" 	  ,

with  𝜎67 = 0.01.

§ Noisy  direct  measurements
𝑧" = 𝑥" + 𝑣"

with  different  noise  levels.
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Kalman  Filter:  Simple  Example

Typical  Runs
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Kalman  Filter:  Simple  Example  (contd.)

𝜎>7 = 0.3

All  Measurements Every  5thMeasurement
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Kalman  Filter:  Simple  Example  (contd.)

𝜎>7 = 0.03 𝜎>7 = 0.9
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§ System  Model

𝑥"#$ = 𝑎(𝑥") + 𝑤"

§ Measurement  Model

𝑧" = ℎ(𝑥") + 𝑣"
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Nonlinear  Case

system  state system  noise

system  function

measurement  noisemeasurement

measurement  function
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§ Linearize  system  around  current  estimate.

§ Linearize  measurement  model  around  prediction.

§ Make  use  of  Taylor  series  expansion.

§ First-order  approximation.
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Extended  Kalman  Filter
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𝑥"#$
% = 𝑎(𝑥"&) + 𝐸(𝑤")

𝑨" =
𝜕𝑎
𝜕𝑥 HIHJ

K

𝑷"#$
% = 𝑨" ⋅ 𝑷"& ⋅ 𝑨"3 + 𝑸"

27.8.2015Igor   Gilitschenski 19

Extended  Kalman  Filter:  Prediction

jacobian of  system  function
at  current  estimate

covariance  after  prediction covariance  after  update

system  noise  covariance



||
Autonomous   Systems   Lab
Institute   for  Robotics   and   Intelligent   Systems
ETH  Zurich

𝑥"& = 𝑥"
% + 𝐊 ⋅ 𝑧" − ℎ(𝑥"

%)

𝑷"& = 𝑷"
% − 𝑲 ⋅ 𝑺 ⋅ 𝑲3

𝑯" =
𝜕ℎ
𝜕𝑥 HIHJ

M

𝑺 = 𝑯" ⋅ 𝑷"
% ⋅ 𝑯"

3 + 𝑹"

𝑲 = 𝑷"
% ⋅ 𝑯"

3 ⋅ 𝑺=$
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Extended  Kalman  Filter:  Update

jacobian of  measurement  function

Kalman  gain

covariance  of  residual

residual
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§ Maintain  Gaussian  assumption  for  prior  and  posterior.

§ Gaussian  distribution  described  by  mean  and  covariance.

§ Key  idea:  propagate  merely  mean  and  covariance.
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General  Gaussian  Filter  based  on  Moment  
Matching
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𝑥"#$
% = 𝑬 𝑎 𝑥"& + 𝑤"

𝑷"#$
% = 𝑬 (𝑥"#$

% − 𝑬(𝑥"#$
% )) ⋅ (𝑥"#$

% −𝑬(𝑥"#$
% ))3 + 𝑸"
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General  Gaussian  Filter:  Prediction

potentially  burdensome
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𝑥"& = 𝑥"
% + 𝑲"(𝑧" − �̂�")

𝑷"& = 𝑷"
% − 𝑲 ⋅ 𝑺 ⋅ 𝑲3

𝑲" = 𝑪 ⋅ 𝑺=$

𝑪 = 𝑬 𝑥"
% − 𝑬(𝑥"

%) ⋅ ℎ 𝑥"
% − �̂�"

3

𝑺 = 𝑬 ℎ 𝑥"
% − �̂�" ⋅ ℎ 𝑥"

% − �̂�"
3 + 𝑹"

�̂�" = 𝑬(ℎ(𝑥"
%))
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General  Gaussian  Filter:  Update
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Integration  Approaches

Adaptive  Numerical  Integration

§ Use  of  adaptive  grids.
§ High  accuracy  can  be  
guaranteed.

§ Suffers  from  curse  of  
dimensionality.

§ Potentially  high  computational  
demand.

Monte-Carlo  Integration

§ Less  prone  to  curse  of  
dimensionality.

§ Requires  random  sampling.
§ Probabilistic  accuracy  
guarantees.

Linearization

§ Linearization  around  estimate.
§ Propagation  possible  in  closed  
form.

§ Errors  due  to  linearization  and  
choice  of  linearization  point.

Deterministic  Sampling

§ Deterministic  (sample-based)  
approximation  of  continuous  
densities.

§ Computationally  tractable.
§ Outperforms  randomized  
approaches.

𝐄(𝑓 𝑥 )
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Density  Approximation
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§ Key  Idea:  Approximate  Gaussian  by  a  discrete  
distribution.

§ Maintain  first  two  moments.

§ Outcome:  No  derivatives  required  in  propagation.
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Unscented  Kalman  Filter:  Unscented  Transform
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𝜒",T = 𝜇

𝜒",V = 𝜇 + 𝑛 + 𝜆 ⋅ 𝚺
V
	   for  𝑖 = 1,… , 𝑛	  

𝜒",V = 𝜇 − 𝑛 + 𝜆 ⋅ 𝚺
V=\

for  𝑖 = 𝑛 + 1, … , 2𝑛	  
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Unscented  Transform:  Sigma  Points
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𝑤T^ = _
\#_

,  

	  𝑤T` = 𝑤T^ + 1 − 𝛼7 + 𝛽 ,

𝑤V
^ = 𝑤V

` = $
7(\#_)
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Unscented  Transform:  Weights
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§ Scaling  parameter

𝜆 = 𝛼7 𝑛 + 𝜅 − 𝑛	  .

§ 𝛽 = 2 optimal  for  Gaussians.  

§ 𝛼 (typically  small,  e.g.  1e-3),  𝜅 (typically  zero)  are  further  
tuning  parameters.
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Tuning  Parameters
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𝜒"#$,V
% = 𝑎(𝜒",V

& )

𝑥"#$
% = ∑ 𝑤V

^ ⋅ 𝜒"#$,V
%7\#$

VI$ + 𝐸(𝑤")

𝑷"#$
% = ∑ 𝑤V

^ ⋅ (𝜒"#$,V
% − 𝑥"#$

% ) ⋅ 𝜒"#$,V
% − 𝑥"#$

% 37\#$
VI$ + 𝑸"
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Unscented  Kalman  Filter:  Prediction
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𝑥"& = 𝑥"
% − 𝑲"(𝑧" − �̂�")

𝑷"& = 𝑷"
% − 𝑲 ⋅ 𝑺 ⋅ 𝑲3

𝑲" = 𝑪 ⋅ 𝑺=$

𝑺 = ∑ 𝑤V
^ ⋅ (ℎ 𝜒",V

% − �̂�") ⋅ ℎ 𝜒",V
% − �̂�"

37\#$
VIT + 𝑹𝒕

𝑪 = ∑ 𝑤V
^ ⋅ (𝜒",V

% − 𝑥"
%) ⋅ ℎ 𝜒",V

% − �̂�"
37\#$

VIT

�̂�" = ∑ 𝑤V
^ ⋅ ℎ(𝜒",V

% )7\#$
VIT
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Unscented  Kalman  Filter:  Update
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§ Scenario  involving  range  and  bearings  measurements.

§ Range  𝑟:  Mean  1𝑚,  Std.  deviation  2𝑐𝑚.

§ Bearing  𝜃:  Mean  90°,  Std.  deviation  15°.

§ Transformation  into  (𝑥, 𝑦) plane  using

H
m = n opq r

n	  qst	  (r) .
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Example:  Polar  to  Cartesian  Transform
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Further  Sampling  Schemes

Particle  Filter UKF Randomized  UKF

Gauss-Hermite KFCubature  KF Smart  Sampling  KF
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§ Multimodal  densities  particularly  prone  to  errors  from  Gaussian  
approximation.

§ Consider  propagation  of  𝑧 ∼ 𝑁 0,1 through  

𝑎 𝑥 = 𝑠𝑖𝑔𝑛 𝑥 ⋅ |𝑥|z 	  .
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What  can  still  go  wrong?

Propagation   through  	  𝑎(𝑥)

Probability  Density  of  𝑧 Probability  Density  of  𝐚(𝒛)

||
Autonomous   Systems   Lab
Institute   for  Robotics   and   Intelligent   Systems
ETH  Zurich

26.8.2015Igor   Gilitschenski 37

Introduction

Kalman  Filter

Extended  Kalman  Filter

Moment  Matching

Unscented  Kalman  Filter

Directional  Approaches

Conclusions

O
ve
rv
ie
w



||
Autonomous   Systems   Lab
Institute   for  Robotics   and   Intelligent   Systems
ETH  Zurich

§ Directional  statistics  is  a  subfield  of  statistics  that  
considers  uncertainty  on  nonlinear  manifolds.

§ These  manifolds  involve  circles,  hyperspheres,  or  rigid-
body  motions.

§ Exploitation  of  local  linearity  possible  for  small  uncertainty

§ Consideration  of  underlying  geometry  required  for  strong  
uncertainties  (e.g.  because  of  periodicity).
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Directional  Statistics
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Bingham  Distribution

Definition
A  probability  distribution  described  by  
the  PDF  

with ,  orthogonal    
and  diagonal

(with  all  entries  negative)  is  called  the  
Bingham  distribution.  

Second  MomentNormalization  Constant
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§ Arises  naturally  by  conditioning  zero-mean  Gaussian  to  
unit  length.

§ 4d  variant  can  be  used  for  representing  uncertain  
quaternions.

§ Antipodal  symmetry  accounts  for  the  fact  that  
quaternions  q  and  –q  represent  the  same  orientation.
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Bingham  Distribution  (contd.)
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§ System  Model

𝑥"#$ = 𝑥" ⊕ 𝑤"

§ Measurement  Model

𝑧" = 𝑥" ⊕ 𝑣"
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Considered  Model

system  state system  noise

measurement  noisemeasurement

manifold-aware  shift
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PREDICTION

UPDATE

Moment
Computation

Moment
Computation

Moment
Matching

Measurement

Bayes
Update
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§ System  Model

𝑥"#$ = 𝑎 𝑥" ⊕ 𝑤"

§ Measurement  Model

𝑧" = ℎ 𝑥" ⊕ 𝑣"
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Nonlinear  Domains

system  state system  noise

system  function

measurement  noisemeasurement

measurement  function

manifold-aware  shift
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§ Deterministic Sampling  required for approximate
propagation.

§ Generation  of UKF-like  samples using (trigonometric)  
moment matching.
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Deterministic Sampling
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PREDICTION

Moment
Computation

Moment
Computation

Moment
Matching

Deterministic
Sampling
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How  to  choose  a  Filter?

§ Linear  problem:  Kalman  filter.

§ Weak  nonlinearity:  EKF  /  UKF.

§ Stronger  nonlinearities:  UKF  (and  other  sample  based  Filters)  /  
Particle  Filters.

§ Nonlinear  domain  /  weak  noise:  Kalman  type  filters  (EKF,  UKF,  …).

§ Nonlinear  domain  /  strong  noise:  directional  statistics.
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§ Nonlinear  Estimation  Toolbox
http://nonlinearestimation.bitbucket.org/

§ EKF  based  modular  sensor  fusion  framework
https://github.com/ethz-asl/ethzasl_msf/wiki/

§ libDirectional
https://github.com/libDirectional/libDirectional/
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Some  Frameworks
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§ Andrew  Jazwinski,  Stochastic  Processes  and  Filtering  Theory,  Dover,  1970.

§ Kanti Mardia and  Peter  Jupp,  Directional  Statistics,  
Wiley,  2000.

§ Simo Särkkä,  Bayesian  Filtering  and  Smoothing,  Cambridge  University  
Press,  2013.

§ Dan  Simon,  Optimal  State  Estimation,  Wiley,  2006.
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Further  Reading



Thank  you  for  your  Attention.



1Challenge the future

Vision for Autonomous Flight of Light-
weight Micro Air Vehicles

Guido de Croon

2Challenge the future

Light-weight MAVs

3Challenge the future

DelFly II, 16g

4Challenge the future

Walkera Ladybird, 35g

5Challenge the future

Why so light-weight / small?

• Navigation in narrow spaces

• Inherently safe

• Possibly cheap and expandible – swarms!

• Scientific, physical, and technological challenges

6Challenge the future

Challenges

• Faster dynamics

• Different aerodynamic regime

• Little payload / energy: fewer and worse resources
• Sensors
• Processing
• Actuators



7Challenge the future

Fewer and worse resources

Example: gyros

Note: these are numbers under ideal circumstances. 
For MEMS gyros on UAVs in flight a drift of 

>> 100 deg / hr can easily occur.

8Challenge the future

Fewer and worse resources

Example: Processing power

Please note: 

These are coarse estimates – actual numbers depend on the specific type and use

Processor Memory (RAM) Weight Power

Typical laptop 4-core 1.8 GHz + 
graphics card GPU

6 GB 1.6 kg 65 W

Odroid-U3 4-core 1.7 GHz 2 GB 48 g 10 W

OMAP 3630 
(on AR drone)

1-core 1 GHz 1 GB > 10 g 0.720 W

STM32F04
(on DelFly)

1-core 168 MHz 192 kB > 4 g 0.200 W

9Challenge the future

King of all sensors: the camera ☺

A camera:

• Is a passive sensor, requiring relatively little energy

• Can be miniaturized to tiny scales

• Can potentially provide rich information on the 
environment up to large distances

10Challenge the future

Problems of using a camera 

Problems:

• What information should be extracted for 
successful navigation? 

• How to extract this information?

• How to extract this information efficiently?

11Challenge the future

Inspiration from 

nature? 

Fly, avoid obstacles, navigate, find food and shelter, 
interact socially with other fruitflies, learn, …

All for ~100,000 neurons!

12Challenge the future

Dragonfly



13Challenge the future

UAV

14Challenge the future

Optical flow

15Challenge the future

Gibson (1940-50s) – Optical flow

Ecological approach to psychology: 
Perception is all about the affordance of action.

Optical flow: 

The retinal flow of imaged 
world points.

Gibson, J.J. (1950). The Perception of the Visual World. Houghton Mifflin.
Gibson, J.J. (1986). The Ecological Approach To Visual Perception.

16Challenge the future

Optical flow

17Challenge the future

Optical flow

In the 1940s Gibson performed experiments with pilots, 
studying how they know where they are moving to.

How do you think we do it?

18Challenge the future

Focus of Expansion 

Expanding optical flow at approach

The flow “originates” from the focus of expansion 
(FoE) – the point the camera is moving towards.



19Challenge the future

Translation and rotation

When does the rover translate? Does it rotate?

20Challenge the future

Parallax

21Challenge the future

Parallax

22Challenge the future

Parallax

23Challenge the future

Time-to-contact

Rate of expansion gives us an idea of the time-to-
contact – used for braking by persons. 

Lee, D., A theory of visual control of braking based on information about 
time-to-collision, Perception, Vol. 5, 1967, pp. 437–459.

24Challenge the future

How to extract such information 

from images?
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Pinhole camera model

26Challenge the future

Longuet-Higgins and Prazdny (1980)

Camera coordinate system:

27Challenge the future

Optical flow formula

Optical flow (u,v) expressed in relative position of a point (X,Y,Z) 
and camera velocities (U,V,W) and rotation rates (A,B,C):

28Challenge the future

Flow has a rotational and 

translational component

• Using a gyro, the optical flow can be derotated, which 
removes uR, vR, facilitating vision processing.

29Challenge the future

Flow has a rotational and 

translational component

• What is the flow at (x,y)=(0,0)?

• At what (x,y) is (uT, vT) = (0,0)?

• First substitute xuT=0 into the formula of uT. Express the 
“relative velocity”, W/Z, in terms of uT, x, and xuT=0.

30Challenge the future

How to retrieve information from 

the optical flow?



31Challenge the future

How to retrieve information from 

the optical flow?

• 7 unknowns (A,B,C – U,V,W – Z)
• Z can be different per point

How many optical flow vectors do we need to 
resolve for the unknown variables?

32Challenge the future

How to retrieve information from 

the optical flow? 

• 7 unknowns (A,B,C – U,V,W – Z)
• Z can be different per point

How many optical flow vectors do we need to 
resolve for the unknown variables?

Nistér, David. An efficient solution to the five-point relative pose problem. Pattern Analysis and 
Machine Intelligence, IEEE Transactions on 26.6 (2004): 756-770.

33Challenge the future

3D-reconstruction with 

multiple view geometry

Determine: the translation, rotation, and the world 
point coordinates (up to a scale)…

Hartley, Richard, and Andrew Zisserman. Multiple view geometry in computer 

vision. Cambridge university press, 2003.

34Challenge the future

Is 3D-reconstruction the goal of 

animal / robot vision?

Gibson vs. Marr

35Challenge the future

Gibson vs. Marr

36Challenge the future

Computing optical flow
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Traditional cameras

Standard pipeline sparse optical flow:

1. Corner detector (FAST1, Harris2, …)

2. Lucas-Kanade feature tracking3

1. Harris, C., & Stephens, M. (1988, August). A combined corner and edge detector. In Alvey vision 
conference (Vol. 15, p. 50).

2. Rosten, E., Porter, R., & Drummond, T. (2010). Faster and better: A machine learning approach to 
corner detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(1), 105-119.

3. Lucas, B. and Kanade, T. An iterative image registration technique with an application to stereo 
vision. In proceedings of Imaging understanding workshop, pp. 121–130. 1981.

38Challenge the future

Insects

Flying insects have facet eyes with ommatidia.

39Challenge the future

Insects

Reichardt model Franceschini model

Eichner, H., Joesch, M., Schnell, B., Reiff, D. F., & Borst, A. (2011). Internal structure of 
the fly elementary motion detector. Neuron, 70(6), 1155-1164.

40Challenge the future

Bio-inspired sensors

Floreano et al. 2013

Roubieu et al. 2011 Song et al. 2013

DVS Inilabs

41Challenge the future

Landing Control

42Challenge the future

Bee landing

M.V. Srinivasan, S.W. Zhang, M. Lehrer, and S. Collett, Honeybee navigation en route to the goal: 

visual flight control and odometry. The Journal of Experimental Biology 199, 237–244 (1996).



43Challenge the future

Constant divergence landing

B. Hérissé, T. Hamel, R. Mahony, and F.-X. Russotto. Landing a VTOL Unmanned Aerial  Vehicle on 
a moving platform using optical  flow. IEEE Transactions on Robotics, 28(1):77–89, 2012.

44Challenge the future

Constantly / exponentially 

decreasing TTC

Enforce different landing dynamics (e.g., faster):

https://www.youtube.com/watch?v=mKgqe0k_Hy8

D. Izzo and G. de Croon. Landing with time-to-contact and ventral optic flow 

estimates. Journal of Guidance, Control, and Dynamics 35.4 (2012): 1362-1367.

45Challenge the future

4-dimensional guidance 

with Tau-pilot

Kendoul, Farid. Four-dimensional guidance and control of movement using time-to-

contact: Application to automated docking and landing of unmanned rotorcraft 

systems. The International Journal of Robotics Research 33.2 (2014): 237-267.

46Challenge the future

Honeybees land with 

constant divergence

E. Baird, N. Boeddeker, M.R. Ibbotson, and M.V. Srinivasan. A universal strategy for 

visually guided landing. PNAS: Biological Sciences - Neuroscience, 2013. 

47Challenge the future

Limitations optical flow

• Relies on sufficient texture

• For obstacle avoidance, flow close to the FoE is 
problematic: small errors result in large time-to-
contact estimation errors.

48Challenge the future

Beyond optical flow



49Challenge the future

Visual appearance cues

Humans not only use optical flow and stereo vision 
to see distances, but also:

• Occlusion
• Texture gradient
• Image position where an object touches the 

ground plane
• Distance fog
• Sizes of known objects
• …

50Challenge the future

Imitation learning

Learning from a human pilot: map a feature vector 
with optical flow and appearance features to a 
control input.

Ross, S., Melik-Barkhudarov, N., Shankar, K. S., Wendel, A., Dey, D., Bagnell, J. A., & Hebert, M. (2013, 
May). Learning monocular reactive uav control in cluttered natural environments. In Robotics and

Automation (ICRA), 2013 IEEE International Conference on (pp. 1765-1772). IEEE.

51Challenge the future

Self-supervised learning

Drone uses optical flow as a 
scaffold to learn about the
appearance of its environment.

H.W. Ho, C. De Wagter, B. Remes, and G.C.H.E. de Croon, Optical flow for
self-supervised learning of obstacle appearance, IROS 2015.

After learning, the drone can detect 
obstacles without moving!!!

52Challenge the future

Self-supervised learning 

53Challenge the future

Case study: DelFly Explorer

54Challenge the future

DelFly Explorer: 
20 grams

Incl. stereo vision 
system: 
4 grams

(2014), De Wagter, C., Tijmons, S., Remes, B.D.W., and de Croon, G.C.H.E., "Autonomous Flight of a 20-gram Flapping Wing MAV 
with a 4-gram Onboard Stereo Vision System", at the 2014 IEEE International Conference on Robotics and Automation (ICRA 2014)



55Challenge the future

STM32F4
168 MHz

192 kB memory

56Challenge the future

Stereo vision processing

Huge number of stereo vision methods in the 
literature:

• Accuracy vs. computational efficiency
• Global vs. local processing

Two efficient and accurate methods:

• Semi Global Matching1

• Geiger stereo matching2

1. Hirschmüller, H. (2005, June). Accurate and efficient stereo processing by semi-global matching and mutual information.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 807-814). IEEE.
2. Geiger, A., Roser, M., & Urtasun, R. (2011). Efficient large-scale stereo matching. In Computer Vision–ACCV 2010 (pp. 25-38).
Springer Berlin Heidelberg.

57Challenge the future

Stereo vision on DelFly Explorer

LongSeq:

• Line-by-line processing

• Search for longest sequence of pixels with the 
same disparity

• Efficient (~11Hz for 128 x 96 image)

58Challenge the future

Effects of sub-sampling

59Challenge the future 60Challenge the future

Obstacle avoidance algorithms

Challenges:

• Forward speed (~0.5 m/s) and maximum turn rate 
� nonholonomic vehicle.

• Limited field of view (~60o)

• Indoor, narrow, closed-off areas (instead of a 
sparse obstacle field as in outdoor forests)

• Little processing…



61Challenge the future

Reactive obstacle avoidance

- failure cases

Left / right turning Full turning

62Challenge the future

Droplet strategy

(2013), Tijmons, S., de Croon, G.C.H.E., Remes, B.D.W., De Wagter, C., Ruijsink, R., van Kampen, E., and Chu, Q.P., "Off-board 
processing of Stereo Vision images for Obstacle Avoidance on a Flapping Wing MAV", Pegasus AIAA conference, Prague.

63Challenge the future 64Challenge the future

65Challenge the future

Next step: Evolving controllers

(in press) Behaviour Trees for Evolutionary Robotics, Kirk Y.W. Scheper, Sjoerd Tijmons, Coen C. de Visser, 
Guido C.H.E. de Croon, accepted in Artificial Life, MIT Press

66Challenge the future

Take-home messages / questions

• Tiny drones require extremely efficient Artificial 
Intelligence for autonomous flight

• Is 3D-reconstruction necessary for navigation?

• Insects (and drones) can land by directly using 
optical flow cues.

• There is more to life than optical flow: robots can 
learn about the appearance of their environment 
themselves.
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Additional slides

68Challenge the future

Objectives of this lecture

Students …

1. Can explain the consequences of light-weight drones on the algorithms used for 

autonomous flight.

2. Can apply a pinhole camera model to extract optical flow variables useful for control: 

focus of expansion, divergence, time-to-contact, ventral flow, …

3. Can describe different methods of computing optical flow.

4. Can explain in which animal behaviors optical flow has been found to play an 

essential role, and why optical flow is of interest to MAVs.

5. Can explain the importance of additional, visual appearance features for control.

69Challenge the future

Sky segmentation

Outdoors, objects that are higher than a camera 
stick out of the horizon. Segmenting the camera 
image into “sky” and “obstacle” allows obstacle-free 
flight: the MAV can either deviate or fly over the 
obstacles, making them disappear under the 
horizon.

McGee, T. G., Sengupta, R., & Hedrick, K. (2005, April). Obstacle detection for small autonomous aircraft using
sky segmentation. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International 

Conference on (pp. 4679-4684). IEEE.
de Croon, G. C. H. E., De Wagter, C., Remes, B. D. W., & Ruijsink, R. (2011, March). Sky Segmentation Approach 

to obstacle avoidance. In Aerospace Conference, 2011 IEEE (pp. 1-16). IEEE.

70Challenge the future

Appearance variation cue

As one approaches an objects, more and more other 
objects go out of view. Typically, the texture of a 
single object has less variation than the texture of 
many different objects. 

De Croon, G. C. H. E., De Weerdt, E., De Wagter, C., Remes, B. D. W., & Ruijsink, R. (2012). The 
appearance variation cue for obstacle avoidance.Robotics, IEEE Transactions on, 28(2), 529-534.



Daniel Cremers

Computer Science & Mathematics

TU Munich

Jakob Engel, Vlad Usenko, Christian Kerl, Jan Stühmer, Jörg Stückler & Jürgen Sturm

Direct & Dense 3D Reconstruction 

from Autonomous Quadrocopters

2Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

TUM Computer Vision Group

3Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

3D Reconstruction from Images

infinite-dimensional optimization

4Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Image segmentation:

Optimization in Computer Vision

Geman, Geman ’84,  Blake, Zisserman ‘87,  Kass et al. ’88,  

Mumford, Shah ’89,  Caselles et al. ‘95,  Kichenassamy et al. ‘95,  

Paragios, Deriche ’99,  Chan, Vese ‘01, Tsai et al. ‘01, …

Multiview  stereo reconstruction:

Faugeras, Keriven ’98,  Duan et al. ‘04,  Yezzi, Soatto ‘03,  

Seitz et al. ‘06,  Hernandez et al. ‘07,  Labatut et al. ’07, …

Optical flow estimation:

Horn, Schunck ‘81,  Nagel, Enkelmann ‘86,  Black, Anandan ‘93, 

Alvarez et al. ‘99,  Brox et al. ‘04,  Baker et al. ‘07,  Zach et al. ‘07,  

Sun et al. ‘08,  Wedel et al. ’09, …

Non-convex energies

5Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Optimization and Convexity

Non-convex energy Convex energy

6Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Classical Keypoint Approach

Extract & Match Features

(SIFT / SURF / BRIEF /...)

Input 

Images

Track:
min. reprojection error

(point distances)

Map:
est. feature-parameters

(3D points / normals)

abstract images to feature observations
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Overview

Multiview reconstruction

Large-Scale Direct SLAM

Free-viewpoint TVAutonomous quadrocopters

RGB-D SLAM Realtime dense geometry
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Overview

Multiview reconstruction

Large-Scale Direct SLAM

Free-viewpoint TVAutonomous quadrocopters

RGB-D SLAM Realtime dense geometry

9Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Autonomous Quadrocopters

Quadrocopters juggling

Mueller, Lupashin, D’Andrea IROS ‘11

Swarms of quadcopters

Kushleyev, Mellinger, Kumar  RSS ‘12

Drawbacks:

- Controlled environment

- Marker points

- External sensors / mocap systems

10Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Realworld Environments

11Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Quadrocopters & Nanocopters

Can we use visual SLAM for autonomous quadrocopter navigation?

Can we reconstruct the world from autonomous quadcopters?

12Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Gesture-Control of a Nanocopter

Dunkley, Engel, Sturm, Cremers, IROS 2014 Workshop on Nanocopters
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…add a Camera…

Dunkley, Engel, Sturm, Cremers, IROS 2014 Workshop on Nanocopters

14Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

…and Create a Selfie

Dunkley, Engel, Sturm, Cremers, IROS 2014 Workshop on Nanocopters

15Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Overview

Multiview reconstruction

Large-Scale Direct SLAM

Free-viewpoint TVAutonomous quadrocopters

RGB-D SLAM Realtime dense geometry

16Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Photoconsistency function:

Determine a surface     of optimal photoconsistency by minimizing

Kolev, Klodt, Brox, Cremers, Int. J. of Computer Vision ’09:

Theorem: Globally optimal surfaces can be computed via convex relaxation.

Solutions via Energy Minimization

17Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Evolution to Global Optimum

Kolev, Klodt, Brox, Cremers,  IJCV 2009

18Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Super-Resolution Texture Map

Given all images                           determine the surface color

back-projectionblur & downsample

Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13
* Best Paper 

Award 
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Super-Resolution Texture Map

Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13
* Best Paper 

Award 
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Closeup of input image Super-resolution texture

Super-Resolution Texture Map

Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13
* Best Paper 

Award 
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Overview

Multiview reconstruction

Large-Scale Direct SLAM

Free-viewpoint TVAutonomous quadrocopters

RGB-D SLAM Realtime dense geometry

22Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Silhouette-Consistent Reconstruction

Kolev, Cremers, ECCV ‘08, PAMI ‘11:

Theorem: Provably silhouette-consistent reconstructions can be computed 

by convex optimization over convex domains.

23Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Kolev, Cremers, ECCV ’08, PAMI 2011

Silhouette-Consistent Reconstruction

24Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Proposition: The set of silhouette-consistent solutions is convex.

Kolev, Cremers, ECCV ’08, PAMI 2011

Silhouette-Consistent Reconstruction
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Pock, Cremers, Bischof, Chambolle, ICCV ‘09,  Chambolle, Pock ‘11 

Given the saddle point problem

with close convex sets and      and linear operator of norm 

An Efficient Saddle Point Solver

converges with rate                  to a saddle point for

Proposition: The primal-dual algorithm

26Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Reconstructing the Niobids Statues

Kolev, Cremers, ECCV ’08, PAMI ‘11

27Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Reconstructing Dynamic Scenes

Oswald, Stühmer, Cremers, ECCV ‘14

28Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Action Reconstruction

Oswald, Cremers,  ICCV  ‘13  4DMoD Workshop

29Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Overview

Multiview reconstruction

Large-Scale Direct SLAM

Free-viewpoint TVAutonomous quadrocopters

RGB-D SLAM Realtime dense geometry

30Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

 39 sequences (19 with ground truth)

 one zip-archive per sequence containing:

- color & depth images (png), 

- accelerometer data, 

- trajectory file

Sturm, Engelhard, Burgard, Cremers  IROS ‘12

http://vision.in.tum.de/datasets/rgbd-dataset

RGB-D SLAM Benchmark
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RGB-D SLAM Benchmark

Sturm, Engelhard, Burgard, Cremers  IROS ‘12

http://vision.in.tum.de/datasets/rgbd-dataset
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Realtime Dense Camera Calibration

Lie algebra representation of rigid body motion:

Photo-consistency:

Steinbruecker, Sturm, Cremers ‘11,  Kerl et al. ICRA ‘13

33Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Photo-consistency:

Taylor expansion:

Optimal solution:

Solve in coarse-to fine manner.

Steinbruecker, Sturm, Cremers ‘11,  Kerl et al. ICRA ‘13

Realtime Dense Camera Calibration

34Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

http://cvpr.in.tum.de/datasets/rgbd-dataset

Realtime Dense Camera Calibration
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Third Person Perspective

36Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Quantitative Comparison

Pose accuracy for increasing baseline

frame difference k

freiburg2/desk

frame difference k

freiburg1/desk

Steinbruecker, Sturm, Cremers ‘11,  Kerl et al. ICRA ‘13
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Realtime 3D Modeling

Download demo @ http://www.fablitec.com

Sturm, Bylow, Kahl, Cremers, GCPR ‘13
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Realtime 3D Modeling

Download demo @ http://www.fablitec.com
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Realtime 3D Modeling

Download demo @ http://www.fablitec.com
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Realtime 3D Modeling

Download demo @ http://www.fablitec.com

41Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Realtime 3D Modeling

Download demo @ http://www.fablitec.com
42Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Reconstruction on the Fly

Bylow, Sturm, Kerl, Kahl, Cremers  RSS ‘13
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Kerl, Sturm, Cremers  ICRA ‘13

Large Scale: Loop Closure
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Large Scale: Octrees

Steinbrücker, Kerl, Sturm, Cremers  ICCV ‘13
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Realtime Large-Scale Reconstruction

Steinbrücker, Kerl, Sturm, Cremers  ICCV ‘13,  ICRA ‘14
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Overview

Multiview reconstruction

Large-Scale Direct SLAM

Free-viewpoint TVAutonomous quadrocopters

RGB-D SLAM Realtime dense geometry
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Can we do realtime dense reconstruction 

from a handheld camera?

Multiview Reconstruction

48Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Input video
Optical flow field

From Variational Optical Flow…

Wedel, Pock, Bischof, Cremers,  ICCV ‘09
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Input video

*

* 60 fps at 640 x 480 resolution

From Variational Optical Flow…

Optical flow field

Wedel, Pock, Bischof, Cremers,  ICCV ‘09
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Stuehmer, Gumhold, Cremers,  DAGM ’10 

Brightness constancy:

…to Realtime Dense Reconstruction
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Stuehmer, Gumhold, Cremers,  DAGM ’10 

Realtime Dense Reconstruction
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Stuehmer, Gumhold, Cremers,  DAGM ’10 

Realtime Dense Reconstruction
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1.8 fps 11.3 fps 24 fps

Stuehmer, Gumhold, Cremers,  DAGM ’10 

Realtime Dense Reconstruction
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Realtime Dense Reconstruction

Newcombe et al.,  ICCV ’11 Wendel et al.,  CVPR ’12 
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3D Modeling from a Quadrocopter

DFG Project “Mapping on Demand”
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Overview

Multiview reconstruction

Large-Scale Direct SLAM

Free-viewpoint TVAutonomous quadrocopters

RGB-D SLAM Realtime dense geometry
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Real-time Visual SLAM

DTAM: Dense Tracking and Mapping in Real-Time. 

Newcombe, Lovegrove, Davison; ICCV ’11.

MonoSLAM: Real-time single camera SLAM. 

Davison, Reid, Molton, Stasse; PAMI ’07.

Structure from Motion Causally Integrated Over Time. 

Chiuso, Favaro, Jin, Soatto; PAMI ’02.

REMODE: Probabilistic, Monocular Dense Reconstruction 

in Real Time. Pizzoli, Forster, Scaramuzza; ICRA ’14.

Parallel Tracking and Mapping for Small 

AR Workspaces. Klein, Murray; ISMAR ’07.

Scalable monocular SLAM. 

Eade, Drummond; CVPR ’06.

Visual Odometry. 

Nistér, Naroditsky, Bergen; CVPR ’04.

Scale Drift-Aware Large Scale Monocular SLAM. 

Strasdat, Montiel, Davison; RSS ’10.
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PTAM (Klein, Murray ISMAR ‘07)
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The Parrot AR.Drone

Onboard sensors:

 front camera (320 x 240 @ 18fps)

 inertial measurement unit

 ultrasound altimeter

 onboard, optical-flow-based velocity estimation

available online @ 260€

no hardware / onboard software modifications

connected to ground station via WLAN

Realtime structure and motion / visual SLAM:

Chiuso et al., ECCV ’00,   Favaro, Jin, Soatto, ICCV ’01, 

Nister, ICCV  ’03,   Davison, ICCV ’03,   Klein, Murray, ISMAR ’07,…
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Sensor Fusion

Open source mono-SLAM system PTAM (Klein & Murray '07)

 camera-based autonomous navigation 

 enhanced reliability by incorporating IMU data

 ML scale estimate using ultrasound & velocity

Drawbacks:  Unreliable, no scale information

Our contributions:

Engel, Sturm, Cremers, IROS 2012



61Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Autonomous Flying & Hovering

Engel, Sturm, Cremers, IROS 2012
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x[m] x[m]

y[m]

Improvement by Sensor Fusion

Engel, Sturm, Cremers, IROS 2012
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Dunkley, Engel, Sturm, Cremers, IROS 2014 Workshop on Nanocopters

Autonomous Nanocopter Flight
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Visual-Inertial Odometry on iPhone

Li, Mourikis, IJRR 2014

Implementation: Michael Shelley (TUM)
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Visual-Inertial Odometry on iPhone

Li, Mourikis, IJRR 2014

Implementation: Michael Shelley (TUM)
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Toward Direct Visual SLAM

Extract & Match Features

(SIFT / SURF / BRIEF /...)

Input 

Images

Track:
min. reprojection error

(point distances)

Map:
est. feature-parameters

(3D points / normals)

abstract images to feature observations

Input 

Images

Track:
min. photometric error
(intensity difference)

Map:   
est. per-pixel depth

(semi-dense depth map)

keep full image

Keypoint-Based Direct (LSD-SLAM)
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Engel, Sturm, Cremers, ICCV ‘13,  Engel, Schöps, Cremers, ECCV ‘14

LSD SLAM: Large-Scale Direct SLAM
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Implementation on a Smartphone

Schöps, Engel, Cremers, ISMAR 2014  (Best Student Paper)
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Engel, Sturm, Cremers, ICCV ‘13,  Engel, Schöps, Cremers, ECCV ‘14

Input Video
640x480 @ 30Hz

Tracking
SE(3) alignment 

to current KF

Depth Estimation

Current KF

Take KF?

Create
new KF

Refine KF

Add to Map
Sim(3) alignment to

nearby KFs

Sim(3) pose-graph 

optimization

LSD SLAM: Large-Scale Direct SLAM
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Engel, Sturm, Cremers, ICCV ‘13,  Engel, Schöps, Cremers, ECCV ‘14

Input Video
640x480 @ 30Hz

Tracking
SE(3) alignment 

to current KF

Depth Estimation

Current KF

Take KF?

Create
new KF

Refine KF

Add to Map
Sim(3) alignment to

nearby KFs

Sim(3) pose-graph 

optimization

LSD SLAM: Large-Scale Direct SLAM
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Direct Tracking on Keyframes

KF image KF depthwarped frame

Minimize using 

coarse-to-fine 

linearization:

single core timings:

320x240:    5-10ms

640x480:  20-30ms

72Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Keypoint versus Direct SLAM

Engel, Schöps, Cremers, ECCV 2014
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Engel, Sturm, Cremers, ICCV ‘13,  Engel, Schöps, Cremers, ECCV ‘14

Input Video
640x480 @ 30Hz

Tracking
SE(3) alignment 

to current KF

Depth Estimation

Current KF

Take KF?

Create
new KF

Refine KF

Add to Map
Sim(3) alignment to

nearby KFs

Sim(3) pose-graph 

optimization

LSD SLAM: Large-Scale Direct SLAM
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Pose Graph Optimization on Sim(3)

tracked relative pose optimized pose inverse covariance

Enhance poses with an additional scaling:                  

Compute a globally consistent trajectory by minimizing
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Engel, Schöps, Cremers, ECCV ‘14

Camera Pose Graph Optimization
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Engel, Sturm, Cremers, ICCV ‘13,  Engel, Schöps, Cremers, ECCV ‘14

LSD SLAM: Large-Scale Direct SLAM
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Engel, Sturm, Cremers, ICCV ‘13,  Engel, Schöps, Cremers, ECCV ‘14

LSD SLAM: Large-Scale Direct SLAM
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Large-Scale Direct Monocular SLAM

Engel, Sturm, Cremers, ICCV ‘13,  Engel, Schöps, Cremers, ECCV ‘14
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Autonomous Quadcopter

Von Stumberg, Engel, Stückler, Usenko, Cremers ‘15
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Autonomous Quadcopter

Von Stumberg, Engel, Stückler, Usenko, Cremers ‘15
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Realtime Stereo LSD SLAM

Engel, Stückler, Cremers, IROS ‘15

82Daniel Cremers Direct & Dense 3D Reconstruction from Autonomous Quadrocopters

Usenko, Engel, Stückler, Cremers ‘15

Stereo LSD SLAM with IMU
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Summary

dense reconstructionautonomous quadcopters

LSD SLAM…

RGB-D SLAM…

…for autonomous MAVs …for autonomous MAVs
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2014 UAS and Aerial Robotics Projects at USE and CATEC 

• 90 researchers and technicians working in  RPAS and aerial robotics 

• 23 running projects (35 contracts) in 2014 

– 8 European FP7 projects 

• Coordination of 3 projects: ARCAS (2 contracts), EC-SAFEMOBIL (2 contracts), 

MUAC-IREN (2 contracts) 

• Partner in 5 projects: PLANET (2 contracts), FIELDCOPTER, ARIADNA, 

DEMORPAS, EUROATHLON 

– 15 Spanish Projects 

• 1 Project National Programme: CLEAR (2 subprojects) 

• 1 Regional Programme: UAVLIDETECT 

• SAVIER Project funded by AIRBUS DS (2 contracts) 

• 2 INNPRONTA  (6 contracts with companies): ADAM, PERIGEO 

• 2 CENIT  (4 contracts with companies): SINTONIA, PROMETEO 

• 2 INNPACTO: IGNIS and ADALSCOM  

• 2 INNTERCONECTA (4 contracts with companies): CITIUS, ARIDLAP 

• 2 additional contracts with companies on VTOL systems and simulation for 

training (ARIDLAP) 
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A. Ollero. UAS projects   

• Indoor 
– Testbed 16x15x6 m 

– VICON System 

– Able to fly more than 10 vehicles at the same 

time 

FADA-CATEC Experimentation facilities 

• ATLAS RPAS Experimentation 

facility 
– Segregated  aerial space:  35 x 30 Km , Altitude: up 

to 5000 ft 

– Main runway: 800m x 18m 

–  Auxiliary sand runway: 400m x 15m 

– Control center for mission operations 

– Independent Hangars for different customers 

– Logistic and Technical support 
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• Increasing safety: FP7 EC-SAFEMOBIL 

• Multi-UAV coordination and cooperation: FP7 EC-

SAFEMOBIL, FP7 ARCAS, ADAM 

• UAV physically interacting with the environment: FP7 

ARCAS 

• Long endurance:  FP7 MUAC-IREN, CLEAR, SAVIER 

• UAV communication and Networking: ADALSCOM, 

IGNIS PROSES, other contracts with companies 

• Development of Ground Stations: SAVIER, contracts with 

companies 

• Integration with ground  and marine vehicles: ADAM, 

PROMETEO  

• Integration with ground infrastructure: FP7 PLANET 
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Technologies 
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Outline 

• Introduction: Aerial Robots Physically interacting 

with the environment 

• Aerial robotic manipulators 

• Control in aerial robotic manipulation 

• Perception in aerial robotic manipulation 

• Planning aerial robotic manipulation 

• AEROARMS H2020 project 

• Conclusions 
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Physical interactions 

• Introduction 

Kondak, Ollero et all, Chapter of UAS Springer Handbook 
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Physical interactions 

• Load transportation 

Magnetic 

Encoder

Magnetic 

Encoder

Cardan 

Joint

Force

Sensor

Motor

Rope 

Mounting 

Bolt

Release 

Pin

AWARE FP6 project 2006-2009 
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Physical interactions 

Air-air refuelling 

- Interactions: boom or drogue 

- Active drogue: lateral and vertical 

position control 

 

 

 

Position estimation: GPS+ vision+ IMU 

Vision system: Visual markers 

Formation flight controller 

Effect of the taker stream 

SAVIER funded by AIRBUS DS 

The AWARE project 
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Physical interactions: Sampling 

UGAV Project: Universidad de Sevilla 

The AWARE project 

A.Ollero.  Summer School on Autonomous Micro Aerial Vehicles. Schloss Birlinghoven (Germany),  August 28,  2015 

Physical interactions:  

Sampling and UGV Deployment 

FP7 PLANET Project  

The AWARE project 

A.Ollero.  Summer School on Autonomous Micro Aerial Vehicles. Schloss Birlinghoven (Germany),  August 28,  2015 

EC-SAFEMOBIL (FP7 ICT, 2011-2015) 
http://www.ec-safemobil-project.eu 

Landing on ship using RBS 
sensor 

Rotary wing landing with a 
tether scenario 

Fixed-wing landing on                    
UGV scenario 

Tracking for surveillance 

New estimation and cooperative control 

methodologies and their practical 

application to unmanned systems. 

Safety & reliability while optimising 

performance. 
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Physical interactions: Tethered helicopter 

• Landing with cable: FP 7 EC-SAFEMOBIL Project 

 

Tether tension: Higher as possible to maximize stabilizing properties in translation 

Bounded since induced moment should be always less than maximum moment exerted by main rotor 

control action (saturation of cyclic pitch) 

=> Maximum value for tether tension should not exceed 20% of lifting force at hover (for a typical 

small-size helicopter 

Control of helicopter with tether: 

• Model of the aerial tethered system 

• Analysis of the influence in system 

dynamics 
• Robustness against external 

perturbations in translational 

dynamics. 

• Undesired translational influence on 

rotation due to tether induced moment. 

• Guidelines for control design 
• Saturation of lift-force 

• Feed-forward action for counteracting 

tether tension induced moment 

• No GPS is needed 

• Applications: Landing and 

recharging 

“Tether-guided landing of unmanned helicopters without GPS sensors”, L.A. Sandino, D. Santamaría, M. 

Bejar, A. Viguria, K. Kondak and A. Ollero. International Conference on Robotics and Automation (ICRA 

2014). Hong Kong, China, 31 May to 5 June 2014. 
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AERIAL ROBOTIC MANIPULATION 

Unmanned Aerial 

Systems 

Mobile Robotic 

Manipulation 

Aerial Robotic 

Manipulation 

The AWARE project 
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Aerial Robotics Cooperative 

Assembly System 

(ARCAS) 

 
Coordinator: A. Ollero 

Large-scale integrating project (IP) Project No. 287617 • FP7-ICT-2011-7 

28/08/2015 
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ARCAS 
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Aerial Robotics Cooperative Assembly System 

FP7 ARCAS (2011-2015) 

Flying + Manipulation + Perception + Multi-robot Cooperation 

Aerial Robotics Applications 

Space 

Applications 

The AWARE project 

A.Ollero.  Summer School on Autonomous Micro Aerial Vehicles. Schloss Birlinghoven (Germany),  August 28,  2015 

Objective 

• Research, development and experimental 

validation of the first cooperative flying robots 

system for assembly and manipulation. 

Structure assembly 
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Aerial Robotics Cooperative Assembly System 

FP7 ARCAS (2011-2015) 

Structure assembly mission 

– Several aerial robots should cooperate for structure 

assembly 

– Several robots flying at the same time 

• Looking for parts 

• Approaching and grasping parts 

• Transporting parts 

– Special case: Cooperation in the transportation 

• Assembling parts 
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Aerial Robotics Cooperative Assembly System 

FP7 ARCAS (2011-2015) 
Aerial Manipulation 

 General Solutions (Redundancy) instead of particular solutions: Aerial platforms with 

 6/7 DOF robotic arms 

Control problems  

 Control of the aerial platform and the robotic arms 

 Close proximity to objects 

 Coordinated control of two aerial manipulators 

Perception 

 Mapping the environment 

 Detection of areas for structure construction and landing 

 Localization: parts and robots 

 Tracking 

Planning 

 Assembly planning                                                                 

 Task planning 

 Motion  planning 

 Collision detection and avoidance 
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First world-wide multi-rotor with 6 joints  Very Light arm 

First world-wide multi-rotor with 7 joint  arm 

Aerial robots in ARCAS 
The AWARE project 

A.Ollero.  Summer School on Autonomous Micro Aerial Vehicles. Schloss Birlinghoven (Germany),  August 28,  2015 

Aerial Robotics Cooperative Assembly System 

(ARCAS)  FP7-ICT-2011-7 

22 

First cooperative  free-flying robot system for assembly and structure construction 

The AWARE project 
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First world-wide helicopters with industrial 7DoF arms  

STI 

Aerial robots in ARCAS 

Flettner helicopter 
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Helicopters with 7DoF arms  

STI 

Multi-rotors with 2/6/7 DoF arms 

Space environment 
Cooperative Control of Servicer 

Satellite and Manipulator  

Client trajectory following 

Integral backsteping 

Adaptive control 

Passivity 

Force/moment estimator 

Impedance control 

Image based control 

Analysis of interactions 

between helicopter and 

manipulator 

Dynamic model inversion 

AERIAL ROBOT CONTROL 
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Outdoor Multirotor: 7 dof Manipulator control 

 Modification of the Closed Loop Inverse Kinematic (CLIK) Algorithm: for a 

given end-effector position and orientation 

 Robust behavior close to singular configurations: modified pseudoinverse 

(DLS pinv) with variable damping factor based on gaussian-weighted functions of 

the manipulability measure. 

 

 
 

 Saturation in the Null Space (SNS) to 

take into account:  

 joint angles limits,  

 maximum joint rates and accelerations, 

 cartesian constraints to avoid collisions with 

landing gear and rotor blades  

 unified framework for all joint motion 

constraints 

 

  

 

“Integral Action in First-Order Closed-Loop Inverse Kinematics. 

Application to Aerial Manipulators”, M.I. Sánchez, J.A. Acosta and 

A. Ollero. ICRA 2015.  Seattle, USA, May 2015. 
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Aircraft  with arm: Control approach 
Underactuated system, subject to perturbations (air movement): difficult to maintain 

arm TCP (tool center point) at desired position for manipulation 

Dynamic model of the aircraft with n-link arm 

.  

• Model: standard aircraft model  + articulated body (displacement of c.o.g.) 

AIRCRAFT 

CONTROLLER 
  

ARM 

CONTROLLER 
  

• Aircraft controller: takes into 

account displacement of c.o.g. and 

variation of moments of inertia. 

• Arm controller: takes state as 

input, compensate to stabilize TCP. 

Aircraft  state + arm model 

“Control of an aerial robot with multi-link arm for assembly tasks”, 

A. E. Jimenez-Cano, J. Martin, G. Heredia, R. Cano and A. Ollero. 

2013 IEEE International Conference on Robotics and Automation 

(ICRA 2013). Karlsruhe, Germany,  2013. 
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Attitude Control 

Variable Parameter Integral Backspepping (VPIB) controller 

with full coupled dynamics instead of simplified model  

Control of a Multirotor Outdoor Aerial Manipulator”, G. Heredia, A. Jimenez-

Cano, M.I. Sanchez, D. Llorente, V. Vega, J. Braga, J.A. Acosta and A. Ollero. 

IROS 2014.  Chicago, USA, 14-18 September 2014. 
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Attitude Control (Experiments) 
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Position control 

• Altitude controller: 

The AWARE project 

A.Ollero.  Summer School on Autonomous Micro Aerial Vehicles. Schloss Birlinghoven (Germany),  August 28,  2015 

Position Control. Experiments (I) 
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• Passivity-Based Control  

– Fully actuated systems: many results (PD/PD/PID/Computed Torque, Adaptive & Robust 

Control, Output feedback). 

– Underactuated systems: Results for Fully actuated robots are no longer applicable. 

• Theoretical extension needed: Possibility of recovering Passivity, but Partial 

Differential Equations (PDEs) need to be solved. 

• Energy-Shaping Methodology: Interconnection and Damping Assignment 

Passivity-Based Control, IDA-PBC (Hamiltonian) 

• Solving  PDEs is required to compute control action  

 

 

• Boundedness and Stability are assured 

• Analytical solutions of IDA-PBC in the plane 
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AERIAL ROBOT MANIPULATION CONTROL 
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Experimental characterization of aerodynamic effects 

• Test stand for motor/rotor characterization: measure thrust, rotor 

speed and pwm input, controlled from a console with a data 

acquisition GUI. 

 

 Tests with different distance/ 

inclination angle to surfaces. 

 Single or coaxial rotors. 

 Allows dynamic tests. 

 Ground effect Ceiling effect 

Wall effect 

The AWARE project 
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Experimental Results 

• Example test (ground effect). 

 
Thrust

(Kg) 

Input 

(pwm) 

 ARCAS octocopter with  20 cm rotor radius 

and at distances of 9, 12, 19.5, 25, 40 and 95 

cm (OGE). 

 Compared to experimental results for 

helicopters (Cheeseman & Bennet) 

 

 

 

 

 

 

 

Quadrotor 1 

 (one rotor) 
Quadrotor 2 

 (one rotor) 

Standalone rotor 
z/R 
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Multirotors: only some rotors under aerodynamic surface effects 

• Aerial manipulation: multicopter has to fly 

near environment to manipulate objects: 

only some rotors under surface effects. 
 

• Partial ground effect: “safe” (for 

multirotor) destabilizing moment. 

• Destabilizes multirotor, but takes it away 

from ground. 

• Oscillations may lead to arm collision. 
 

• Partial ceiling effect: “unsafe” (for 

multirotor) destabilizing moment. 

• Destabilizes multirotor, AND takes it to hit 

ceiling. 

• Oscillations may lead to arm collision. 
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Partial ground effect 

Partial ceiling effect 
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Coordinated Control: General configuration 

The task formulation is developed for multi-robot systems composed 

by two types of robots: 

• NT Transporting Robots (TRs), i.e. robots grasping an object and 

move it according to a planned trajectory 

TR1 

TR2 

AR1 

• NA Auxiliary Robots (ARs), i.e. robots whose motion needs 

to be coordinated with that of the object grasped by TRs 

AERIAL ROBOT MANIPULATION CONTROL 
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Environment perception in ARCAS 

• Pose estimation from low resolution images: classifier 

trained with high resolution images (3D map)  to compute the 

robot pose from low resolution images taken from the robot 

(robust to motion blur, image degradation, and occlusions) and 

low computational cost. 

• Fast 3D model generation: stereo pair, hardware for fast 

processing (FPGA) and Semi Global Matching.  

• Object detection and recognition  by means of n-line 

Random Ferns, Rotationally-invariant: 3D data with 5 Hz. 

• Detection of  planar areas  (landing or building the structure) 

without training based on 3D maps (built with visual odometry 

with refined Map/Pose and dense mapping) and local plane 

fitting. 

• Reliable tracking of 3D objects. 3D Pose Estimation and 

Tracking, Uncalibrated Image-Based Visual Servo, Image-

based UAV onboard velocity estimation (close for solution 

using visual and inertial data), use of visual markers to detect 

and identify structure elements. 
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Range-only SLAM in structure assembly - Issues 

• Low-informative 

measurements: only 

range 

– Range between pair of 

sensors: ρi 

– Sensor ID 

• 3D Parametrization: lack 

of bearing information  
– 2 multi-modal variables: Azimuth θ 

and elevation φ angle. 

– Initial distribution (only 1 range 

measurement): uniform spherical 

distribution 
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Range-only SLAM in structure assembly – First Approach 

• Delayed centralized EKF: xt = [xr f1 f2 f3 f4 … fk] 

– Robot 3D pose xr 

– Map landmark fi. 

– Keeps the correlation between robot and features. 

• Ladmarks are initialized using a Particle Filter 
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Range-only SLAM in structure assembly – ARCAS approach 

• Centralized EKF: xt = [xr f1 f2 f3 f4 … fk] 

– Robot 3D pose xr 

– Map features fi 

– Keeps the correlation between robot and features. 

• How  the initial spherical uniform distribution of a feature can  be included into 

a Gaussian filter with only one range measurement? 

– Use of spherical parametrization: 2 multi-modal variables 

– Two independent Gaussian mixtures 

• Azimuth angle:  

• Elevation angle: 

– The combination of both GMM models the complete spherical distribution. 
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ICRA 2014 ICRA 2014 
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Range-only SLAM in structure assembly – ARCAS approach 

42 

Reduced parametrization 

Improving robustness: Outlier rejection filter 
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Range-only SLAM results 

Range Absolute error 

43 
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• Efficient Multi-hypotheses 3D RO-SLAM method. 

– Use of 2 Gaussian Mixture Models to model bearing information (2 multimodal 

variables). 

– Reduced required computational resources: Memory and CPU time. 

– Use of reduced spherical parametrization and optimal correction scheme. 

– Centralized EKF keeps correlation between radio emitters embedded in structural 

elements. 

• Localization RMS absolute error: < 1m and mapping error: ≈ 0,5m 

• Outlier rejection filter makes convergence faster and reduces mapping errors. 

• Model propagation estimation reduces mapping errors when there is a fixed offset 

and scale in range measurements due to multi-path or other effects. 

 

Range-only SLAM conclusions 
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Real-time pose estimation with contour registration (UPC)  

Object detection is a very important task in ARCAS because the pose will 

provide useful information for assembly operations. 

45 

• On-board real time pose estimation 

for UAV using deformable visual 

contours (multi-marks) 

• Rotation-invariance for multi-mark 

• Fast processing (30 FPS) 

• Accuracy: 0.5-1.5cm (short range 

tracking); 2.0-4.0cm (localization) 

• Improved robustness to 180º 

orientation ambiguity. 

• Improved inter-marker detections 

• Evaluation: ARCAS testbeds, 

outdoor scenarios 

• Marker contours selection to 

reduce marker confusion 

• Definition of two main marker sets: 

• Big marker for global 

localization of the 

manipulation zones. 

• Small marker for bar detection. 
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Real-time pose estimation with contour registration 

Experiments for Grasping Operations 
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Detection error range: 

0.2 to 1.2 cm 
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Cooperative perception 

• Objective: Combining information from multiple aerial robots to 

improve the estimations obtained by single robots 

– Data fusion: Data fusion of robot perceptions and local sensors 

for improved multirobot localization. 

– Cooperative perception: Distributed methods that scale well 

with the number of robots will be studied. 

– Active perception: Techniques to generate motions of the 

aerial robots as they observe the scene to improve the 

perception. 
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Previous result: Data fusion of RO-SLAM + 

Visual detection 

• Structural elements estimation: 

– Rough estimation from RO-SLAM : Only range 

sensors. 

– Fusion of visual detections with RO-SLAM 

estimations in short distances: 

• Visual estimations integrated in centralized 

EKF from RO-SLAM developed for WSN map 

refinement. 
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“Localization and mapping for aerial manipulation based on range-only measurements and visual markers”, F.R. Fabresse, F. 

Caballero, I. Maza and A. Ollero.  International Conference on Robotics and Automation (ICRA 2014). Hong Kong, China, 2014. 
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Multi-robot RO-SLAM 
• Approach: 

– Use of Bhattacharyya distance to match external hypotheses 

with local ones. 

– Exclude external and local hypotheses which don’t match. 

– Integrate matched hypotheses in local filter: weight more local 

hypothesis over external ones. 

Local belief 

of node i 

External belief 

of node i 

Matched  

hypotheses  
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“Decentralized Simultaneous Localization and Mapping for Multiple Aerial Vehicles Using Range-Only Sensors”, F.R. Fabresse, F. 

Caballero and A. Ollero. ICRA 2015. Seattle, USA, 26-30 May 2015. 
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Multi-robot RO-SLAM: Experimental results 
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Structure Assembly 

 

Planning in ARCAS 
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Assembly sequence planning 
Construction of a non-directional blocking graph, get sequence 

plans from assembly-by-disassembly technique, select best 

sequence by a metric value 

Structure to 

assemble 

Assembly  

sequence 

planner 

Assembly  

plans 

Planning in ARCAS 

Intersections and 
types of 

connections 

CATIA Geometric 
Structure Analysis 

Sequences of 
Assembly 

Operations 

AO Viewer 
(out of CATIA) 

Assembly Sequence Planner 

Sequence 
Generator 

Preconditions 
Generator 

Simulation Engine 
Assembly 

Operations 
Allocation 

Multi Aerial-robot 
Task Planner 

Structure dynamics included 

Bullets Physics library: 
gravity and friction 

Mass balance (1) 

Redundant supports (2) 

Parallel subassemblies (3) 

 

“Assembly Planning for the Construction of Structures with Multiple 

UAS Equipped with Robotic Arms”, J. Muñoz-Morera, I. Maza, C. 

Fernández-Aguera, F. Caballero and A. Ollero. International Conference 

on Unmanned Aircraft Systems (ICUAS 2015). pp 567-576. Denver, 

USA, 9-12 June, 2015. 
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Assembly sequence planning 

• Architecture overview 

– Simulation engine 

• Avoids combinatorial explosion 

– Algorithm running in O(n2) 

 

• Examples 

 

 

Structure to 

assemble 

Assembly  

sequence 

planner 

Assembly  

plans 

Fig 2: A disassembly obstruction between 

parts without direct contact 

Fig. 1: Inadecuate ordering in disassembly can 

lead to unstable substructures 

Ex
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u
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) 

Structure complexity 
(number of parts) 
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Assembly  

plans 

Multi-robot 

task planner 

MATP 

Multi-robot 

assembly 

plan 

Tasks refinement 

methods  

Robots 

description 

UAV Assembly 

Planning 

Domain 

A partially  ordered set of transport, monitoring and 

assembly actions for a set of UAVs  

Task planning 
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Task planning (LAAS-CNRS) 

• MATP : Multi Aerial-robot Task Planner 

• HTN planner based on previous work (HATP): 

– Multi-stream : one stream of actions per agent.  

– Cost and duration functions can be associated to actions (basic tasks) 

• Interfaced with assembly planner  represents structures with dependency 

trees 

 

Dependency tree: 

Elem4 depends on Elem3 

Elem3 depends on Elem1 and Elem2 

Elem1 and Elem2 depends on Elem0 
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Task planning (LAAS-CNRS) 

Link symbolic and geometric. Intricate task and motion: 

 

 

 

Unsuccessful plan   Successful plan   

Link symbolic and geometric 

UAVs in parallel, link with assembly planner (through a parser), 

grammar defined to represent assembly plan  
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Computing the motions: 

   Grasping (Q3    Q4) 

   Extraction (Q4    Q5) 

   Approach (Q2    Q3) 

   Navigation (Q1    Q2) 

 

 

Finding intermediate configurations: 

 Grasping (Q4) 

 Extraction (Q5) 

 Approach (Q3) 

 Pre-approach (Q2) 

 

 

A task is decomposed into several motion planning requests 

Example: the task Pick: 

Motion planning – Link symbolic-geometric (LAAS-CNRS) 
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Motion planning. (LAAS-CNRS)  

Industrial inspection problem: computes good-

quality paths and a good order to move between 

points, Multi-T-RRT with clearance-based cost 

 

 

 

 

 

 

 

Planning in ARCAS 

New sampling strategy and global planning 

methods to decrease CPU time: Directed bi-

RRT, Directed PRM 
 

 
Motion planning for coordinated 

manipulation (with cables) 

 

Local planner using 4th-order 

splines: Trapezoidal jerk 

profile 
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New method to allow the operator to refine the trajectory and then learn the new 

environment forces for future path planning. Steps: 
 

Plan refinement using mixed initiatives (UPC) 

1- The operator flies the trajectory and 

can modify any time the pose of the 

aerial robot and its velocities.  

2- The new trajectories are used to 

learn the effects of the environment 

over the trajectory (the attractive and 

repulsive forces) as well as the human 

way of operation. 

3- Obtain the forces (accelerations) 

coming from the environment.  

4- Modify the planning cost function 

including the influence of the 

environment. 
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Origin 

(xo, vo, ao) 

Destination 

(rg, vg, ag) Planned 

trajectory 

Pilot 

trajectory FD 

fi4 

fi1 
fi2 

fi3 

fi ? 

(x(k), v(k), a(k)) 

Repulsors 
Attractor toward destination 

dj(k) 

(rj) 

Plan refinement using mixed initiatives (UPC) 

New approach: 
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• Anytime approach based on Particle Swarm Optimization (PSO) 

– Velocity profile of the aerial robots adjusted to avoid collisions minimizing J 

 

Safe coordinated trajectories generation and execution with collision detection 

and avoidance Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 

Li total length, Dvi change of speed, 

wi collision penalty 
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• Anytime approach based on Particle Swarm Optimization (PSO) 

– Tested with quadcopters at FADA-CATEC testbed 

– Example: Initial trajectories 

 

Safe coordinated trajectories generation and execution with collision detection 

and avoidance Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 
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• Anytime approach based on Particle Swarm Optimization (PSO) 

– Tested with quadcopters at FADA-CATEC testbed 

– Example: Initial trajectories 

Task 6.3: Safe coordinated trajectories generation and execution with collision 

detection and avoidance Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 

“Collision-free trajectory planning based on 

Maneuver Selection-Particle Swarm 

Optimization”, D. Alejo, J.A. Cobano, G. 

Heredia and A. Ollero. Proceedings of the IEEE 

International Conference on Unmanned Aircraft 

Systems (ICUAS 2015). Denver, USA, 9-12 

June, 2015. 
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• Anytime approach based on Particle Swarm Optimization (PSO) 

– Tested with quadcopters at FADA-CATEC testbed 

– Example: Computed solution 

Task 6.3: Safe coordinated trajectories generation and execution with collision 

detection and avoidance Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 
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• Optimal Reciprocal Collision Avoidance (ORCA) 

– Time horizon t for the detection and avoidance 

– Works in the velocity space (first order algorithm) 

• Kinematic constraints modeled 

• Velocity vector changes (module and direction) triggered when the safety 

volumes overlap in the velocity space 

• Minimize the difference with the planned cruise speeds 

– Avoidance effort shared among the involved vehicles in each potential 

collision 

– Distributed 

• The calculations are carried out independently for each robot 

• State of the system (position, velocity) known by each agent 

Safe coordinated trajectories generation and execution with collision detection 

and avoidance 
Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 
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    Multi-vehicle system state        Computing safe velocities 

Safe coordinated trajectories generation and execution with collision detection 

and avoidance 
Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 

Velocity obstacle  for A induced by 

B within time t 
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Safe coordinated trajectories generation and execution with collision detection 

and avoidance Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 
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Safe coordinated trajectories generation and execution with collision detection 

and avoidance Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 

“Collision-free 4D trajectory planning in Unmanned Aerial Vehicles for assembly and structure construction”, D. Alejo, J.A. Cobano, G. 

Heredia and A.Ollero. Journal of Intelligent and Robotic Systems. Vol. 73. Núm. 1-4, pp 783-795. January 2014. 
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• Contributions to ORCA 

– Bug-fixes on the original RVO2-3D library 

– 3D obstacles included 

• Static obstacles are considered (meshes import - assimp library) 

• Automatically decomposed into quasi-convex obstacles 

• Online changes allowed 

• PQP library (proximity  

   query package) collision  

   detection 

Safe coordinated trajectories generation and execution with collision detection 

and avoidance Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 
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• Contributions to ORCA 

– ROS module generated 

– Dynamic constraints included 

• Configurable maximum allowed acceleration 

– Three safety regions (ellipsoid) defined 

• Warning: the reaction smoothly increases as the conflict zone is 

closer 

• Conflict: In this zone, the reaction is maximum and the speed of the 

UAVs decreases 

• Emergency: The mission of each involved UAV is paused  

Safe coordinated trajectories generation and execution with collision detection 

and avoidance Motion  

plans 

Trajectory 

coordination 

Input for 

controllers 

“Optimal Reciprocal Collision Avoidance with Mobile and Static Obstacles for Multi-UAV Systems”, D. Alejo, J.A. Cobano, G. Heredia and A. Ollero. 

2014 International Conference on Unmanned Aircraft Systems (ICUAS 2014). Orlando, USA, 27-30 May 2014. 
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Experiments 

• ARCAS Summary Year 1 and Year 2 

http://www.arcas-project.eu/multimedia 

• ARCAS Second year video 

http://www.arcas-project.eu/multimedia 

• ARCAS Third year video 

https://www.youtube.com/watch?v=-

rIEBWrtHkc&feature=player_embedded 

 

ARCAS in Euronews (youtube) 

https://www.youtube.com/watch?v=Xrpi5mA6gDA&list=P

LyMUk47rPuqoGtsuuBB1BQ0QfeVZryT40&index=1 

H2020 
AErial RObotic system integrating multiple 

ARMS and advanced manipulation 

capabilities for inspection and 

maintenance  

(AEROARMS) 

 

Coordinator: A. Ollero 
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Inspection and Maintenance of oil and gas industries 

Maintenance procedures Infrared inspection of leakages 



The AWARE project 

A.Ollero.  Summer School on Autonomous Micro Aerial Vehicles. Schloss Birlinghoven (Germany),  August 28,  2015 

Robotic applications to inspection and maintenance 

Problems: 

Locomotion system: Access to the sites to be inspected or maintained 

Scaffolding needed for deploying and maintenance of the robots 
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AEROARM project (2015-2019) 

• Multi-rotor platform anchored to  perform drilling tasks 

AErial RObotic system integrating multiple ARMS and advanced manipulation 

capabilities for inspection and maintenance (AEROARMS) 
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AEROARM project (2015-2019) 

• Aerial robot with two arms operating in free flying for the placing of light weight 

elements such as a tape on the surface of a pipe or a apply sealant in the pipe junction.  

AErial RObotic system integrating multiple ARMS and advanced manipulation 

capabilities for inspection and maintenance (AEROARMS) 
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AEROARM project (2015-2019) 

Validations in industrial environments 

 

• Application 1: Installation and maintenance of permanent Non Destructive Tests (NDT) 

sensors on remote components such as pipe works, fire flares or structural components.. 

The application involves the preparation of structures to install the sensors (drilling a hole 

into insulation, removing paint etc.), the installation of the sensors and the finishing of the 

structure. 

• Application 2: Deploying and maintaining a mobile robotic system permanently installed 

on a remote structure. Assuming the presence of a newly designed mobile robot allowing 

easy exchange and maintenance of components (e.g., batteries etc.), the application 

consists of the use of the aerial robot to maintain the robot permanently installed in the 

structure without costly and dangerous human operations. 

 

AErial RObotic system integrating multiple ARMS and advanced manipulation 

capabilities for inspection and maintenance (AEROARMS) 
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AEROARM project (2015-2019) 

Applications 

• Infrared and visual non-contact inspection 

• Contact inspection 

– Eddy current 

– Ultrasonic 

• Installation of sensors in inaccessible locations 

• Deployment and maintenance of robots in inaccessible locations 

• Other maintenance activities 

 

Applications of aerial  robotics for inspection and maintenance 

The AWARE project 

A.Ollero.  Summer School on Autonomous Micro Aerial Vehicles. Schloss Birlinghoven (Germany),  August 28,  2015 

• First steps in general aerial robotic manipulation 

• Integration of control, perception and planning 

• First  world-wide demonstrations: aerial robots general 
manipulation with multi-joint arms 

• Future work includes 

– Cooperative manipulation  

– Increase reliability and safety 

– Consideration of regulation constraints 

– Application in industrial environments 

– Multi-arms aerial robots (AEROARMS) 

– Oil and gas applications (AEROARMS) 

– Bridge inspection (AEROBI) 

– Wind mill maintenance (AEROMAIN) 

 

 

 

Conclusions 
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• Join the Aerial Robotics Topic Group of euRobotics 

– Workshops at ERF 

– Road Map and Strategic Agenda: Robotics Calls 

• Join the IEEE Aerial Robotics and Unmanned Aerial 

vehicle 

– ICUAS and RED-UAS Conferences  

RED-UAS 2015 23-25 November 2015,  

Cancun (Mexico). Deadline Open 

– Workshops at ICRA and IROS Conferences 

aollero@us.es 
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