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Rome, Italy
†Fraunhofer IAIS, Sankt Augustin, Germany

〈pirri@dis.uniroma1.it〉
Project, project Id: EU FP7 TRADR / ICT-60963
Project start date: Nov 1 2013 (50 months)
Due date of deliverable: M14
Actual submission date: March 2015
Lead partner: ROMA
Revision: final
Dissemination level: PU

This document describes the progress status of the research on the devel-
opment of formal basis of collaborative planning, focusing on multi-robot
task allocation. The report also describes additional research work concern-
ing both the consolidation and the improvement of the functionalities of the
UGV and UAV, needed for collaboration. The research reported in this doc-
ument concerns the WP4 for the Year 1 of the TRADR project. Planned
work is introduced and the actual work is discussed, highlighting the rele-
vant achievements, how these contribute to the current state of the art and
to the aims of the project.
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Executive Summary

The key objective of WP4 is to develop the formal methods needed to model
knowledge exchange, knowledge maintenance, information sharing, common
and individual decision structures in order to deploy collaborative planning.
In Year 1, we focused on the multi-robot task allocation problem. In this
context, we developed a model which manages the assignment of tasks to
different robots, involved in a mission, under both time and resource con-
straints. The proposed task allocation model also deals with task reliability
and failures. In addition, we extended the Augmented Reality framework,
developed in NIFTi, for both training and validating the proposed task al-
location model. In Year 1 we also concentrated on both the consolidation
and improvement of the basic functionalities of the UGV and UAV, on top
of which multi-robot task allocation has been deployed. In particular, we
developed a framework for solving the autonomous 3D navigation task for
the UGV. In this framework, we have faced the problem of 3D path plan-
ning, based on point cloud clustering and labeling, and motion control for
flipper adaptation. We improved this framework with traversability map-
ping and dynamic obstacle removal. We developed a unified framework for
trajectory tracking control design, based on both a direct and differential
kinematic model of the UGV, correlating the motion of the robot body with
the motion of the active flippers, in traversal task execution. We proposed a
new approach to robot cognitive control design, based on a stimuli-response
framework that models both robots stimuli and the robot decisions to switch
among tasks. Finally, we developed a 3D motion planning and tracking algo-
rithm for the UAV. Most of the research work concerning the improvements
of the basic autonomous functionalities of the robots has been performed,
together with other WPs, in order to increase both the degree of flexibility
and reliability of the TRADR set-up.

Role of task allocation in TRADR

Task allocation is at the basis of multi-robot collaboration in TRADR. The
proposed model establishes which task is assigned to which robot, as well
as when a robot has to execute its assigned task, under uncertainties about
task failures. Task allocation builds on the tasks which each robot can effec-
tively perform. Each task is formulated on top of the functionalities every
robot can exhibit. Therefore, while on the one hand it is quite important
building a decisional structure for task allocation; on the other it is crucial
to develop a set of basic functionalities which ensures that each robot of
the TRADR team is effectively able to execute the assigned tasks. These
considerations motivate part of the research work of WP4, jointly performed
with WP1, WP2 and WP3, concerning the consolidation of those baseline
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autonomous capabilities of both the UGV and UAV, required for imple-
menting a basic structure for multi-robot collaboration, with the proviso of
human-robot collaboration. In particular, the proposed traversability anal-
ysis enhances both the actual robot- and human-centric situation awareness
of the TRADR system. The developed algorithms for 3D path planning
and trajectory tracking control, complementary to those implemented by
other WPs, provide the UGV with alternative strategies for planning and
posture adaptation. These strategies, among those already developed by
other WPs, can be selected on the basis of the terrain surface, topology and
possible sources of failures. The main advantage of complementary strat-
egy selection is to increase the flexibility, the robustness and the reliability
of the UGV, under an autonomous setting. The flexibility of the UGV is
even more increased by the proposed model for task switching. This model
allows the robot to deal with critical situations, when it is required to take
a decision whether to shift from a task to another or inhibit the urges, fo-
cusing on the task at hands. The implementation of a 3D motion planning
and tracking algorithm for the UAV alleviates several crucial problems in
TRADR, related to piloting the UAV in a confined space. Finally, the pro-
posed Augmented Reality framework serves as a test bed for evaluating the
effectiveness of every robot functionality, in both a coupled and decoupled
setting. Moreover, the framework is used for collecting data about the reli-
ability of the tasks, executed by the robots. These data are used for both
task reliability analysis and the validation of the task allocation model.

Contribution to the TRADR scenarios and proto-
types

The proposed model for multi-robot task allocation supports the decision
making mechanisms, underling the human-robot teaming (WP5). The con-
ceptual representation of the environment, based on both point cloud catego-
rization and traversability analysis, extends the robot-centric world model,
build by WP1. By resembling the way in which humans perceive the envi-
ronment, this representation also enhances human-centric situation aware-
ness for operational effectiveness (WP3). 3D path planning and trajectory
tracking control for posture adaptation of the UGV, as well as 3D motion
planning of the UAV, increase the level of autonomy of the TRADR system
(WP1,WP2). The basic collaborative structure, supported by the actual
autonomous capabilities of the UGV/UAV, allows WP7 to investigate more
complex use cases and scenario evaluations with end-users, in Year 2 (WP3).
The Augmented Reality framework contributed to the evaluation of the re-
liability of the robot’s functionalities. Task failure rate has been analysed,
across several different sorties, as the complexity of both the scenario and
tasks increases. This assessment has been lifted to knowledge and then made
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persistent, within the multi-robot task allocation model. The role of an in-
field rescuer has also been investigated in the problem of allocating tasks
among robots. The presence of an in-field rescuer has been modeled as a
positive reward for the robots, in task assignment, as well as a low failure
rate, in task execution. Several software packages have been implemented
for traversability analysis, 3D path planning and trajectory tracking control
for the UGV (analogously for the 3D motion planning for the UAV). These
packages contribute to the set up of the TRADR prototype.
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1 Tasks, objectives, results

1.1 Planned work

The planned work of WP4, in Year 1, concerning “Basic methods for col-
laborative planning” is described in Task T4.1. Task T4.1 achieves the
objectives described in Milestone MS4.1. An excerpt of the description of
both Task T4.1 and Milestone MS4.1 is reported in the following.

Task T4.1 The goal of Task 4.1 is to develop the formal basis of collab-
orative planning, focusing on the early collaborative issues not requiring a
full knowledge management. T4.1 expected result at the end of Yr1, is the
formalization and implementation of basic collaborative planning methods
for the generation of a plan common to two or three robots and its execu-
tion on an uninstantiated horizon. The model includes a basic memories
structuring for both individual and common evaluation of the plan while
monitoring its execution. A contribution of Task 4.1 is also an augmented
environment, with simulated representation, namely an Augmented Real
Environment (ARE) meant to fill in the lack of a common representation of
the perceptual data. The novelty of ARE is that it provides the real robot,
operating in a real environment, with an augmented reality, by simulat-
ing other robots, people, objects, and the knowledge about them is shared
and is made uncertain, replicating noise and incomplete information of real
environments.

Milestone MS4.1 MS4.1 actuates very basic collaboration performance,
providing the early execution model for collaborative planning. The execu-
tion to be operated both in real and augmented environment actuates the
different levels of knowledge generating and executing a plan. This concerns
a common goal for a group formed by one UAV and one UGV. The novelties
MS4.1 intends to prove are (1) collaborative finding of an unknown target;
(2) generation of a common plan handling each other role; (3) compilation
of plan results into new knowledge. The last item anticipates major results
of WP4 on persistence.

1.2 Actual work performed

The actual work performed supports the objectives of Milestone MS4.1. This
work focused on the development of a model for multi-robot task allocation.
This model establishes which tasks are assigned to robots, as well as when a
robot has to execute its assigned task. Task assignment takes into account
both task failure and reliability due to the occurrence of unknown exogenous
events. The Augmented Reality framework, developed in NIFTi, has been
extended with a probabilistic model for both generating virtual events and
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regulating their dynamics. This model served as a ground truth for analysing
the reliability of the tasks, executed by the robots, while the planning scene
dynamically changed, being augmented by virtual events. However, multi-
robot collaboration presupposed a model of perception, reasoning, planning
and execution of the UGV (analogously of the UAV). Such a model built
on the effective functionalities, which the robot can exhibit, such as path
planning, given a suitable representation of the environment, accounting
for the complexity of the terrain, trajectory control for path execution and
morphological adaptation, resource management and task switching, dealing
with the choice of the best task to be executed, when unexpected events
occur. Some of these basic functionalities have been developed within NIFTi,
jointly with other project partners. However, the actual capabilities of the
robot resulted to be still very weak and unreliable to support a collaborative
model of task planning. Therefore, in Year 1, we also concentrated on both
the consolidation and improvement of the main basic functionalities of the
UGV (analogously of the UAV), on top of which multi-collaboration has
been implemented. In particular,

• we developed a preliminary framework for solving the autonomous 3D
navigation task for the UGV. In this framework, we have faced the
problem of 3D path planning, based on 3D map clusterization and
labeling, and motion control for flipper adaptation.

• we improved the framework for 3D autonomous navigation with tra-
versability analysis and dynamic obstacle removal. The framework
also integrates an extended version of randomized A?, coping with
difficult terrains and complex paths for non-holonomic robots;

• we formalized the problem of traversability analysis within a proba-
bilistic framework;

• we proposed a unified framework for trajectory tracking control design,
based on both a direct and differential kinematic model of the UGV,
correlating the motion of the robot body with the motion of the active
flippers, in traversal task execution;

• we developed a 3D motion planning and tracking algorithm for the
UAV.

• we proposed a new approach to robot cognitive control based on a
stimuli-response framework that models both robots stimuli and the
robot decisions to switch among tasks in response or to inhibit stimuli;

In synthesis, this section reports the research carried out by WP4, more
specifically the results in Task T4.1.
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1.2.1 Multi-robot task allocation model

In the multi-robot task allocation problem, the goal is to allocate several
tasks amongst members of a team of autonomous robots such that there
are no conflicts, while maximizing the reward received for performing the
tasks [36, 85]. The simplest forms of multi-robot task allocation problem
in general are combinatorial problems, for which the optimal solution can
be very difficult to be efficiently found [42]. A common approach to deal-
ing with this complexity is to use a sequential greedy allocation algorithm,
where tasks are allocated by iteratively finding the task-robot pair which
results in the greatest net reward increase, and allocating that task to that
robot. Sequential greedy solutions have been shown to provide acceptable
approximations which are typically much faster to compute than the optimal
solution [14].

However, in USAR domain applications several unknown exogenous events
can occur. These events can either positively or negatively affect the per-
formance of the tasks, executed by the robots. If we allow tasks to involve
exogenous events the following issues arise: (1) the type of the exogenous
events is unknown a priori; (2) the number of possible exogenous events
which can occur is unknown a priori; (3) the behaviors which these exoge-
nous events can exhibit are unknown a priori; (4) the number of possible
behaviors is unknown a priori; (5) when and where an exogenous event can
occur is unknown a priori; (6) the reward for tasks can no longer be assumed
known a priori, since the exogenous events are likely to have influence upon
them and, finally, (7) the reward received for doing a task involving one
exogenous event may not contain any information about future task involv-
ing another exogenous event, as each exogenous event may have a different
influence on the received reward.

In a multi-robot task allocation problem, all the possible exogenous
events which can occur within a real environment can not be explicitly mod-
eled. Moreover, even if we were able to detect these events, we would not
be able to predict the behaviors they are going to exhibit. Both events and
behaviors are not directly observable by the multi-robot team, in a real envi-
ronment. What we can directly observe either is the failure or the success of
the tasks executed, over time, by the multi-robot team. In order to allocate
tasks among a team of robots, information from previous tasks successfully
completed or failed can be effectively used. A possible approach to this issue
is to model the task reliability, namely, the ability of the robots to execute
tasks, under stated conditions for a specified period of time. For example
if the failure rate of a task, executed by a robot, becomes very high, after
a certain time period, probably that task should be assigned to another
robot, whose failure rate, for that specific task and at that time period, is
lower. Thus, by predicting both the life-cycle and the risks of failures of the
tasks, the multi-robot task allocation model can use past tasks successfully
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completed involving the robots of the team, to better distribute future tasks
among them, over time.

There are several types of methods that are used for reliability predic-
tion, mainly coming from industry [5]. In particular, we resorted to the
Weibull analysis [72]. The primary advantage of this analysis is the ability
to provide reasonably accurate failure analysis and failure forecasts with ex-
tremely small samples. In order to build the Weibull model for reliability
prediction, we proceeded as follows. We deployed three robots, endowed
with a different sensor suite, within a real simple scenario. Each robot was
endowed with a finite set of functionalities, depending by the kind of built-
in sensors. Each robot performed a finite set of tasks, designed by suitably
combining its own functionalities. We augmented the real simple scenario
in which these robot operated with dynamic virtual events, through the
Augmented Reality framework. We instructed each robot to execute each
task, while the simple scenario dynamically changed, being augmented by
these events. For each task executed by each robot we measured its time-to-
failure. After these experiments, we selected a statistical model that fitted
the data and represented the life of the tasks based on the goodness-of-fit
test. Then, we used the gathered data to estimate the parameters of this
model, via Maximum Likelihood Estimation. The learned model has been
used to calculate the probability that each task, performed by each robot,
will operate successfully at a particular point in time. These probabilities
have been used to weight the reward each robot receives for the execution
of a task, within the formulation of the maximization problem for task al-
location. The Augmented Reality framework, used to dynamically augment
the real scenario of the robots with virtual exogenous events, is described
below.

1.2.2 Modeling uncertainty of the augmented reality world in
ARE

We extended the AR-based framework, proposed in [31], with a model reg-
ulating both the generation and the behaviors of virtual exogenous events,
that will populate the real environment in which the robots operates. The
extended framework is composed of two main building blocks: (1) the AR-
Builder and, (2) the AR-Server. The AR-builder comprises three stochastic
models: (1) the events model; (2) the behaviors model and, (3) the pop-
ulation model. The event model is based on a Hierarchical Beta Process
(HBP) [92]. The HBP includes a beta process which is used as a prior over
the probabilities of an event exhibiting each behavior. The model also in-
corporates a separate beta process prior for each type of exogenous event.
The HBP allows us to stochastically model the generation of the exogenous
events, without establishing a priori both the number and the types of events
that can populate the real world model of the robots as well as the assign-
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Figure 1: Framework overview. Note: solid blocks denote our contribution,
while shaded blocks denote third party components.

ment of the behaviors to the events, without fixing a priori which behaviors
each event can exhibit. The model also allows exogenous events within a
class to share the probabilities of exhibiting each behavior, while allowing
for different probabilities across classes. The behavior model is based on a
Dirichlet Process Gaussian Mixture Model (DP-GMM) [66]. The DP-GMM
allows us to model the observed behaviors of the generated exogenous events
without assuming that the events exhibit a fixed number of behaviors. The
population model relies on a spatio-temporal Poisson Process to model, in
both time and space, the arrival and leaving of the exogenous events [24].
The AR-Server interconnects the real environment model together with the
simulation model of the events [31]. The generated augmented world model
serves as ground truth for training and validating the proposed multi-robot
task allocation model, when task reliability of each robot, executing a task,
over time, is affected by the presence of exogenous events.

1.2.3 Real-time 3D autonomous navigation framework for the
UGV

We developed a framework for 3D path planning and motion control for the
UGV. This framework has been integrated into the UGV navigation stack of
TRADR. The main purpose was to extend the autonomous functionalities
of the UGV, previously developed in NIFTi. On top of all the autonomous
functionalities of the robot we have built a task library. Such a task library
has been used to develop the proposed model of task allocation for multi
robot collaboration.
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(a) (b)

Figure 2: (a) Point cloud segmentation and labeling and (b) weighted graph
representation of a fire escape stairs scenario.

The framework comprises three main building blocks: (1) point cloud
segmentation and labeling; (2) graph generation and inflated region estima-
tion and, finally, (3) flippers posture adaptation, based on contact sensor
modeling. The overall schema of the proposed framework is illustrated in
Figure 1. Point cloud segmentation and labeling provide a basic categoriza-
tion of the environment, specifically defined for navigation purposes, that
is, walls, ground, stairs, ramps, and obstacles that can be overcome. This
process is made by the following steps: (1) point cloud filtering; (2) estima-
tion of normals to the surface and curvature and, finally, (3) clustering and
merging of the filtered point cloud. Clusters are labeled according to the ge-
ometrical constraints applied to the surface normals, to the mean curvature
and to the 3D point coordinates. This results in a classification of the point
cloud into walls, stairs or ramps, and ground and surmountable obstacles as
illustrated in Figure 2(a). Points belonging to clusters, labeled as ground
and stairs or ramps, are connected based on an iterative procedure taking
into account both the model and the kinematic constraints of the UGV,
namely its morphology as well as its ability to overcome obstacles. The re-
sult of this procedure is a graph connecting the different regions of the point
cloud, denoting areas accessible by the UGV. In parallel, both boundary and
inflated obstacles regions are estimated by projecting the points labeled as
walls onto the planes tangent to the surfaces approximating ground, stairs
or ramps. Upon the estimation of the boundary regions, the edges of the
connectivity graph are weighted by a factor taking into account the distance
of the graph vertexes from these boundaries, the density of the neighborhood
of the vertexes and the arc length of the edge. This traversability structure
is used by a graph-based planning strategy to find minimum cost feasible
paths toward target goals (see Figure 2(b)). In order to allow the UGV to
both track the 3D planned path and suitably adapt flippers to the terrain
surface on which the path lies, the tracking controller of the UGV integrates
a contact sensor model. This model is used to correct the morphology of the
robot on the basis of the contact between the flippers and the surface. The
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Figure 3: On the left a person is standing in front of a wall (dark blue
blob on the left). The white blob behind the person indicates that the
point cloud of the region of the wall has not been aggregated into the entire
map of the area, due to occlusion. On the right the result of the dynamic
correction algorithm: after the motion of the person, the map is updated
by both deleting the blob of the person and by aggregating the point cloud
belonging to the wall, previously occluded.

model is based on a learned function, assessing the touch and the detach of
the flippers from the surface. This approach for flippers control ensures a
better traction of the robot on the terrain, during the trajectory tracking
task. For more details and results concerning this research work we refer to
Annex §2.1.

1.2.4 3D path planning in cluttered and dynamic environments

The framework for real-time 3D autonomous navigation, described above,
assumes that the UGV navigates within a static 3D Map. Actually there are
no special procedures which are responsible of merging new scans with the
accumulated map, accounting for dynamic obstacle removal, into the map-
ping functionalities of TRADR. Therefore, after a short time period, the 3D
Map becomes very cluttered, due to the presence of dynamic obstacles, mak-
ing the UGV autonomous navigation impossible. Moreover, in the proposed
framework, each traversable point within the point cloud was considered as
a possible successor state by the planning algorithm. This assumption ex-
tremely increases the dimension of the search space, thus breaking down the
performance of the algorithm. In order to face these two main drawbacks,
we developed a 3D path planning framework which integrates a procedure
for dynamic obstacle removal as well as a method for sampling candidate
successor states so as to reduces the planning domain. The method for test-
ing whether a point should be removed is based on a local signed distance
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test against the nearest simplex of the convex hull of the scan, acquired from
the rolling laser sensor. This methods tells us whether a point is inside the
deletion volume [102], also in the presence of noise. The obtained result
is illustrated in Figure 3. Sampling is governed by a probability density
function induced by both traversability analysis and obstacle detection. For
more details and results see Annex §2.2 and Annex §2.7. A further improve-
ment of this research work is reported in Annex §2.3. In the context of
the multi-robot collaboration, the proposed dynamic obstacle removal pro-
cedure makes both more reliable and effective the autonomous navigation
of the UGVs in patrolling tasks.

1.2.5 Probabilistic framework for traversability analysis

During the assessment of the reliability of the UGV navigation task, bal-
ancing tasks assignment in the proposed multi-robot task allocation model,
we tested the performance of the different algorithms for 3D path planning
and trajectory tracking, developed in NIFTi and in WP4 research work. In
this evaluation we verified that having multiple planning strategies among
which the UGV can choose significantly increases both the flexibility and
robustness of the overall system. However, safety in navigation tasks was
not completely ensured. In fact, when the task allocation model assigned
the navigation task to the UGV towards a complex cluttered area of the
environment, we were forced to manually interrupt the task, in order to pre-
vent robot damages. Therefore, the reliability of the UGV navigation task
turns out to be very low, thus bounding tasks assignment. This experience
led us to analyse the problem of autonomous safe navigation. This problem
foresees a robot-centric representation of the terrain assessing traversability.
Therefore, the research work of WP4 partially pursues to develop a model
for estimating terrain traversability. This work differs from the research
work of WP1, concerning adaptive traversability, as it mainly focuses on
building a traversability map of the environment, where path planning can
take place, rather than training the controller to adapt the robot flippers to
different terrain surfaces.

Traversabilty is a continuous scalar metric representing the cost to tra-
verse a region. It is usually calculated either from maps or sensor data.
Traversability provides a cost map allowing potential obstacles and difficult
regions to be avoided at runtime. The cost of traversability is computed
combining geometric features of the neighbourhood of each observation (e.g.,
terrain slope, roughness, obstacle presence). Prior works on traversability
cost estimation do not account for uncertainty and missing information, in
a statistically direct manner. Gaussian Processes (GPs) regression have re-
cently become popular methods for traversability cost estimation. These
methods handle uncertainty as well as appropriately represent spatial cor-
relation resulting also effective for managing incompleteness of data. The
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(a)

(b)

Figure 4: Figure shows the inference results on synthetic data for terrain
surface (a) and traversabilty cost (b). Top left of each figure shows the
original surface, top right shows the observations, bottom left is the inferred
surface and bottom right is the error. The surfaces are jointly learned using
the multi-task learning framework.
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model of terrain produced by GPs is scalable, yielding a continuous domain
representation of the terrain data. Moreover sampling can be performed at
any desired resolution. However, GPs-based spatial stochastic processes are
quite limited when dealing with traversability cost estimation in the presence
of dynamic obstacles. In these settings, time plays an important role for a
proper estimation of terrain traversability. In fact, traversabilty mapping of
environments with dynamic obstacles requires an update at each time step.
Spatial processes, intrinsically memory less, only provide a static represen-
tation of the environment, leading to unsatisfactory planning performance.
In order to cope with these issues we developed a model for terrain tra-
versability, based on spatio-temporal Gaussian Processes, in the context of
multi-task learning probabilistic framework. Multi-task learning is an area
of machine learning whose goal is to learn multiple related processes avoiding
tabula rasa learning by sharing information between the different processes.
The main advantage of this approach is to simultaneous learn both these
processes in order to the performance over the no transfer case.

Given the set of measures provided by the robot 3D laser sensor and the
traversabilty cost computed on the measured points we infer the model of
both terrain surface and trasversabilty cost, also taking into account time
relations between different observations. We approached the inference prob-
lem by placing a GP prior over the latent process for the terrain surface and
the latent process for the traversabilty cost.

In this model, we defined a covariance function modeling the correlation
between both the observations of each process and the inter-processes co-
variance among the different processes. The latter captures the space-time
correlation between the processes. This covariance function is stationary
with respect to space but not-stationary with respect to time, in order to
manage local changes on both the terrain surface and the traversability cost,
due to the presence of dynamic obstacles. Model parameters are learned by
the maximization of the marginal likelihood of the observations, given both
the inputs and the parameters. The optimization process is constrained
in order to guarantee the properties of the covariance function (e.g., semi-
definitive positiveness) as well as to reduce the search space, ensuring real-
time reliability. A preliminary result on synthetic data is shown in Figure
4.

1.2.6 Adaptive Robust 3D Trajectory Tracking for the UGV

In Annex §2.1 we developed a preliminary trajectory tracking control model
of the UGV. This control model has been evaluated at the Italian Fire
Fighters rescue training area in Prato, during Year 4 of NIFTi, and at var-
ious fire-escape and ordinary stairs. In Prato we observed that the robot
had locomotion difficulties in rotational motions, when it was autonomously
traversing narrow passages, due to the flippers in a flat configuration. In
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this situation, a better control strategy could have been the decision to lift
the flippers to enhance the robot mobility, instead of maximizing the con-
tact surface with the ground. Further, where the terrain was particularly
unstable, the rotation of the belts of the tracks caused ditches in the sand,
within which the robot got stuck, due to a loss of both friction and propul-
sion. Still, when the robot was passing over holes or gaps, the behavior of
the flipper position controller was to lower the flippers, as much as possible,
causing a bump at the end of the flippers with the negative side of the ob-
stacle. If the slope of the negative obstacle was not so steep, the controller
recovered from this situation. Otherwise, the flippers got stuck under the
hole, causing damages to the vehicle. The flipper position controller was not
able to suitably adjust the flippers posture due to the lack of a fast feedback
about the structure of the perceived terrain. To cope with this limitation
the trajectory tracking controller could have had to scale the robot velocity
while waiting for the feedback to move the sub-tracks and correctly approach
the slope of the negative obstacle. This drawback suggests to jointly model
both the controllers for skid-steering and the sub-tracks posture adaptation.

The performance obtained at the fire escape stairs scenario, was more
encouraging. The robot, endowed with the decoupled control modules, au-
tonomously climbed the stairs, from the basement up to the landing of the
second flight. However, we noted that oscillations of the heading direction of
the robot frequently occurred, thus increasing both the lateral and longitu-
dinal slippage between the tracks and the ridges of the stairs. The controller
generated high values of angular velocity in order to accurately track the
planned trajectory, without accounting for slippage compensation. Unfortu-
nately, the kinematic model, underlying the trajectory tracking controller,
did not take into account the slippage, when the control commands of the
robot were generated. Moreover, the flipper position controller, even with
the contact sensor model, was not able to reduce this effect.

On the basis of the lessons learned during this in-field experience, we
developed a general preliminary solution for trajectory planning and control
of the UGV. Trajectory planning combines the intrinsic robot characteristics
with the geometric properties of the terrain model. The goal of trajectory
planning is to negotiate collision-free trajectories taking into account the
workspace of the active flippers of the robot. Trajectory control adapts
the configuration of the flippers while simultaneously generating the track
velocities, to allow the vehicle to autonomously follow a given feasible 3D
trajectory. The control relies on both a direct and differential kinematic
model of the UGV. The benefit of this approach is to allow the controller
to flexibly manage all the degrees of freedom of the UGV as well as the
skid-steering. The differential kinematic model has been designed to extend
the differential drive robot model, described in [29] to compensate the slip-
page between the robot tracks and the terrain. Moreover, this model allows
us to derive a feedback control law, which ensures the positional error of
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the end points of the front flippers, to converge to zero. This control law
dynamically accounts for both the kinematic singularities of the mechanical
vehicle structure and those vehicle configurations in the neighborhood of a
singularity. The designed controller also integrates a strategy selector to
reduce both the effort of the flipper servo motors and the traction force on
the robot body, recognizing when the robot is moving on an horizontal plane
surface. According to this strategy, rotational motions of the robot, moving
within narrow passages, are also facilitated.

The main idea behind the design of the controller is to apply both the
concepts and methodologies of robot manipulator kinematics to the UGV,
and to extend these methodologies with skid steering principles, accounting
for slippage between the tracks and the ground. The role of the strategy
selector is to replicate the behavior of a skilled operator, in situations such
as navigating on flat terrains or traversing a narrow passage. For example,
a skilled operator would lift up the robot sub-tracks to increase the mobility
as well as to facilitate rotational motions. Optimization techniques have
been applied to find a solution to the inverse kinematics of the UGV, in the
presence of singularities [80]. To take into account the closeness of the robot
configuration to a singular configuration, a heuristic is proposed [13]. This
reduces the task error when the robot configuration is far from singularities.
Finally, a pose refinement technique, exploiting the performance of a Dead
Reckoning System together with the accuracy of an ICP-based simultaneous
localization and mapping (SLAM), has been proposed to increase the rate
of the control loop [29]. For more details and results see Annex §2.5.

1.2.7 Three dimensional motion planning for the UAV

In NIFTi, the UAV was essentially teleoperated by a human pilot. Con-
versely, in TRADR, the UAV is expected to perform tasks, under an au-
tonomous setting, in order to jointly collaborate with the UGV during the
execution of a common task. Therefore, the implementation of a 3D mo-
tion planning and tracking algorithm for the UAV is crucial in TRADR to
investigate forms of basic collaborations among heterogeneous robots.

Path planning deals with the search for a valid configuration sequence,
which securely moves the UAV through the three dimensional space, to reach
a predefined goal position. To solve this problem several steps are necessary.

• Discretization of the configuration space, called C-Space

• Finding a search algorithm

• Tracking of a found path and avoiding obstacles

It is supposed that the estimated position of the UAV is provided as
transformation and environment perceptions are continuously available via
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Figure 5: Example for an octree representation (right) of a cubic room (left).
A node takes one of the follwing states: Free (white), occupied (dark gray)
or undefined (gray), which needs to be split again.

a point cloud. Based on this requirements the following algorithms are
hardware independent and can be used even in a simulated environment.

C-Space discretization The C-Space discretization is an essential step
to optimize point cloud access times and makes search algorithms more effi-
cient. It is known, that the classic three dimensional workspace, represented
by the point cloud, needs a lot of space, because each fragment of the en-
vironment is stored as a three dimensional point. The configuration space
is an extension of the workspace. It is the space which includes all possible
configurations of the UAV and contains, along the position, the velocity, the
rotation angle or other configuration vectors. So the C-Space takes a lot
more dimensions than the workspace in general.

To reduce the C-Space, a three dimensional discretization technique
called Octree is used. An octree is a tree based data structure which di-
vides the configuration space in each dimension. The resulting octets are
now representing a smaller part of the original space and are going to be
classified. The octet can be a node, which is synonymic to an unknown space
or a leaf. A leaf gets the state free or occupied, based on the perceived en-
vironment information. A node can not be classified into a free or occupied
state and needs to be divided again. This step is iteratively called, till the
whole configuration space is split into octets, which has a defined state.

Figure 5 shows the octree representation of a cubic based model. A clas-
sic voxel grid representation, which means a discretization using a fixed size,
requires the storage of 512 datapoints. By building an octree based repre-
sentation, which combines voxels with the same state, only 25 datapoints
have to be stored. In this simple example, a compression rate of 96% is
reached. Another advantage of the octree is the option to model a safety
zone in the configuration space. By defining a minimal octet size based on
the UAV diameter, even the smallest obstacle takes the place of the minimal
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octet size. This operation is known as the Minkowski sum.

A = A⊕B (1)

The UAV can be handled as a single three dimensional point in further
path planning and collision check operations. The C-Space itself is just a
definition of a set containing possible configurations. Each configuration
vector, or more exactly its position component, can be validated by simple
checking the corresponding occupation state in the octree representation
of the perceived environment. To visualize this model representation, all
occupied voxels are going to be drawn.

Path planning using RRTConnect After the C-Space, respectively the
workspace discretization, the method for finally planning the path through
the environment can be presented. This planning task is also called global
path planning. What the keyword global stands for, is shown in the next
paragraph. Due to the high dimensional configuration space, a random
based algorithm is used to plan the configuration sequence for the UAV.
This algorithm doesn’t find the optimal path, but it’s able to calculate a
valid path in a short period of time.

For random based movement planning in robotics Rapidly-Exploring
Random Trees[52], short RRT, are frequently used. A RRT is a tree based
data structure build by an incremental algorithm. For K iterations a ran-
dom configuration is taken from the C-Space and added to the tree using the
extend function. Algorithm 1 implements this extension, which is the main
functionality of the RRT based path planning. After choosing a random con-
figuration qrand the nearest configuration qnear, which is already connected
to the RRT, is determined. Afterwards the tree will be extended, as shown
in Figure 6, from the nearest configuration to the random configuration with
a previously defined metric ε, assumed that there are no obstacles between
this extension qnew and the already connected configuration qnear.

1 def extend ( tree , q ) :
2 q near = neare s t ne i ghbour (q , t r e e )
3 i f new conf ig (q , q near , q new ) :
4 t r e e . add node ( q new )
5 t r e e . add edge ( q near , q new )
6 i f q new = q :
7 return REACHED
8 else :
9 return ADVANCED

10 return TRAPPED

Algorithm 1: Extends a RRT by a new, randomly chosen, configuration.
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Figure 6: Single iteration of the
RRT construction in a two dimen-
sional configuration space.
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Figure 7: Highly discretized visu-
alization of the DWA approach in
three dimensional space.

The extension ends in one of three defined states. If we have added
a new configuration qnew to the RRT, the state ADVANCED is returned.
Otherwise no more configurations are available or can’t be connected to
the tree without passing obstacles. This path is in a TRAPPED state.
A special case is, that the new configurations equals the randomly chosen
configuration. In this case we have found a complete path, which is used in
Algorithm 2 and not part of the basic RRT algorithm.

A modification of the RRT algorithm is presented in the RRTConnect[49]
approach and shown in Algorithm 2. Two trees are generated parallel, where
the first tree has its root in the start configuration and the second tree
in the goal configuration. The algorithm doesn’t search for a connection
between start and goal anymore. It’s searching for a connection between
those RRTs. After initializing both trees, tree A is extended by a randomly
chosen configuration as explained above. Now the algorithm tries to extend
tree B also against this configuration, so the trees always grow into the
same direction. The function connect repeats this extension, til no more
extensions are possible towards this configuration. If an extension connects
the configuration qnew from tree A and qnew from tree B, the function extends
returns in the state REACHED, which was explained above. In this case a
connection between the trees, and also a possible path was found.

1 def r r t c o n n e c t ( q s t a r t , q goa l ) :
2 t r e e a . i n i t ( q s t a r t )
3 t r e e b . i n i t ( q goa l )
4 for k = 1 to K:
5 q rand = random conf ig (C)
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6 i f not extend ( t r e e a , q rand ) == Trapped :
7 i f connect ( t r ee b , q new ) == Reached :
8 return Path ( t r e e a , t r e e b )
9 swap ( t r e e a , t r e e b )

10 return Fa i l u r e

Algorithm 2: RRTConnect, a parallel approach for finding a path between
the start and end configuration.

The RRTConnect algorithm tries to extend the path in two direction,
which results in fast execution times. Another big advantage is the metric
definition. With this metric, also known as the extended step of the path, re-
strictions of physical motions or velocities can be modeled. On these grounds
the RRTConnect algorithm was chosen as the path planning algorithm for
the UAV. Due to the usage of octree based environment perceptions the path
extensions can be validated fast, if a metric corresponding to the leaf size
is defined. In this case an extension step equals always results in directly
connected voxel of the origin configuration.

Path tracking and improvements due to dynamic navigation The
RRTConnect algorithm has calculated a path regarding current static ob-
stacles. To transfer this path to the controller of the UAV, a PID controller
is used. Equation 2 shows the difference equation for a time discrete PID
controller, which is used for each dimension of the configuration space. The
term e denotes the error between the desired position of the configuration on
the path and the actual configuration of the UAVs. Using the parameters P ,
I and D, the variable y, the velocity for the corresponding configuration di-
mension, can be sized, where these parameters stand for for the proportional,
the integral and differential component. The parameters were determined
for the simulation based on Gazebo (cf. DR2.1). For the pid control of the
UAV three controllers were implemented, one for each translational motion
in space. The rotation is not controlled at the moment, because roll and
pitch motions are not needed for an autonomous navigation and the yaw
position can be set directly at the target position. Has the UAV reached the
current position of the path, the controller error tends to zero and the next
position of the path can be set as the target position.

yn = en ∗ P +

n∑

i=0

ei ∗ I +
en − en−1

T
∗D (2)

The planning of the path is currently based on the planning of a collision-
free path throughout the whole perceived environment. This is also called
global path planning. In general, however, the environment is dynamic,
that means the environment and its obstacles can change any time. Since
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the dynamic detection of the complete environment is impossible due to
technical difficulties also a second, local navigation approach is required.

Fox, Burgard and Thrun present a method for implementing such a dy-
namic local navigation: the Dynamic Window Approach, short DWA[26].
This strategy for collision avoidance simulates possible movements over a
small time interval and creates a window of possible trajectories. A subse-
quent evaluation of this trajectories tells you which of the simulated control
commands stays best on the path and avoids possible obstacles. The selected
control command is transmitted to the robot, whereby a periodic loop is
formed. The recently introduced pid controller for tracking the global path
is omitted. Possible criteria for evaluation are the distance to an obstacle,
the distance to the navigation target, the distance to the global path, or
even velocity constraints. It is important to mention that for the assess-
ment of the trajectories, only the current nearby environment of the UAV
is used, the local map. For sensors such as the xTion this information is
always available.

You can find a DWA implementation in the ROS navigation stack, which
is designed for two-dimensional navigation. For the UAV, velocities in each
dimension are necessary, because the UAV is able to perform holonomic
movements in the three-dimensional space. However, the subsequent proce-
dure is identical. The choice of the simulation time determines the size of
the window of generated commands, as well as the control time in which the
system can respond to external influences. Figure 7 shows an example of the
evaluation of a control command for a UAV in three dimensional space. Cor-
responding to the distance to the global path, the first control vector would
be chosen. However, this configuration is now blocked by a new obstacle
that was not considered in the global planning of the path. The algorithm
then selects control vector 15 as the first action to be performed, because
it’s the most secure path.

Experience has shown that the method always achieved good results
in two dimensional space. According to the developers a robust dynamic
navigation, for a robot with speeds of up to one meter per second, was
already possible in 1997. If the final sensor system for the UAV is able to
measure three dimensional space instantly, then the DWA method should
be used.

1.2.8 The stimulus-response framework

Several unexpected events can occur within a rescue scenario. These events
can induce a robot, collaborating with others robots in the execution of a
common task, to either shift from the current task to another one or in-
hibit the inappropriate urges, preserving focus on the task at hands. For
example, if during the execution of a task, the power level of the battery
drops below a certain threshold, the robot has to decide whether to return
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Figure 8: Work-flow of the proposed stimulus-response framework. From bottom
to top: the lowest layer indicates a current active task, being executed. The active
processes feed the processes yields collecting information from them, the stimuli
model selects from the yields those which are stimuli. The stimulus-response model
scores the response tasks. The decision is taken evaluating the payoff of switching
to a task suggested by the stimulus-response matrix. In the middle panel, between
knowledge and inference, the execution monitoring takes care of the actual task
execution and its updating, both affecting the mental states, namely the decision
of whether to consent a response to the stimulus. In the upper panel, a first-order
logical formalism is used to model the robot processes, with action preconditions
and effects, affecting activation costs and motivating causal constraints. This closes
the loop between stimulus activation, reasoning, planning and decision.
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to the command base station, to recharge the battery, or to continue the
task. In the first case, the decision to shift to another task can lead to a
re-allocation of the tasks among all the other robots involved in the common
mission. Therefore, the task allocation model requires a mechanism which
notifies it when a robot is deviating from the assigned task, due to its in-
ternal decision to switch to another task, in order to accordingly re-allocate
tasks. This mechanism foresees that each robot is endowed with a cognitive
executive control modeling the stimuli identification, the relation between
such stimuli and the robot tasks and, finally, the switching decision. The
ability to selectively respond to several stimuli, and to inhibit inappropriate
urges, focusing on the task at hand, are well-known to exist in humans as
shifting and inhibition executive functions [2, 60]. Modeling the dynamic
processes regulating such cognitive executive functions, in the cognitive ex-
ecutive control of the UGV, is crucial to assess a well-regulated behaviour
of the robot as well as to balance the work load distributed among the
multi-robot team. For this purpose, we developed a preliminary framework
to model the robot processes, their yields, the stimuli occurrences, and the
decision underlying the response to the stimuli. The proposed framework
contributes to the state of the art of robot planning and high level control as
it provides a novel perspective on the interaction robot-environment. The
main advantage of this approach is the fact that robot control does not need
to be designed a priori but it can be drawn by the interaction with users,
who teach the robot when a stimulus is so and what the possible alterna-
tives are. Indeed, a robot that has learned a stimulus-response strategy by
several humans, will most certainly be more usable than a robot that either
has no stimuli at all or has no strategies to respond to stimuli, other than
failures. In fact, we take into account also the context in order to be able
to establish a response cost and we exploit a theory of actions that models
how tasks are chosen and how a switch to a new task can occur as a result of
a stimulus-response. An overview of the proposed robot stimulus-response
framework is illustrated in Figure 8. During the execution of a task, each
active robot process yields a quantum of information with characteristic fea-
tures; this quantum of information is called the yield of an active process.
The features of the yield are used by the stimuli model to learn a function
establishing whether a stimulus occurred, during the specific process exe-
cution, or not. If the stimulus occurs, the robot has to choose a possible
response or it can inhibit the stimulus, and continue its task. Therefore the
robot has to (1) identify the task that is a possible response to the stimu-
lus and (2) decide whether to go on with the current task or to switch to
the identified response task. The first issue is dealt with by filling a score
matrix whose values are estimated via factorization. On the other hand,
the switching decision is based on the pay-off of switching. This pay-off is
computed considering the risk of continuing the current task, without taking
into account the stimulus, and the effort required to fulfil the stimulus. The
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effort is, in turn, computed considering two costs: (1) the cost to reconfigure
the current robot state to the new state that switching would lead to and
(2) the cost to resolve the interference due to the interruption of the current
task. These costs are computed by considering the preconditions and effects
of each action involved in both the processes to be interrupted and in the
ones to be activated. To bind the information yielded by a process to the
domain of reasoning a special functional is used, mapping the process terms
of the representation language to the corresponding values of both the yields
and the stimuli, at execution time. For more details and results see Annex
§2.4.

1.3 Relation to the state-of-the-art

Multi-robot task allocation Multi-robot Task Allocation (MRTA) prob-
lems seek to allocate tasks to robots such that the cost to complete all tasks
is minimised. An extensive amount of work has been proposed to address
multi-robot task allocation [28, 101, 48]. Methods for solving MRTA prob-
lems can be classified into centralized and decentralized approaches, depend-
ing by the multi-robot system architecture [9]. Deterministic and heuris-
tic approaches based on numerical optimization, dispatching rules, simu-
lated annealing, tabu search, genetic algorithms, evolutionary algorithms
have been developed for centralized architecture [78]. On the other hand,
behavior-based approaches [75] and market-based approaches [19] have been
proposed for distributed systems [23]. However, an important aspect of
MRTA for multi-robot systems is to take uncertainties in available informa-
tion into account when making decisions. Uncertainty can enter the problem
at various levels; for example, at the robot level, it may appear as modelling
uncertainty resulting from inaccurate models of the robot. Uncertainty also
enters at the mission level as a result of limited prior knowledge about the
environment. For example, an accurate model of the environment may not
be available a priori, or the environment might change, making it difficult
to decide on the best course of action. Therefore, the proposed approach for
multi-robot task allocation attempts to model the uncertainty at the robot
mission level by investigating how a class of stochastic reliability models
can be integrated into typical task allocation frameworks. Task allocation
frameworks employing reliability models can results in improved planning
performance when uncertainty enters in task assignment.

Augmented Reality Augmented Reality (AR) is a recent emerging tech-
nology stemming from Virtual Reality (VR). AR develops environments
where computer-generated 3D objects are blended (registered) onto a real
world scene [3]. This technology has been applied in robotics applica-
tions such as maintenance [67], manual assembly [61], computer-assisted
surgery [84], telerobotic control [58], monitoring [1, 7], robot programming
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[6, 76, 99, 15], human-robot interaction [98], prototyping [32] and debug-
ging [88, 17]. The mentioned approaches for both designing and evaluating
robotics applications are really very appealing, but, apparently, they do not
go beyond the development of interfaces for overlaying virtual objects into
the real robot scene. Virtual objects can be endowed with simple intelligent
behaviors. Such virtual intelligent objects can be perceived by real robots
as well as can interact with them. Further, the complexity of the real en-
vironment can be increased not only by adding virtual objects, but also by
making vary the behavior of the added objects. Still, complex robot be-
haviors can be designed and evaluated, on the basis of the dynamics of the
virtual objects. Under this new perspective, the AR-based framework we
have developed constitutes an important research test-bed for robots meet-
ing the needs to test and experiment complex robot behaviors using such
a dynamic and rich perceptual domain. The framework goes beyond the
state-of-the-art concerning AR-based robotic applications, as the design ex-
ploits stochastic models activating the behaviors of the introduced objects.
Objects, people, obstacles, and any kind of structures in the environment
can be endowed with a behavior; furthermore, a degree of certainty of their
existence and behaviors, with respect to what the robot perceives and knows
about its space, can be tuned according to the experiment needs.

3D autonomous navigation The developed framework for real-time 3D
autonomous navigation for tracked vehicles in rescue environments pro-
gressed the current state-of-the-art concerning autonomous 3D mapping and
navigation [56, 45, 16]. Several state-of-the-art approaches make use of 2.5D
elevation maps [38] or full 3D voxel maps [45], or point clouds [97], yet at-
tempt to reduce the problem dimensionality by planning the paths in a 2D
navigation map, as also in [47, 63]. The developed framework overcomes
this issues by allowing the UGV to directly plan paths within the 3D map
of the environment. The framework also contributes to the state-of-the-art
concerning 3D Semantic mapping, by building a basic categorization of the
environment, specifically defined for navigation purposes, based on point
cloud segmentation and labeling [71, 51, 4, 20].

Traversability analysis The proposed model for traversability cost es-
timation overcomes the main issues concerning scalability, resolution and
continuity in domain representation raised from using discrete representa-
tions for traversability analysis, based either on elevation maps [35, 37, 77]
or on multi-level surface maps [93, 43]. The proposed approach exploits
the versatility in dealing with uncertainty of Gaussian Process regression
[57, 33, 94] together with the commonality property of Multi-Task Learning
[50] in order to handle both uncertainty and data incompleteness, in a sta-
tistically direct manner. Other popular learning based approaches proposed
binary classification, specifying whether terrain is locally traversable or not
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[46, 86, 90]. However, a binary classification is valuable for hazard avoidance
but does not provide any additional information about the cost of regions
and it might be unusable for path planning strategy guidance.

3D Trajectory tracking and control Several research efforts in robotics
have been made to increase the level of autonomy of articulated tracked vehi-
cles, focusing on adaptation [34, 65, 73], stability [70, 74], self-reconfiguration
[39, 53], track-soil interaction [54, 100] and control [87, 22, 64, 8, 29]. Most
of the proposed solutions focus on a specific task, for example, stair climb-
ing rather than rough terrain traversal [34, 65, 44, 73, 53, 70]. Furthermore,
most of the proposed approaches to the design of a trajectory tracking con-
troller lack a unified framework for modeling the differential kinematics,
accounting for all the DOFs of the AATV. The research work, described
in Annex §2.5, advances the state-of-the-art by providing the baselines for
designing a general adaptive robust 3D trajectory tracking controller for
actively articulated tracked vehicles for both skid-steering and sub-tracks
posture adaptation, independent of specific tasks.

3D motion planning for UAVs Generally speaking, the state-of-the-art
in motion planning is represented by ROS, which provides a comprehensive
framework for the autonomous navigation of a robot of any kind[55][82].
However, these algorithms were designed to work in two-dimensional space
only. There are several approaches that use these navigation algorithms also
on a UAV[27] but to the disadvantage of restricted degrees of freedom. Us-
ing this methods, a UAV will only be able to navigate safely in one plane.
Another framework for path planning is given by MoveIt![40]. Previously
designed for classic arm kinematics and related path planning, MoveIt! pro-
vides several interfaces, which allow the integration of any robot. A UAV
can also be described as a single point in free space, which can reach any
position or configuration, physical restrictions not taken into account.

Localization is an essential pre-stage for the autonomous navigation of
a UAV. At this time, a UAV is located either by a motion capturing system
or by its GPS sensor. But in GPS-denied environments there is no position
information; hence, other sensors have to be evaluated for their localization
capabilities. This has been done in a recent Master’s thesis[96] and the
result is presented in more detail in DR2.1.

Cognitive control In the research work, described in Annex §2.4 we ap-
plied the well-known concepts of shifting and inhibition in task switching to
develop the executive cognitive control of the UGV [81, 91, 12, 62, 83]. The
theories on executive cognitive control processes and task switching, initiated
in neuroscience, have strongly influenced cognitive robotics architectures
since the eighties, as for example the Norman and Shallice [69] ATA schema
and the principles of goal directed behaviors in Newell [68]. However only
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recently cognitive control is becoming a hot topic in cognitive robotics to
model a robot complex behavior in unknown environments. Earliest studies
in robotics have been carried within brain-actuated interaction [59], mecha-
tronic [10], learning [41] and planning [25]. More recently, several studies
have highlighted the need to model task switching to cope with adaptivity
and ecological behaviors in a dynamic environment [11, 89, 95, 21, 18, 30, 79].
The major problem to be resolved in most of the cited works, as noted in
[95], is the switching decision. Our research work in cognitive control con-
tributes to this problem by proposing a solution to model this decision. In
particular, we modeled the switching decision on the basis of the cost re-
sulted from the interplay between the resources needed to reconfigure the
robot internal state for the execution of a new task and the resources needed
to resolve interference with the current robot internal state [62].
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2 Annexes

2.1 Menna, Gianni, Ferri, Pirri (2014), “ Real-time Au-
tonomous 3D Navigation for Tracked Vehicles in Rescue
Environments”

Bibliography Matteo Menna, Mario Gianni, Federico Ferri, Fiora Pirri.
“Real-time Autonomous 3D Navigation for Tracked Vehicles in Rescue En-
vironments.” In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’14), page 696-702. Chicago, Illinois,
2014.

Abstract The paper presents a novel framework for 3D autonomous nav-
igation for tracked vehicles. The framework takes care of clustering and
segmentation of point clouds, traversability analysis, autonomous 3D path
planning, motion planning and flippers control. Results illustrated in an
experiment section show that the framework is promising to face harsh ter-
rains. Robot performance is proved in three main experiments taken in a
training rescue area, on fire escape stairs and in a non-planar testing environ-
ment, built ad-hoc to prove 3D path planning functionalities. Performance
tests are also presented.

Relation to WP This work consolidates the main functionalities of the
UGV, on top of which collaborative planning, in Task, T4.1, is developed.

Availablity Unrestricted. Included in the public version of this deliver-
able.
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2.2 Ferri, Gianni, Menna, Pirri (2014), “Point Cloud Seg-
mentation and 3D Path Planning for Tracked Vehicles
in Cluttered and Dynamic Environments”

Bibliography Federico Ferri, Mario Gianni, Matteo Menna, Fiora Pirri.
“Point Cloud Segmentation and 3D Path Planning for Tracked Vehicles in
Cluttered and Dynamic Environments.” In Proceedings of the 3rd IROS
Workshop on Robots in Clutter: Perception and Interaction in Clutter.
Chicago, Illinois, 2014.

Abstract The paper presents a framework for tracked vehicle 3D path
planning in rough areas, with dynamic obstacles. The framework pro-
vides methods for real-time point cloud interpretation, segmentation and
traversabilty analysis tacking also into account changes such as dynamic ob-
stacles and provides a terrain structure interpretation. Moreover the paper
presents R2A

? an extended version of randomized A? coping with difficult
terrains and complex paths for non-holonomic robots.

Relation to WP This work contributes to build the bases for developing
formal methods of collaborative planning, in Task, T4.1.

Availablity Unrestricted. Included in the public version of this deliver-
able.
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2.3 Ferri, Gianni, Menna, Pirri (2015), “Fast path genera-
tion in 3D dynamic environments”

Bibliography Federico Ferri, Mario Gianni, Matteo Menna, Fiora Pirri.
“Fast path generation in 3D dynamic environments.” Submitted paper.
Alcor Laboratory, DIAG “A. Ruberti”, Sapienza University of Rome.

Abstract In this article we present a method for planning paths in 3D
environments with dynamic obstacles, which is a challenging problem for
autonomous robots operating in unstructured environments. Our contribu-
tion consists of dynamic obstacles removal and merging of 3D maps, tra-
versability analysis within a probabilistic framework, and a domain specific
randomized 3D path planner, which is a further refinement of R2A

?. Results
show a performance comparison with other path planners, and evaluation
of the dynamic obstacle removal algorithm.

Relation to WP This work improves the main functionalities of the
UGV, which constitute the ground for collaborative planning in T4.1.

Availablity Restricted. Not included in the public version of this deliv-
erable.
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2.4 Gianni, Kruijff, Pirri (2014), “ A Stimulus-Response
Framework for Robot Control”

Bibliography Mario Gianni, Geert-Jan M. Kruijff, Fiora Pirri. “A Stimulus-
Response Framework for Robot Control.” In ACM Transaction on Interac-
tive Intelligent Systems, Volume 4, Issue 4, January 2015.

Abstract We propose in this paper a new approach to robot cognitive
control based on a stimulus-response framework that models both a robots
stimuli and the robots decision to switch tasks in response or to inhibit the
stimuli. In an autonomous system, we expect a robot to be able to deal with
the whole system of stimuli and to use them to regulate its behavior in real-
world applications. The proposed framework contributes to the state of the
art of robot planning and high-level control in that it provides a novel per-
spective on the interaction between robot and environment. Our approach
is inspired by Gibsons constructive view of the concept of a stimulus and
by the cognitive control paradigm of task switching. We model the robots
response to a stimulus in three stages. We start by defining the stimuli
as perceptual functions yielded by the active robot processes and learned
via an informed logistic regression. Then we model the stimulus-response
relationship by estimating a score matrix, which leads to the selection of
a single response task for each stimulus, basing the estimation on matrix
low-rank factorization. The decision about switching takes into account
both an interference cost and a reconfiguration cost. The interference cost
weighs the effort of discontinuing the current robot mental state to switch
to a new state, while the reconfiguration cost weighs the effort of activating
the response task. A choice is finally made, based on the payoff of switch-
ing. Because processes play such a crucial role both in the stimulus model
and in the stimulus-response model, and because processes are activated by
actions, we address also the process model, which is built on a theory of
action. The framework is validated by several experiments, exploiting a full
implementation on an advanced robotic platform, and compared with two
known approaches to replanning. Results demonstrate the practical value
of the system in terms of robot autonomy, flexibility and usability.

Relation to WP This work contributes to build the bases for developing
formal methods of collaborative planning, in Task, T4.1.

Availablity Unrestricted. Included in the public version of this deliver-
able.
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2.5 Gianni, Ferri, Menna, Pirri (2014), “Adaptive Robust
3D Trajectory Tracking for Actively Articulated Tracked
Vehicles (AATVs)”

Bibliography Mario Gianni, Federico Ferri, Matteo Menna, Fiora Pirri.
“Adaptive Robust 3D Trajectory Tracking for Actively Articulated Tracked
Vehicles (AATVs).” In Journal of Field Robotics, Special Issue on Safety,
Security, and Rescue Robotics (SSRR ’2014), December 2014 (to appear in
print).

Abstract A new approach is proposed for an adaptive robust 3D trajec-
tory tracking controller design. The controller is modeled for actively ar-
ticulated tracked vehicles (AATVs). These vehicles have active sub-tracks,
called flippers, linked to the ends of the main tracks, to extend the loco-
motion capabilities in hazardous environments, such as rescue scenarios.
The proposed controller adapts the flippers configuration and simultane-
ously generates the track velocities, to allow the vehicle to autonomously
follow a given feasible 3D path. The approach develops both a direct and
differential kinematic model of the AATV for traversal task execution cor-
relating the robot body motion to the flippers motion. The benefit of this
approach is to allow the controller to flexibly manage all the degrees of
freedom of the AATV as well as the steering. The differential kinematic
model integrates a differential drive robot model, compensating the slip-
page between the vehicle tracks and the traversed terrain. The underlying
feedback control law dynamically accounts for the kinematic singularities
of the mechanical vehicle structure. The designed controller integrates a
strategy selector too, which has the role of locally modifying the rail path
of the flipper end points. This serves to reduce both the effort of the flipper
servo motors and the traction force on the robot body, recognizing when the
robot is moving on an horizontal plane surface. Several experiments have
been performed, in both virtual and real scenarios, to validate the designed
trajectory tracking controller, while the AATV negotiates rubbles, stairs and
complex terrain surfaces. Results are compared with both the performance
of an alternative control strategy and the ability of skilled human operators,
manually controlling the actively articulated components of the robot.

Relation to WP This work provided a model for planning and execution
of the UGV, in the context of T4.1.

Availablity Restricted. Not included in the public version of this deliv-
erable.
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2.6 Gianni (2014), “Multilayered cognitive control for Un-
manned Ground Vehicles”

Bibliography Mario Gianni. “Multilayered cognitive control for Unmanned
Ground Vehicles.” PhD Thesis, September 2014.

Abstract Rescue robots have the potentials to assist responders in search-
ing for survivors, in rescuing victims, in providing the responders with a
general situation awareness, in creating a reference of the destroyed environ-
ment, in sampling suspicious substances from hazardous sites, in navigating
through those areas, inaccessible for humans. In the last decades, rescue
robots participated in many of the most critical environmental disasters
around the world, exhibiting extraordinary abilities in terms of mapping,
vision and navigation. In June 2012, at Mirandola, a city of Northern Italy,
hit by a tremendous earthquake, we deployed a team of humans and robot to
assess damage to historical buildings and cultural artifacts located therein.
This in-field experience has been really important because it led us to a
better understanding of what are the main research challenges which are
not yet widely addressed in rescue robotics. The research work of this thesis
aims to investigate, in more detail, some of these challenges, providing solu-
tions and methodological approaches to the research problems, still opened.
In particular, we address the problem of building a meaningful, higher level
representation of unstructured and dynamic environments, from raw data,
coming from the robot sensor suite. We also take care of how to formu-
late this representation into a domain where decision making and action
planning can take place. We tackle with the problem of learning the skills
required for a robot to perform a rescue task and formulating such skills
into robot actions and plans. Here, the novelty is to use a wearable device,
namely, the Gaze Machine (GM), to address the correspondence issues be-
tween the physical embodiments of the firefighter, wearing the GM, and the
robot. Further, this thesis investigates the problem of increasing the level
of autonomy of the robot, in low-level, semi-active and cognitive control.
In low-level control, we propose an approach to design and develop a con-
troller, which endows the robot with the ability to autonomously traverse
harsh terrains, climbing stairs, surmounting obstacles, adapting the config-
uration of the robot to the underlying surfaces. In semi-active control, we
propose an approach to coordinate the low-level capabilities of the robot
and the interaction between the human and robot, under a mixed-initiative
planning setting. In this approach the main components and activities of
the robot are explicitly represented as well as the cause-effect relations and
the temporal constraints among the activities. This control model is based
on a logical framework which combines temporal constraint reasoning and
action planning. This framework provides us with a solid logical structure
on which to build the set of cognitive functions of the robot. Such func-
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tions endows the robot with the ability to flexibly adapt its behavior in
response to environmental demands and stimuli. To model this ability, we
propose a method for learning the dynamic processes regulating the human
inspired paradigm of shifting and inhibition, underlying the task switching
mechanism. Finally, this thesis proposes an alternative view of Augmented
Reality, as a framework to augment the perceptual model of the robot as
well as to build mixed-reality simulation environments, where to validate the
performance of the robot, in terms of vision, motion planning and control.

Relation to WP This work provides an in-field study of the main issues
concerning both the deployment and the development of Urban Search and
Rescue robots. The work also proposes a solution to address these issues
and provides an unified model for planning, reasoning and control of UGVs.
This model is at the basis of multi-robot collaboration in T4.1.

Availablity Unrestricted. Available for download: http://www.dis.uniroma1.
it/~gianni/mydoc/PhDThesis.pdf
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2.7 Ferri, Gianni, Menna, Pirri (2015), “Dynamic obstacles
detection and 3D map updating”

Bibliography Federico Ferri, Mario Gianni, Matteo Menna, Fiora Pirri.
“Dynamic obstacles detection and 3D map updating.” Submitted paper.
Alcor Laboratory, DIAG “A. Ruberti”, Sapienza University of Rome.

Abstract We present a real time method for updating a 3D map with
dynamic obstacles detection. Moving obstacles are detected through ray-
casting on spherical voxelization of point clouds. We evaluate the accuracy
of this method on a point cloud dataset, suitably constructed for testing ray-
surface intersection under relative motion conditions. Moreover, we show the
benefits of the map updating in both robot path planning and navigation in
real world environments, populated by moving people.

Relation to WP This work improves the main functionalities of the
UGV, which constitute the ground for collaborative planning in T4.1.

Availablity Restricted. Not included in the public version of this deliv-
erable.
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Abstract— The paper presents a novel framework for 3D
autonomous navigation for tracked vehicles. The framework
takes care of clustering and segmentation of point clouds,
traversability analysis, autonomous 3D path planning, motion
planning and flippers control. Results illustrated in an exper-
iment section show that the framework is promising to face
harsh terrains. Robot performance is proved in three main
experiments taken in a training rescue area, on fire escape
stairs and in a non-planar testing environment, built ad-hoc to
prove 3D path planning functionalities. Performance tests are
also presented.

I. INTRODUCTION

Tracked vehicles are designed for search and rescue
applications where terrain conditions are difficult and un-
predictable. They are better suited for such domains than
wheeled vehicles due to the larger contact area of tracks
with the ground, which provides better traction on harsh
terrains. These robotic platforms are usually similar to space
rovers with two tracks on the sides linked to a central body
(see Figure 1). Each track can be extended with two active
flippers. Moreover, mechanical differential systems allow
the rotation of the tracks around the body. These systems
further increase the traction of such robots, thus improving
their stability on sloppy surfaces. Several sensors can be
installed, such as rotating 2D laser scanners for 3D point
cloud acquisition, mapping and localization, vision systems,
IMU and GPS for inertial navigation systems. Despite such
robots are well-equipped to face all the navigation difficulties
of an harsh environment, their level of autonomy is still
not sufficient to operate without the supervision of a human
operator. The main challenges of autonomous navigation are
plan and effective motion of the tracked vehicle to safely
traverse the rough surfaces of an unstructured environment,
thus leaving flatlandia.

In this paper we propose a real time 3D path and motion
planner that tries to overcome some limitation of the current
path planners.

The paper is organized as follows. The next section briefly
summarizes the state of the art. Section III introduces the
proposed approach for 3D motion planning. Section IV
describes our approach for estimating the contact between
the flippers and the surface. Section V describes the segmen-
tation and clustering of the point cloud. Section VI describes
the estimation of the inflated regions of the environment
as well as the estimation of a traversability graph leading
to a path, whose generation is discussed in Section VII.
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Fig. 1. The robotic platform.

Finally, Section VIII describes the experiments proving the
effectiveness of the proposed framework. An overview of
this framework is shown in Figure 2. Point cloud, coming
from the rolling laser is filtered to remove the outliers.
Then, both normals and principal curvatures are estimated
for segmenting, labeling and estimating the inflated regions
of the filtered point cloud. The resulting 3D labeled map is
used for building a traversability graph of the environment,
enabling the path planner to generate paths toward goal
locations. Given both a path and the 3D labeled map, the
flipper position controller relies on a contact sensor model
to ensure the touch of the flippers to the surface on which
the path lies.

II. STATE OF THE ART

We can classify existing literature about mapping and
navigation in 2D and 3D approaches. 2D path planning has
been widely studied and can be considered as a mostly solved
problem [1]. Approaches going beyond 2D representations
use 2.5D elevation maps [2] or full 3D voxel maps [3],
or point clouds [4], yet attempt to reduce the problem
dimensionality by planning the paths in a 2D navigation map,
as also in [5], [6]. The so obtained cost maps can be coupled
with a cost aware RRT implementation as in [7], [8] or a
grid based planner as in [9]. A method based on elevation
maps has been proposed in [10]. In all these solutions
environment representations are intrinsically 2D and they
cannot represent overhanging objects and environments with
multiple overlapping levels.

3D Semantic mapping has been studied in [11], [12] where
a 3D laser sensor has been used to create a map in which
semantic labels are added in order to identify architectural
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Fig. 2. Framework overview. Note: solid blocks denote authors’ contribu-
tion, while shaded blocks denote third party components.

elements via geometric features. Research on 3D mapping
and reconstruction for mobile robots using laser range finder
has been also explored in [13], [14]. These representations do
not make use of any additional semantic label and have not
proved to work in real time with a fully autonomous robot
system, likewise [15], since it is possible to show that stairs
are 2D reducible and flipper angles can be set in advance.

Approaches using vision, such as [16], [5], are not directly
comparable to those using 3D sensors as requiring more
computing effort.

III. 3D MOTION PLANNING

In this section we describe the main components of
the 3D motion controller designed for a tracked ve-
hicle such as the one illustrated in Figure 1. The
robot configuration state is defined by the vector q =
(xr,yr,zr,ψ,φ ,θ ,vr,ωr,α1, . . . ,α4)

T , with xr,yr,zr,ψ,φ ,θ
the 6D pose of the robot, vr and ωr the linear and angular
robot velocities, respectively. Here, α1, . . . ,α4 are the con-
figurations of the robot flipper. The state can be separated
into two controllable parts, assuming that the control of
the robot pose is independent of the flippers control. Under
this assumption, the 3D motion planning controller can be
divided into two decoupled control modules: (1) a trajectory
tracking controller, and (2) a flippers position controller.
These modules work in parallel and are synchronized so as
to generate, at time stamp, the control commands needed
to track a given 3D path and to simultaneously adapt the
position of the flippers to the surfaces on which the path
lies, namely to the planes tangent at each path point. The
trajectory tracking controller receives as input a path P
(see Section VI), generated on the 3D labeled map of the
environment (see Section V) and computes the steering
commands to allow the robot to follow the given path P . The
control strategy underlying the trajectory tracking controller
is based on input-output linearization via feedback [17], [18].
The flippers position controller receives the desired flipper
positions αααd(t) = (α1(t), . . . ,α4(t))

T , as input, generating
suitable internal speed commands to asymptotically stabi-
lize to zero the flippers position error, on the basis of a
proportional-derivative (PD) control law. The positions αααd(t)
are selected from a set of predefined configurations, depend-
ing on both the current robot attitude and the information

(a) α f eedback (t) (b) ii(t)

(c) l (t)

Fig. 3. (a) trend of the position of the front right flippers (b) trend of
the component of the current signal of the front right flippers, in amperes,
producing the magnetic field in the desired direction (c) labeling of the
measurements of both α f eedback(t) and ii(t) from the position controller of
the front right flipper.

provided by the 3D labeled map of the environment [15].
These configurations allows the robot to climb stairs and
to overcome both positive and negative obstacles. However,
during the control loop, the flipper position controller is
not able to detect, after positioning the flippers according
to the selected posture, whether the flippers effectively are
either in contact with the surface or with the obstacle to
be surmounted. Still, the flippers are neither endowed with
contact sensors nor with proximity sensors. To face this limit,
the flipper position controller integrates a statistical model
assessing the touch and the detach of the flippers with the
surface. This model is based on a function, learned from
a set of features, extracted from the direct measurements
of both the actual angles ααα f eedback (t) of the flippers (see
Figure 3(a)) and the electrical currents ii(t) of the flipper
servo motors (see Figure 3(b)). During the control loop, the
controller adjusts the flippers posture αααd(t), depending on
the feedback provided by the contact sensor model.

IV. CONTACT SENSOR MODEL

In this section we describe the model of the contact sensor
of each flipper. This model is based on learning a function
hθ∗ assessing the optimal position of the flipper.

Data-set collection and labeling Several experiments
have been performed with the robot climbing ramps
and stairs, surmounting obstacles, overcoming rubble piles
with different shapes, and several measurements of both
α f eedback (t) and ii(t) of the flipper have been taken, over
time. The gathered data have been manually labeled with a
label l(t) = 1 and l(t) = 0, denoting the touch and the detach
of the flipper from the obstacles surfaces, respectively, thus
enriching the feedback information provided by the position
controller (see Figure 3(c)). This data have been further
interpolated to build a data-set D = {〈α(t), ii(t), l(t)〉, t =
0, . . . ,T} suitable for the training of the contact sensor model.

Feature representation The data-set D =
{〈α(t), ii(t), l(t)〉, t = 0, . . . ,T} has been processed to
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extract the relevant features for tuning the parameters of
the function hθ∗ to be learned. Let t ≤ T be a sampled time
point and let W = [t ′, t] be a fixed sliding time window,
with t ′ < t, the following features, inferred from D, can be
considered as relevant features:

x1 =
1

t− t ′
t

∑
k=t ′
|ii(k) |

x2 =
1

t− t ′
t

∑
k=t ′

∣∣∣∣α (k+1)−α (k−1)
2

∣∣∣∣
x3 = sgn

(
t

∑
k=t ′

ii(k)

)
· sgn

(
t

∑
k=t ′

α (k+1)−α (k−1)
2

)

x4 =
1

t− t ′
t

∑
k=t ′
|iiT DF−II (k)|

Here iiT DF−II (t) is the component ii(t) of the current
signal, filtered according to the Transposed-Direct-Form-II
(TDF-II) digital filter. The filter has been applied to reduce
the oscillations of ii(t) during the transient conditions of
the servo drive. The label associated with a feature vector
x = (x1, . . . ,x4)

T is computed as follows:

y =

1 if 1
t−t ′

t

∑
k=t ′

l (k)> 0.5

−1 otherwise

Let N be the number of sampled time points, then D′ =
{(xi,yi)}N

i=1 is the data-set of features-labels pairs generated
from D, with xi ∈ X ⊆ R4 and yi ∈ L≡ {−1,1}.

Learning the parameters of hθ∗ Let H = {hθθθ (x) : θθθ ∈
Θ} be the space of the decision functions, such that hθθθ : X→
L, Θ the parameter space. Given the set D′ = {(xi,yi)}N

i=1
of labeled features samples, assumed to be drawn from an
unknown distribution P(x,y), we want to find a function hθ∗

which gives the lowest upper bound of the expected risk:

R(θ) =
∫
|hθθθ (x)− y|P(x,y)dxdy (1)

The lowest upper bound of such a loss function can be found
by applying a non-linear classifier based on the Support Vec-
tor Machines (SVM). Therefore the problem of estimating
the function hθθθ

∗ can be considered as the problem of finding
the decision surface that better separates the data. This can
be formulated as follows:

maximize
θθθ∈Θ

N

∑
i=1

θi−
1
2

N

∑
i=1

N

∑
j=1

yiy jθiθ jK (xi,x j)

subject to
N

∑
i=1

yiθi = 0,0≤ θi ≤ 1, ∀i = 1, . . . ,N.

Here K (xi,x j) =
(
xT

i x j +1
)d . The polynomial kernel has

been introduced due to the non-linear separability of the
data-set D′. Given a new instance of a feature vector x, the
decision function hθθθ

∗ modeling the contact of the flipper with
the underlying surface classifies x as follows

hθθθ
∗ (x) = sgn

(
NS

∑
i=1

yiθ
∗
i K (si,x)

)
(2)

Fig. 4. Accuracy ratio of the contact sensor model as both the degree d
of the polynomial kernel and the sliding time window W change

Here si are the support vectors and θ ∗i are the optimal
parameter values associated to si, with i = 1, . . . ,NS. A
cross-validation technique has been used to evaluate the
performance of the contact sensor model as both the degree
d of the polynomial kernel and the sliding time window W
change. Figure 4 shows that for d = 13 and W = 5 the model
correctly classifies 90.7% of the contacts of the flipper with
the underlying surface.

V. POINT CLOUD SEGMENTATION AND LABELING

In this section we describe a real time point cloud PC seg-
mentation and labeling, registered by an ICP-based SLAM
[19]. The point cloud PC stores the geometric position
(x,y,z) of each point p ∈ PC, approximating a surface M.
The objective is to establish traversability of the surface
for the path control, requiring real-time computation. To
this end we define just four categories for traversability:
ground, walls, ramp or stairs, surmountable obstacle. These
categories have been specified to match the effective robot
overcoming abilities: 30 cm steps with rounded edge; 40
cm gap; 20 cm stairs at 40◦ slope; spiral staircases; 45◦

slope / 15◦ roll; 80cm× 80cm cavities. Here we assume
that segmentation is always performed on the incoming laser
measures, and we consider the current one, in so avoiding
to parametrize points with time.

We propose here a novel approach to simple categories
segmentation based on geometric features. The approach is
specified by the following steps (1) patch construction and
filtering; (2) estimation of the normals and of the principal
curvatures of the surface at all points and (3) segmentation
and labeling of the PC.

Patch construction and Filtering An initial points fil-
tering is already provided by the ICP algorithm, here we
are mainly concerned with constructing a surface patch for
each PC region, used for geometric features computation,
and to discard ill-conditioned neighborhoods. A patch is
defined by a mapping ψ : (x,y) 7→M, with ψ(x,y) = p ∈R3,
and (x,y) ∈ R2, the parameters of the mapping. To simplify
we denote ψ(x,y) by x intending also the coordinates of
the point p on the surface M; similarly, we identify the
parameters with the x and y coordinates. The patch can be
obtained by transforming the point representation of PC into
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a voxel grid, building a suitable neighborhood for points
that can be reordered into surface patches of contiguous
points, and ensuring that there is none or little overlapping
between patches. First we decimate the PC of a factor of 0.9
to obtain the downsampled PCs, and then we initialize the
neighborhood of each point q in PCs with k-means taking the
q as seeds, using only the points coordinates together with
the Euclidean distance. Since k-means does not take care of
ill-conditioned clusters we adjust each cluster by expanding
it or reducing it, by splitting or merging, according to the
cluster spatial frequency ρ = |H|/r3, where |·| is the cardinality
of the cluster H and r = mean(d(H)) is the radius defined
by the mean distance within the cluster. An optimal density
ρ? is given by a radius rmin = 0.5

√
2m, (m, meters), and a

neighborhood of 81 points. If ρ < ρ?/2 then r is increased
to catch more points joining with the cluster that ensures
to keep the optimal dimension, among the closer ones. To
control the radius growth and filter out noise, a noise function
is specified according to the spatial frequency of points as
follows. Let ϕ(H) = exp(−π(rmin− r)), then the probability
that a neighborhood H is affected by noise is:

p(noise(H)) = 1−ϕ(H) (3)

The noise function is clearly zero when r = rmin. Neigh-
borhoods with noise value greater than 0.5 are removed
from the PC. Once the clusters are stabilized then, each
of them is labeled into a voxel grid, possibly resorting to
interpolation, mostly required at the boundary of a patch,
so that close points are contiguous. The grid representation
leads to the surface patch representation of the three matrices
X, for the x coordinates of the points in the cluster, Y for the
y coordinates, and Z for ψ(x,y). These matrices have size
m×n each.

Normal and principal curvature estimation Having
transformed the original PC into a number of surface patches
well approximating the surface M, using the neighbors
construction and the grid, a very precise estimation of the
normals, and likewise of the principal curvatures, can be
obtained quite simply, using first and second derivatives. This
allows us to avoid the computation based on least mean
square (see for example [20], [21]), which can be quite
sensitive to noise and it is computationally very expensive,
since it requires to compute neighborhoods for each point of
the cloud and to perform SVD decomposition.

Here we consider finite-size linear-phase separable ker-
nels, introduced by [22], for first and second order differ-
entiation of discrete multidimensional signals. These kernels
are used to convolve the matrices X, Y and Z to obtain the
derivatives, by first expanding the matrices at the bound-
aries. Then, differentiation for each coordinate x and y is
obtained by collecting the convolution of each matrix in each
direction. Namely, let fx,gx,hx be the first-order derivatives
of X, Y and Z, respectively, with respect to x, obtained
with the convolution kernel, these are matrices of size m×n
too. Therefore xx is the tensor ( fx,gx,hx)

> and, analogously,
xy = ( fy,gy,hy)

>. In an analogous way we obtain the second-

order derivatives xxx, xyy, xxy. Having defined the patches in
explicit form, it is now straightforward to obtain the normals
ns for all the points in a patch, by simply applying the cross
product to the first derivative tensors, obtaining the tensor
3×n×m:

±

 gx ·hy−gy ·hx
fy ·hx− fx ·hy
fx ·gy− fy ·gx

 (4)

and normalizing to get the tensor N of unit normals,
noting that in the above equation · is the element-wise
matrix multiplication. Note that the sign can be actually
determined by simply computing the smallest angle be-
tween the obtained normals and the laser source position,
say S . Namely, we look for the angle θ minimizing
cos−1(s>n′3×mn)/‖s‖‖n′3×mn‖, where

s = (S ⊗11×nm−x′3×nm)/‖S ⊗11×nm−x′3×nm‖

with S the source position, ⊗ the Kronecker product, x′3×nm
and n′3×nm tensors of size (3×n×m) reshaped into a 3×nm
matrix.

As for the principal curvatures, at each point p in a
patch, we exploit the fact that with the first and second
derivatives and the normals tensor N available, we can
obtain the following elements, named according the I and
II fundamental forms:

E = Σdim=3xx ·xx F = Σdim=3xx ·xy G = Σdim=3xy ·xy;
L = Σdim=3xxx ·N M = Σdim=3xxy ·N N = Σdim=3xyy ·N

(5)
In other words E,F,G,L,M,N are all matrices m×n. Thus,
k is computed as the solution of the quadratic equation

(EG−F2)k2 +(2FM−EN−GL)k+(LN−M2) (6)

And it is well-known that the discriminant of the above
equation is greater or equal zero, therefore there are either
two distinct real roots k1 and k2, namely the two principal
curvatures, or a single one. While at umbilical points L/M =
M/F = N/G. Given the principal curvatures we can also
obtain both the mean curvature (1/2)(k1+k2) and the Gaus-
sian curvature k1k2. We observe that the only computational
difficulty here is the construction of the patches. The main
difficulties coming from far points, which are those mostly
requiring merging and dropping, therefore it might be better
for those noisy regions to delay the patch construction,
according to the noise function defined in (3).

Segmentation and Labeling Segmentation still uses the
matrices X,Y,Z yet all integrated into the voxel grid.
We note that without hampering the information for the
categories, the kernel convolution included a significant
smoothing of the matrix Z. Then we can obtain from the
normals, the Gaussian curvature and the principal curvatures
an initialization of the categories as follows. Let |n| =
(|n1|, |n2|, |n3|)> be the unit normal absolute value at a point
p, let K = k1k2 be the Gaussian curvature, with k1 and k2
the principal curvatures, let θ1 = 0.17 and θ2 = 0.95 then the
following table illustrates the initialization values:

699



Parameters

Classes |n1|, |n2|,|n3| K, k1,k2,Z
ground |n1|, |n2|<0.01, |n3|≥0.8 |K|<0.1

walls |n2|, |n3|<0.01, |n1| ≥ 0.8 |K|<0.1

ramp θ1≤|n3|≤θ2

|n1|≤0.1, θ1≤|n2|≤θ2 |k2|<10−2, |k1| ≥ 1
|n2|≤0.1 θ1≤|n1|≤θ2 |k1|<10−2, |k2| ≥ 1

surmountable

obstacles θ1≤|n3|≤θ2 |K| ≥ 1, z > 0.3m.

Because of noise these parameters produce scattered seg-
mentation, to even the neighborhoods of the above defined
categories we introduce an energy functional for each class
as follows. All points in a class are assigned kinetic energy
Ek; a stop condition is given by a function g(p) which
stops the front collecting points, at a given direction of
growth, whenever there is a jump in energy level. Let the
normal for the given classes be specified by ne with e =
{ground,wall,ramp,surm.obstacle}. The energy level for
class e is E`e(p) = cos−1(n>ne), with n the normal at the
current point p considered, with p0 a starting point. Let κ

denotes either the Gaussian curvature or the principal curva-
tures, according to the class and its constraints considered.
Let:

η(p0,p) = s(|κ(p)−κ(p0) |)+ s(|E`e(p0)−E`e(p)|) (7)

Here s is the logistic function y = c/(1+aexp(−bx)), with
b = 25 and a = π5. We have chosen for the limiting upper
bound c = 100, these values ensures that when the difference
in energy level/curvature increases beyond a threshold 0.08
then the function fires high values up to c. Let

g(p) = Ek(p0)−η(p0,p) (8)

Points p, around p0, are collected as far as g(p) > 0:
Therefore when g ≤ 0 then the front expansion stops for
that point. To resume:

1) Input: the set of surface points, the normals, the
curvatures.

2) Assign kinetic energy Ek to the chosen points p0 in
the class.

3) Compute a path to a farthest point such that for every
point in the path the difference in energy level and
curvature is low, namely η(p0,p)≤ 0.1.

4) Move the neighborhood front in all directions, check-
ing for each direction the stopping criterion g(p), eq.
(8).

5) Remove the points collected into the formed clusters,
if the set of surface points is empty stop, else go to
item 2).

6) Output: the list of clusters.
Note that we choose a furthest point together with the path,
and define the kinetic energy in place of a cost, confront
with [23]. The final obtained clusters are labeled according
to the specified categories.

VI. GRAPH GENERATION

In this section we describe how the connectivity and
traversability graph is obtained. The proposed method re-

Fig. 5. Weighted graph and path (in magenta) on the fire escape stairs. The
big gray cube is the goal. Graph and path computation time are described
in Section VIII.

quires three steps: (1) estimation of the inflated regions the
environment; (2) definition of a graph G, connecting the
points of the labeled cluster (3) weighting of the the graph,
returning the traversability graph. These steps are illustrated
in the following.

Inflated region estimation Let A be the set of clusters,
labeled with the class they belong to. Let A ′ = {(Ck,ck) :
ck = wall} ⊆A and A ? = A \A ′. We introduce the points
belonging to inflated regions B, which are used to specify a
feasible path, beside the flippers control (described in Section
III). Let u : PC 7→ PC be the function:

u(p), argmin
p j∈C j

{
∥∥p−p j

∥∥} s.t. (C j,c j) ∈A ′ (9)

Then the set of inflated region points B is defined as follows:

B = {p : p=(p′x,p
′
y,p
′′
z )

T ,∃(C,c)∈A ′,p′∈C,p′′=u(p′)}
(10)

We can note that the estimation of the inflated regions
preserves a 3D discrete representation (see Figure 5).

Connectivity and traversability graph Let G(N ,E ) be
the graph whose nodes are all the points in A ? and whose
edges E ∈ E are defined as follow:

E(pi,p j) =

{
true if µ(pi−p j)≤ η

f alse otherwise
(11)

Here µ(∆p) =
∥∥∆pT · (1,1,δ )T

∥∥, η is set equal to half
the robot length and δ = η

∆zmax
is set according to both the

robot morphology and the robot overcoming capabilities.
Here ∆zmax is the maximum obstacle height surmountable
by the robot.

The graph G is further weighted to build the traversability
graph wG, where the weights are defined as follows. Let ρ

be the density of a point p neighborhood, as specified in
Section V. Let u(·) be the function specified in Equation 9
above, then the weights labeling an edge E are defined as
w=wlength+win f lated +wdensity, where for each pair of points
pi, p j ∈N for which E(pi,p j) is true:

• wlength =
∥∥pi−p j

∥∥
• win f lated =

{
1

u(p j)
if u(p j)< rin f l

∞ otherwise
• wdensity =

2
ρ(pi)+ρ(p j)

Here rin f l is a parameter which specifies the inflated radius.
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Fig. 6. On the left point cloud segmentation of the fire escape stairs, with
path drawn in magenta, and detail of the robot climbing the stairs (from
Fire Escape stairs experiment). On the right and composed path of the robot
from the gallery up to the top of the ramp and the bridge (from the Full 3D
experiment). It is interesting to note that the robot passes under the gallery
still following its path, up to the goal

VII. PATH PLANNING

The weighted graph wG is meant for traversability graph.
Then, given a goal specifying a point on the labeled map,
a feasible 3D path P can be computed by a generic
optimization algorithm such as Dijkstra [24], A* [25] or D*
lite [26]. Here, in our experiments, we have been using the
Dijkstra algorithm.

VIII. EXPERIMENTS

In this section we present the experiments performed
to evaluate the accuracy of the 3D map segmentation and
the generated path feasibility, on the 3D labeled map. The
segmentation has been evaluated with respect to the time
required to both segment and label the point cloud, and
with respect to its accuracy. The segmentation accuracy has
been measured by manually assigning a label to each cluster
and by comparing these labels with the labels returned by
the segmentation process. The percentage of the clusters
correctly classified states the accuracy of the segmentation.
The feasibility of the 3D path is measured in terms of the
time required to build the graph structure representing the
traversable areas of the environment, with respect to the
value of the path smoothing algorithm, and in terms of
the time needed to the robot to complete the path, namely
the journey time. This time has been taken by hand with
a stopwatch. To test the effectiveness of the autonomy
capabilities of the overall system three different scenarios
have been considered.

The Italian Fire Fighters rescue training area in Prato
(IT) First experiment has been performed at the Italian Fire
Fighters rescue training area in Prato (IT), during the final
review meeting of the EU project NIFTi (247870). In this
experiment the robot traversed the harsh terrain of the rescue
area, though not climbing any ramp or stairs, overcoming
small obstacles, following different paths toward several
target poses, manually posted by an operator on the 3D
map. Figure 7 illustrates the segmented map with the inflated
region in red, the generated path toward the goal (the gray
cube) and screen shots of the robot following the path. The
dialog window accommodates automatic goal generation,
which is not treated here. Table (a) reports the accuracy of
the segmentation of the 3D map of the environment and the
feasibility of the path, generated on the 3D segmented and

Fig. 7. The Italian Fire Fighters rescue training area in Prato (IT)

labeled map. Here the values are averaged over eleven trials
to obtain the same goal position. On average, the map had
about 52 thousand points.

Fire Escape stairs The second experiment has been
performed on the fire escape stairs of the Department. The
goal is located on the landing at the end of the second
stairway, and when the robot is up the goal is moved to
the ground. The robot has simply to climb up the stairs
to reach the goal and then turning on its self and step
down back to reach the new selected goal. In some trials
the robot is actually not able to get down autonomously,
because localization problems might arise when the robot
is turning around itself. Figure 5 shows the robot climbing
the fire escape stairs, visualizing only the graph where the
inflated regions are in red. Figure 6, left panel, shows the
segmentation of the courtyard with the fire escape stairs
and, in the window up right, a detail of the robot climbing
the stairs. Table (b) reports the average segmentation time,
first table; the percentage of the clusters correctly classified,
middle table; and in the last table the average time needed to
generate the 3D path on the stairs, with respect to the value
of the path smoothing and the journey time. On average the
map has 41 thousand points.

Full 3D designed scenario. The third experiment has been
designed purposefully to test the effective 3D autonomy,
within an environment whose structure is composed of
multiple levels. A gallery, surmounted by a ramp, extended
with a bridge, is built and it lies between a step on the floor
and a wall of bricks (see Figure 8). The robot has to first
traverse the gallery and then climb the ramp passing over the
gallery and continue up to the end of the bridge. The goal is
located at the end of the bridge. The robot is constrained to
pass under the gallery by obstacles. It is interesting to note
that in this experiment the space is fully 3D since the robot
has to face both the levels: under and over the construction
(see Figure 6, right panel). Table (c) reports, for three trials,
the accuracy of the segmentation of the scenario, as well as
the feasibility of the complex 3D path. On average the map
has 15 thousand points.

Computational time performance In addition to the
previous experiments, several tests have been performed to
evaluate the computational performance of both the segmen-
tation and the path planning algorithm, with respect to the
size of the point cloud. During these tests the robot was
teleoperated, so as to explore a wide area and to acquire, at
real-time, the point cloud. The goal was fixed and the robot
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Fig. 8. On the left segmentation of the third experiment map. On the right
a screen shot of the generated graph.

(a) Prato experiment

Segmentation Graph Smoothing Journey
Time (s) Accuracy Time (s) Time (s)

Point Cloud 0.27 0.86 1.19
Path 0.2 357

(b) Fire escape stairs experiment

Segmentation Graph Smoothing Journey
Time (s) Accuracy Time (s) Time (s)

Point Cloud 0.32 0.91 1.45
Path 0.2 210

(c) 3D designed experiment

Segmentation Graph Smoothing Journey
Time (s) Accuracy Time (s) Time (s)

Point Cloud 0.12 0.97 0.92
Path 0.2 143

computed a new path every new point cloud. The results,
in terms of time of computation, of the different algorithms
are reported in Figure 9. Note that the robot was able to
elaborate a point cloud composed of 55000 points and to
generate a path in less than 3.5 s.

Fig. 9. Time of computation for both the segmentation and the path
planning algorithm with respect to the size of the point cloud.

IX. CONCLUSIONS

We presented a framework for solving the autonomous
3D navigation task for tracked robots. In the paper we
have faced the problem of 3D path and motion planning,
including flippers control, and path generation via 3D map
clusterization and labeling. We have discussed how our
approach goes beyond the state of the art, and shown that it
is promising. Indeed, the experiments prove the robot to be
able to autonomously face any kind of structure within the
limits of its overcoming abilities, and in real time.
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Abstract— The paper presents a framework for tracked ve-
hicle 3D path planning in rough areas, with dynamic obstacles.
The framework provides methods for real-time point cloud
interpretation, segmentation and traversabilty analysis tacking
also into account changes such as dynamic obstacles and
provides a terrain structure interpretation. Moreover the paper
presents R2A? an extended version of randomized A? coping
with difficult terrains and complex paths for non-holonomic
robots.

I. INTRODUCTION

Navigation in urban disaster environments is a challenging
task. Though tracked robots (UGV) are well equipped to
operate in clutter, search and rescue operations still require
a human operator to remotely teleoperate the robot [1], [2].
That is why improving autonomy for these robots is a pivotal
issue in search and rescue. To this end, terrain structure
interpretation is a fundamental precondition to move toward
autonomy or semi-autonomy and it is still an open problem.
Indeed, to guarantee safe autonomous UGV navigation both
path planning and trajectory tracking controllers require
real-time interpretation of off-road heterogeneous harsh and
complex outdoor terrains. The development of effective and
accurate three dimensional maps provides, in fact, a good
ground for 3D path planning.

An overview on terrain traversabilty methods can be
found in [3]. Most of the methods use geometric features
to interpret the terrain. For example, in [4], the authors
use normal vector estimation from stereo vision to estimate
inclination of a sector in an elevation map. In [5] the 3D path
planning algorithm requires an initialization step to build
a geometrical representation of the environment, from laser
data. As the map of the environment changes, this step has
to be re-iterated. Therefore, the approach does not seem to
be appropriate for exploration missions, where map updates
occur frequently. Moreover the approach works only in static
environments.

In this work we propose a framework to deal with dynamic
3D environment mapping. We provide a general method to
real-time point cloud interpretation, segmentation and affor-
dance of the full 3D environments, managing changes, such
as dynamic obstacles. Our approach differs from probabilistic
ones [6], [7] needing multiple observations for a complete
update of dynamic obstacles, as it relies on a compact
representation, requiring to store just obstacle points with
normal information, in so allowing to recover information

about free space. The approach provides a terrain structure
interpretation, via terrain transferability analysis, and intro-
duces a path planner formalization based on randomized
A?. The remainder of this paper is organized as follows.
Section II describes the overall framework, introducing some
notation too. Section III introduces the dynamic obstacles
removal method. Section IV proposes the basic ideas for
computing geometric features addressing both light and
accurate segmentation. The terrain analysis is presented in
Section V and the path planner is described in Section VI. We
conclude with the description of the experiments performed
to evaluate the proposed method in Section VII and some
insight for future work is addressed in Section VIII.

II. FRAMEWORK OVERVIEW

An overview of the framework is resumed in Figure 1.
The framework is composed of two different pipelines. The
first pipeline, shown at the bottom of Figure 1, comprises
the computational steps needed for a global path planner to
generate long distance paths toward the goal. The second
one, shown at the top of Figure 1, illustrates the sequence of
steps to compute local paths toward intermediate sub-goals,
as described in Section VI.

The first pipeline has been designed with the main purpose
of providing a fast and approximated interpretation of the
environment, where a global planning can take place. In
parallel the second pipeline has the main role of locally
build a more accurate model of the environment, needed
for traversability assessment and local path planning. The
Scant , acquired from the rolling laser sensor of the robot at
time t, is filtered for outliers removal and registered via an
iterative closest point (ICP) algorithm [8]. The accumulated
map of the environment Mapt , at time t, is clustered and
labeled using both normals and surface variation features,
estimated at large neighborhoods (see Section IV). The
global path planner takes as input the goal position qG
and the labeled map LMapt , returned by the segmentation
process, and it provides the local 3D path planner, giving a
preliminary information on the goal reachability. For points
in Scant , which are close to the robot current position, both
the normals and the principals curvatures k1 and k2 are
estimated, providing an accurate classification for curvature.
The labeled SScant is further merged with the accumulated
segmented map SMapt−1, at time t−1. This process requires
the following two steps: (1) removal of dynamic obstacles,



Fig. 1: The schema resumes the framework of the proposed method.

and (2) resolution of all the segmentation conflicts that are
detected within the overlapping labeled clusters. The new
obtained SMapt is used for traversabilty analysis. The local
path planner, based on randomized A?, receives as input an
intermediate sub-goal of the global path and generates a sub-
optimal local path, according to the local traversabilty map
T Mapt .

III. DYNAMIC POINT CLOUD

Scanning the environment is a continuous process which,
due to the presence of dynamic obstacles, needs to be
periodically repeated in order to ensure that the built map
is up to date, and the robot can safely navigate on its
own. In static environment conditions, mapping can be
performed by simply registering and adding or merging the
3D scan to the accumulated map. However, in a dynamic
environment, special procedures are needed for merging the
new 3D scan with the accumulated map. Not performing
dynamic obstacles removal would result in a map cluttered by
outdated dynamic obstacles, making autonomous navigation
impossible after a short time. We identify with OD the
region of space concerning the points to delete from Map,
corresponding to outdated dynamic obstacles, also known as
deletion volume [9] as mentioned in Section II. The region
of space OD is estimated from the Scan point cloud, that
is, from what the sensor (3D laser scanner) is observing
right now as the free space. A point in the old point cloud
shall be removed when it lies inside OD. Our method for
testing whether a point should be removed is based on a
local signed distance test against the nearest simplex of the
convex hull of Scan, which tells whether the point is inside
OD, also accounting for noise. Note that this method may
underestimate OD, i.e. it may fail to remove some points
very close to Scan (see Figure 2), however we should note
that this side effect is more preferable than erroneously
removing points from Map. To minimize the effects of this
underestimation error, we work with spherical partitions of
Scan and Map. We partition the set of points in Scan (and
Map respectively) according to both spherical coordinates’
angles, and perform the removal test partitionwise. As the

Fig. 2: On the left a 2D example of the deletion volume OD
estimation, using 2 partitions: the planes (in blue dashed lines) are
estimated from the convex hull (not shown in this figure) of the
point cloud. A point of the old map should be removed if it is
outside the noise margin and it is on the same side of the laser. It
may happen that the deletion volume (in yellow) is underestimated;
however, reducing the partition size reduces this error, without
increasing the computational cost. On the right two consecutive
scans and the overlapping region where conflicts might take place.

number of partitions approaches infinity, the region of OD
matches the true deletion volume. However, there is a upper
limit for choosing the number of partitions, i.e. when using
narrow partitions (high number of partitions) smaller than
the actual point cloud pitch, this approach fails to detect
the surface of Scan, possibly resulting in the erroneous non-
removal of points from Map.

IV. GEOMETRIC FEATURES AND SEGMENTATION

Point cloud segmentation of large scenes, for the purpose
of robot planning, requires robust and real-time evaluation
of geometric features that can establish the meaningful
components of the environment in terms of traversability.
A point cloud can be locally considered to be the dis-
crete representation of a surface patch. Despite this, point
clouds are unorganized point sets, and differential operations
are not easily performed. The only effective structure to
base geometric features computation is the neighborhood
of a point. For the computation of normals this is quite
straightforward. Indeed, given the neighborhood Nm(p) of



a point, having cardinality m, where p = (x,y,z(x,y))>, the
computation of the normal amounts to the computation of the
plane π = (n,d) tangent to p, and minimizing the distance of
each point pi ∈Nm(p), under the constraint ‖n‖ = 1. This
turns out to be the vector û corresponding to the smallest
eigenvalue λ in D, given V D U> = (Nm(p)− (p⊗1m))

>,
where ⊗ is the Kronecker product. Then for ±û the sign
compatible with view point view, namely the sign ensuring
smallest angle for cos−1(view−±û)/‖view−±û‖, is chosen.
Where view is assumed to be directed toward the viewer.
Then the sought for normal n at p is taken to be û with the
chosen sign. This method, being subject to the vantage point
cannot provide an instantaneous correct assessment of the
normals of an object, therefore in several cases a number of
conflicts need to be handled in the merging and integration
of the point cloud features.

For the curvature computation, on the other hand, the
problem is more involved, since normal curvature, principal
curvatures and the Gaussian and mean curvatures obtained
by the principal ones, are defined by the coefficients of the
first and second fundamental forms, which are essentially
differential operators.

To alleviate the difficulty of computing derivatives on an
unorganized point set, many researchers (see [10], [11], [12])
resorted to statistical computation of the second fundamental
form, via some suitable approximation. These statistical
approximations capture somehow the curvature variation but
often are not enough discriminative. One of the most well
known approximation is the one introduced by Pauly in [13]
based on the above computation of the normal, but using
the symmetric form, which actually returns the covariance
of the neighborhood, and the eigen-decomposition of this
last. Then the surface variation is given by λ1/∑3

i=1 λi with
λ1 ≤ λ2 ≤ λ3. This quantity varies between 0 and 1/3,
and has the property of being high if the region is highly
curved and it is small if the region is flat, however does not
capture the principal curvatures and the induced classes. For
these reasons we discriminate between close and far regions
for segmentation, providing a more accurate estimation of
features for points with a distance ‖p,Robot‖ < 3m and
a light feature space for further points. For far points we
consider both normals and curvature variation as defined
above [13], which is adequate to characterize large regions
and classify major obstacles. Note that for far points we
compute the light features on the integrated map Mapt at
time t, and consider large clusters of points with mean radius
of 0.2m.

On the other hand for the region right in front of the
robot a more accurate evaluation, taking into account the
classes induced by the principal curvatures, needs to be
considered. Let H ∈R3 be the point set with distance < 3m
from the robot. This set is partitioned into clusters Ci ⊂ H
with centroid ci ∈ H, such that each cluster is not greater
than 50 points, and not smaller than 7 points. Then, given the
normal to ci, computed as indicated above, the neighborhood
is rotated and translated so that n is transformed to nz
parallel to the z-axis of the reference frame of the robot
and c′i = T(ci) = (0,0,z(0,0)), with T the transformation.

Fig. 3: Traversability map T Map computed real-time while the
robot is traversing a home-made rubble pallet, in the lab. The colors
indicate the traversabilty cost, from minimal cost (dark blue) to
maximal cost (dark red).

Consider a point q ∈ T(C), q = (x,y,z(x,y)), the projection
of the vector cq on the normal nz is, from Taylor expansion:

(z(x+dx,y+dy)− z(x,y))nz = ((zxdx+ zydy)+
(1/2)(zxxdx2 +2zxydxdy+ zyydy2)+o(dx2 +dy2)

)
nz

(1)
here dx and dy are the differentials w.r.t. the origin and are
less than 0.2, by the choice of the cluster, then the last term
can be ignored, and also zxn = 0 and zyn = 0. Furthermore,
since c is centered at the origin we obtain: 2z(dx,dy)n =
(zxxdx2 +2zxydxdy+ zyydy2)n as the projection of the point
q on the transformed normal, and this is, indeed, the second
fundamental form. Therefore a principal direction is toward
the point q 6= c that maximizes this projection and the other
principal direction is toward the point q′ 6= c that minimizes
this projection. We can see that in this formulation the sign of
the principal curvatures is maintained and the induced classes
(elliptic, planar, paraboloid, ellipsoid[14]) for the points can
be defined.

We have thus obtained two sets of features: (1) the light
ones specified by surface variation and normals, on the
integrated map Mapt , for points far from the robot, and using
large and possible overlapping neighborhoods, and (2) the
accurate ones, specified by the principal curvatures κ1 and
κ2 and normals, on the scan map Scant , for points close to
the robot, and using small clusters obtained by partitioning
the close point set H.

Segmentation then is initialized with histogram distri-
bution of normals and curvatures to highlight the sought
for classes: walls, terrain, surmountable obstacle, and
stairs/ramps. Further, clusters are refined and suitably com-
bined according to the energy minimization algorithm illus-
trated in [15].

V. TRAVERSABILITY IN CLUTTER

In this section we describe the method proposed to assess
the traversability of the environment. Traversability is defined
as a composite index depending on elevation statistics (e.g.,
height difference, slope, discontinuity, terrain roughness),
physical properties of the terrain (e.g., hardness, slippery)
and robot mobility (e.g., wheels rather than tracks, or legs,
maximum superable step, steering efficiency). In the pro-



posed approach traversability is assessed with a cost function,
which takes into account the following geometrical features
of the surrounding environment: (1) terrain roughness; (2)
terrain classification, based on both terrain slope and robot
locomotion capabilities; (3) obstacle clearance and (4) point
cloud density. This cost function has been defined as follows.
Let SMapt be the segmented point cloud, at time t, introduced
in Section IV. Let p ∈ SMapt a point of the point cloud.
The point-wise traversability cost function f : SMap 7→ R,
returning the static traversability cost of the point p∈ SMapt ,
is given by

f (p) := w(p)
L ·

(
w(p)

CL +w(p)
Dens +w(p)

Rough

)
(2)

Here the term w(p)
L represents the contribution to the overall

cost of p ∈ SMapt , computed according to the segmentation
of the local map. This cost term is lower for points belonging
to clusters labeled as ground, while increases for points
belonging to clusters, which are more difficult to traverse,
such as those labeled with stairs or ramps. w(p)

CL is the
cost contribution provided by the obstacle clearance. Points
belonging to clusters which are relatively close to obstacles,
inflated by the inscribed radius of the robot, have been
assigned with a higher cost, since they are unreachable for
the robot. This cost term is computed as follows

w(p)
CL =

1
max{min{||p−p′||} ,∆}−∆

(3)

for all p′ ∈ SMapt , such that p′ belongs to clusters labeled
either as wall or ceiling. Here ∆ is the inflated radius (see
Figure 4). Note that this approach is similar to the artificial
potential fields methodology, proposed in [16]. w(p)

Dens rep-
resents the contribution to the overall cost of p ∈ SMapt ,
computed with respect to the point cloud density, as follows

w(p)
Dens =

|Nr(p)|
4
3 πr3

(4)

Here |Nr(p)| is the cardinality of the set of points belonging
to the neighborhood of p ∈ SMapt . High values of w(p)

Dens are
assigned to points p ∈ SMapt which are relatively close to
terrain regions not correctly segmented, due to unevenness
of the terrain, holes or lack of laser scan data. This cost term
has the effect of deterring navigation near such areas. w(p)

Rough
measures the terrain roughness. Roughness is estimated by
computing the average distance of the outliers from the plane
fitted on the points belonging to the neighborhood Nr(p)
of p ∈ SMapt . By applying the defined traversability cost
function f (p), ∀p ∈ SMapt , we obtain the traversability map
T Mapt of the environment.

VI. PATH PLANNER

The global path planer, which we do not discuss here,
computes a main direction toward a goal, either given or
generated. The local path planner computes the interme-
diate steps toward this goal. In this section we present
the local path planner based on randomized A? (RA?) [17]
and extended to cope with non-holonomic robots and large
point clouds. Similarly to RA? the proposed algorithm R2A?

Δ

pos(v)

w
C
L

Fig. 4: On the left a plot of the term wCL as a function of the
vertex position. The dashed region represents an obstacle, and the
continuous blue line is the cost. On the right the boundary of a
point neighborhood, with highlighted the two sets Q1 and Q2.

samples the action space, uses a k-dimensional tree data
structure for partitioning and adapts the branching factor
according to a search radius. Differently from RA? we
propose a density function acting on the boundary of the
current location neighborhood.

Let qLG be an intermediate goal, that is, a position in
the traversability map T Mapt at a distance less than a given
threshold. If there exists a path from the current robot
position to qLG, the local path planner computes it. The basic
idea of the proposed algorithm is to generate a search tree
G = 〈N,E〉, N the set of nodes and E the set of the edges,
by sampling candidate poses. Sampling is governed by a
probability density function defined on the traversabilty map
T Mapt , at time t. The novelty of the approach is to reduce
the search space still ensuring to find a path if this exists.

We first introduce some notation. A path path is an
ordered list of nodes, such that if two adjacent nodes ni,ni+1
are in path then there exists an edge directly linking them,
where an edge E between two nodes is a relation defined
according to the robot length. A trajectory τ is a curve
specified by arc length s, s ∈ [0,1] and it is defined on the
traversability map.

The function pos : N→ R3 returns the coordinates of the
point p∈ T Mapt , associated with the node n∈N, the function
parent : N → R returns the coordinates of the point p′ ∈
T Mapt , associated to the parent of a node n ∈ N. We denote
visited the data structure storing the visited nodes and denote
leaf the data structure storing the current leaf nodes, namely,
the frontier of the search tree G .

Given a point p∈ T Mapt such that p= pos(n), with n∈N,
the neighborhood of p is denoted Nr(p), as in Section IV,
where here r denotes the radius of the neighborhood; and
with ∂Nr we denote the boundary of the neighborhood,
namely ∂Nr(p) = {p′ ∈ Nr|‖ p− p′‖ − r < ε}. Finally,
the density for p ∈ T Mapt is g f = α(1/ f (p)), where f is
defined in eq. (2) and α = ∑m

1 (1/ f (pi)),pi ∈ Nr(p) is a
normalization term, m the cardinality of the neighborhood
of p. The density reinforces points with low traversability
cost.

The parameters of a node are the followings:
• The euclidean distance d : R3×R3 → R between the

position of two nodes.
• The set Q1,n = {p̂ ∈ R3|p̂ = λp+(1−λ )p′}, with λ ∈
[0,1], p′ = pos(n) and p = parent(n).



• The set Q2,n = {p∈ T Mapt |d(p, p̂)< ρ}, ∀p̂∈Q1, with
ρ half the robot length. See Figure 4.

• The traversability cost f (pos(n)), defined in eq. (2).
• The cost f ′ : R3 → R defined as f ′(n) = max{ f (p)},
∀p ∈ Q2,n.

• The admissible goal heuristic h? :R3×R3→R, between
the position of the current node and the goal node.

• The function r : R3→ R, which sets the search radius,
finding the distance of a point p ∈ T Mapt from the
nearest obstacle, defined as follows:

r(pos(n)) = min
p′∈T Mapt

{∥∥pos(n)−p′
∥∥

2

}
(5)

∀p.p ∈ T Map′t with p belonging to clusters labeled
either as wall or ceiling.

The generation and expansion of the tree G is defined
inductively as follows. For the basic step, the initial node
n0 = pos(probot), namely the current robot position, is in N.

For the induction step. Let n ∈ N and consider the data
structures visited and lea f .

Generation Candidate nodes are sampled according to the
density g f . A node n? is chosen among the set of candidate
nodes if the following two conditions are satisfied.

1) n? /∈ visited;
2) ∃p ∈ T Mapt such that p ∈ Q1,n? , with p = parent(n?)

If n? satisfies the above conditions then it is added to the
leaf data structure.

Expansion Given a node n ∈ lea f , the node is expanded
according to the above parameters, used in the following
rules. Let us assign to each p ∈ ∂Nr(pos(n)) the value
g f (p) =α 1

f (p) , where the radius r defining the neighborhood
has been computed as in eq. (5). Here, we are implicitly
defining a discrete probability distribution over ∂Nr(pos(n))
in which points with lower traversability cost have high
probability.

In principle we are computing a continuous trajectory τ(s),
between n0 and nG, where s ∈ [0,1], and with the cost of the
trajectory within the traversability map defined as:

∫ 1

0
costT Map(τ(s))ds (6)

Since R2A? returns a discrete path we approximate this
continuous cost with the following cost function defined for
each node:

ĉost(n)= f ′(pos(n))+d(pos(n), parent(n))+h?(pos(n),qLG)

And, thus, the approximated trajectory cost is the cost of the
expanded nodes, obtained by minimizing:

∑
i

ĉost(n)i, ∀ni ∈ path (7)

The algorithm starts to expand the node in leaf with the
minimum cost and ends as soon as the current neighborhood
is the one of the goal node, and the distance to the goal node
is less than the robot size.

We show, now, that if there exists an admissible path
between two points which is found by A? then there is a path
computed by the proposed algorithm R2A?. More precisely,

Fig. 5: On the left a person is standing in front of a wall (dark blue
blob on the left). The white blob behind the person indicates that the
point cloud of the region of the wall has not been aggregated into
the entire map of the area, due to occlusion. On the right the result
of the dynamic correction algorithm: after the motion of the person,
the map is updated by both deleting the blob of the person and by
aggregating the point cloud of the region of the wall, previously
occluded.

let n0 denote the start node and nG the goal node and assume
that A? computes the path Q such that n0,nG ∈ Q then:

Lemma 1: There exists a path path computed
by R2A? such that n0,nG ∈ path and ∑i ĉost(n)i ≤
∑i d(parent(ni), pos(ni))+wih?(ni,nG).
Proof. First note that we have made explicit a penalty wi
added to h? to balance the lack of the traversability cost term
in the A? cost function. Now, observe that in Q there must
exists a node nb that belongs to ∂N (n0) since any path from
n0 to nG has to pass from the boundary of the neighborhood
of n0. Therefore the proof can be done by induction on
the number of boundaries traversed. As basic step, assume
nG belongs to the neighborhood of n0 and is not on the
boundary, this implies there are no obstacles and thus A?

and R2A? coincide finding a straight trajectory. Assume, now,
that the current node is n, with ∂N (pos(n)) the boundary
of its neighborhood, and there exists a path from n to nG,
then there exists a node nb with pos(nb) ∈ ∂N (n) such that
cost(nb)+ cost(nG)≤ cost(n)+ cost(nG). In fact R2A? finds
the boundary node before A? because of the condition of the
expansion. Clearly also A? must sooner or later pass through
the boundary, but since it does not overestimate the cost and
chooses straight lines, in the worst case it might cross the
boundary after having expanded a greater number of nodes
than R2A?, hence the path cost must be greater. �

We have thus shown that R2A? behaves like A? in the worst
case and also that its cost cannot exceed A?. The proof that
its cost is admissible is here omitted.

R2A? nodes in a path over 6 runs
A? run1 run2 run3 run4 run5 run6
138 72 69 75 81 71 87

TABLE I

VII. EXPERIMENTS

We evaluated the framework on the dynamic point cloud
and on the 3D path planner, also comparing R2A? and A?



Fig. 6: Path planning based on the R2A? algorithm. In blue are
shown sub-path toward the goal, highlighted by a large cube, and
located behind such an obstacle.

see Table I above.
Figure 5 illustrates the results of dynamic correction,

removing outdated dynamic obstacles from the current map
of the environment. Observe that after the motion of the
subject, the method correctly updates the map of the area, by
both deleting the blob of the person and by aggregating the
point cloud of the region of the wall. The region of the point
cloud earlier occluded by the person is aggregated together
with the point cloud representing the moved person, to the
current map. Note that, in the current map the region of
the wall, actually occluded by the blob of the person, still
persists.

Figure 6 shows some traces of the local path planner, based
on the R2A? algorithm. The algorithm generates intermediate
sub-paths toward a given target pose, the sub-paths are
shown in blue. The robot stands in front of a non superable
obstacle, located in the middle of the area. A target pose
has been posted behind such an obstacle. R2A? computes,
over time, possible alternative paths (blue lines), generated
by different runs of R2A?. The cumulative cost of these
solutions, measured with respect to the total number of nodes
of the search tree expanded by R2A?, has been compared to
the number of nodes expanded by standard A? algorithm.
Table I reports the results obtained from this comparison.
Traversability and the effective cost of the planner in clutter
has been experimented in any kind of terrain, purposely built
to prove the impact of the cost on the planner (see Figure 3
and Figure 7).

VIII. CONCLUSION

3D path planning in rough and cluttered areas, subject
to dynamic changes, is a hard problem, we have presented
a framework for point cloud segmentation and autonomous
path planning tasks for tracked robots. There are still several
open problems, such as detailed understanding of the envi-
ronment to improve traversability, and continuous 3d path
planning for complex tasks requiring long lasting activities.
These are topics that we are facing and will be treated in
future works.

Fig. 7: Traversability experimented on a path interrupted by a ramp
and steps.
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A Stimulus-Response Framework for Robot Control
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We propose in this article a new approach to robot cognitive control based on a stimulus-response framework
that models both a robot’s stimuli and the robot’s decision to switch tasks in response to or inhibit the stimuli.
In an autonomous system, we expect a robot to be able to deal with the whole system of stimuli and to use
them to regulate its behavior in real-world applications. The proposed framework contributes to the state
of the art of robot planning and high-level control in that it provides a novel perspective on the interaction
between robot and environment. Our approach is inspired by Gibson’s constructive view of the concept of
a stimulus and by the cognitive control paradigm of task switching. We model the robot’s response to a
stimulus in three stages. We start by defining the stimuli as perceptual functions yielded by the active robot
processes and learned via an informed logistic regression. Then we model the stimulus-response relationship
by estimating a score matrix that leads to the selection of a single response task for each stimulus, basing
the estimation on low-rank matrix factorization. The decision about switching takes into account both an
interference cost and a reconfiguration cost. The interference cost weighs the effort of discontinuing the
current robot mental state to switch to a new state, whereas the reconfiguration cost weighs the effort of
activating the response task. A choice is finally made based on the payoff of switching. Because processes play
such a crucial role both in the stimulus model and in the stimulus-response model, and because processes are
activated by actions, we address also the process model, which is built on a theory of action. The framework is
validated by several experiments that exploit a full implementation on an advanced robotic platform and is
compared with two known approaches to replanning. Results demonstrate the practical value of the system
in terms of robot autonomy, flexibility, and usability.
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1. INTRODUCTION AND MOTIVATIONS

A robot interacting with people and with the environment is subject to several stimulus
events, like any living organism. How these stimuli are to be represented and how a
response should be modeled has not yet received the necessary attention, even though
robot autonomy, beyond laboratory experiments, relies on an intelligent response to
these stimuli.

Everyone knows what a stimulus is in the human and animal sense. The concept of
stimulus has been studied the eighteenth century, with the work of Galvani and Volta
on frogs, and was further explored in psychology, physiology, and psychophysics. Mod-
ern physiology considers a stimulus applied to a receptor and capturing information
from both inside and outside the body; these are called proximal and distal stimuli, re-
spectively. Following the pioneering work of Weber [1834], Gustav Fechner introduced
psychophysics to model the relation of physical stimuli to the resulting mental facts.
Gibson [1960] proposes the following a constructive view of a stimulus:

I think the central question is the following. Is a stimulus that which does activate a sense organ or that
which can activate a sense organ? Some writers imply that a stimulus not currently exciting receptors
is not a stimulus at all. Others imply that a stimulus need not excite receptors to be called such. [Gibson
1960]

Gibson’s implicit question is about the possibility of giving a structure, a definition, to
the relationship between objects and stimuli and between stimulus and response:

Perhaps there is an invariant stimulus for the invariant response, after all. Many sorts of higher order
variables of energy may exist, only awaiting mathematical description. They will have to be described
in appropriate terms, of course, not as simple functions of frequency and amount. We must not confuse
a stimulus with the elements used for its analysis. [Gibson 1960]

As a matter of fact, we do not yet have a model of robot stimuli, and most researchers
accept that any sensory input from the environment or from the robot’s internal states
can be considered a stimulus. This simplification is of no help, as the wide literature
on human and animal stimuli witnesses. If any sensory input can be considered a
stimulus, how it would be possible for a robot to discern between a wall and a victim
lying on the ground, between the light from a fire and the light of a lamp, between a
scream and repeated noise, and so on? Not all inputs require a response, but a stimulus
does.

In this article, we address the problem of providing a representation of what a
stimulus is for a robot and how it affects the robot’s behavior and its tasks under
execution. Consider that whereas for a living organism pain is a stimulus that has a
direct effect on its survival awareness, for a robot, a similar stimulus could be the lack of
a WiFi connection or battery exhaustion, both indicating a loss of vitality. Therefore, in
providing such a representation, we answer the question of how to model the stimulus
reflex within the robot’s structure and language, and we explore how the robot learns
the best stimulus-response according to the context of its current task.

In living organisms, stimulus transduction elicits the stimulus reflex through a re-
ceptor. In a robot, this transduction is conveyed by its active processes. Consider the
robot motion system, which is made of several components, each of which is driven by
processes controlling velocity, steering, obstacle avoidance, terrain adaptation, track-
ing and so on. These processes collect information from the environment and from the
robot’s internal states. These processes elaborate the collected information and update
it, eventually returning it to the robot’s inner states to manage its current activities.
In other words, the interaction with environment configures a space of information
allocating to each process a quantum of information that is transduced to a stimulus
at specific peaks of the information manifold. A stimulus induces a request with the
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call for a response. A response might appeal to robot components and their processes
not yet active at the very moment at which the stimulus is triggered.

In this article, we introduce a preliminary framework to model robot processes,
their yields, the stimuli occurrences, and the decision underlying the response to the
stimuli. The advantage of this approach is that robot control does not need to be
designed a priori but instead can be drawn by its interactions with users who teach
the robot when a stimulus occurs and what the possible alternatives are for handling
the stimuli. These aspects are not dealt with in any other control methods, including
planning, whether reactive, proactive, or declarative. Indeed, a robot that has learned
a stimulus-response strategy from several humans will most certainly be more usable
than a robot that either has no stimuli at all or has no strategy to respond to stimuli.
We also take context into account in order to establish a response cost, and we exploit
a theory of actions that models how tasks are chosen and how switching to a new task
can occur as a result of a stimulus-response.

The ability to selectively respond to several stimuli and to inhibit inappropriate urges
by focusing on the task at hand are well-known in humans as shifting and inhibition
executive functions, respectively [Miller and Cohen 2007; Aron 2007]. The neuroscience
theory of control uses inhibition to explain many cognitive activities, especially to
explain how an individual presented with several stimuli responds selectively and is
able to resist inappropriate urges [Tipper 2001].

Since the early work of Jersild [1927], several studies in neuroscience and cognitive
science have led to a better understanding of many of the variables affecting task
switching in the context of cognitive control (we refer the reader to Monsell [2003]
and the citations therein). These theories have strongly influenced cognitive robotics
architectures since the 1980s, as, for example the ATA schema [Norman and Shallice
1986], the principles of goal-directed behaviors in Newell [1990], and, more recently, the
CogX architecture [Hawes et al. 2010; Wyatt et al. 2010]. (For a review on the earliest
architectures in the framework of the task switching paradigm, see Rubinstein et al.
[2001].)

Only recently has the need to model the stimulus-response, and hence the cognitive
control underlying task switching and the cognitive functions of shifting and inhibi-
tion, become a hot topic in cognitive robotics. The need to model adaptation, to increase
the flexibility in handling complex tasks, has led to modeling task switching for robot
navigation, motion planning, and control in large-scale environments [Althaus and
Christensen 2003], for path planning [Medina Ayala et al. 2012], for recognizing hu-
man intentions in conversation [Nakano et al. 2011], and for motor planning to improve
tasks execution [Ganesh and Burdet 2013]. Task switching is also addressed in manip-
ulation [Ajoudani et al. 2013; Ding and Fang 2013] and soft robot control [Tao et al.
2012; Li et al. 2013], for modeling multirobot systems [Sung et al. 2013], for learning
task space control through the use of different tools [Jamone et al. 2013], for biped
walking in rough terrain [Saglam and Byl 2013], and for multiple-space control [Li and
Cheah 2012].

Most of the cited works are quite recent, showing increasing interest in the stimulus-
response framework for coping with adaptivity and ecological behaviors in an inter-
active environment. Further examples of these studies exist [Capi 2007; Suzuki et al.
2009; Wawerla and Vaughan 2009; Finzi and Pirri 2010; Durkee et al. 2011; D’Ambrosio
et al. 2011]. The major problem to be resolved, as noted in Wawerla and Vaughan [2009],
is the switching decision. Experts on task switching claim that this decision incurs a
switching cost. This cost results from the interplay between the resources needed to
reconfigure a mental state and the resources needed to resolve interference with the
current state [Monsell 2003]. We model this cost by considering both the reconfigura-
tion of the mental state and the interference with the current state. The reconfiguration
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Fig. 1. Work flow of the proposed stimulus-response framework. From bottom to top: the lowest layer
indicates a currently active task being executed. The active processes feed the process yields, collecting
information from them; the stimulus model selects from the yields those which are stimuli. The stimulus-
response model scores the response tasks. The decision is taken by evaluating the payoff of switching to a task
suggested by the stimulus-response matrix. In the middle panel, between knowledge and inference, execution
monitoring takes care of the actual task execution and its updating, both affecting the mental states; namely,
the decision of whether to consent to a response to the stimulus. In the upper panel, a first-order logical
formalism is used to model the robot processes, with action preconditions and effects affecting activation costs
and motivating causal constraints. This closes the loop between stimulus activation, reasoning, planning,
and decision.

and interference costs are defined in terms of the amount of processes that need to be
inferred in order to initiate a new task and their congruency with the current task. The
decision is made based on a payoff that is computed by considering the cost of updating
the current robot state and the risk of continuing with the task under execution. The
stimulus-response model illustrated in these pages indicates a new direction in robot
cognitive control, and the tests and experiments presented here prove that this is a
promising direction.

The stimulus-response framework introduces new emerging methodologies that
build cognitive robot control via learning and perception, and we expect that it will
spread to several applications that require cognitive control to resolve the continuous
struggle a robot has to face in a real-world environment.

2. EXECUTIVE SUMMARY

The flowchart of the proposed robot stimulus-response framework is illustrated in
Figure 1. The lower layer represents a robot task under execution. The next level
illustrates the stimuli and the response models, described in Sections 3 and 4. The
level enclosed between Inference and Knowledge delineates the work flow linking the
decision level to the current execution level. The upper level provides a schema of
the system representation in the formal language of Situation Calculus, where the
mapping of the stream of information into the domain of reasoning takes place. These
levels are described in Sections 5 and 6.
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Table I. Examples of Yields of Processes and Their Features
��������Process

Yields and Their Features Stimulus Description

Battery Level Power Consumption Location - Exhaustion
WiFi Strength Dist. Source Speed Traffic Disconnection
Laser scan Resolution Surface Density Smoothness Lack of data, device error
Mapping Height Slope Intricacy Depth 3D data not available, obstacle
Visual perception Shape Dimension Location Distance Identification, Detection
Attention Light Color Motion Contour Saliency
Interface Sound Id Voice Utterance Meaning Request
Sound Scale Frequency Pitch Who Mute, Noise

Each active robot process yields a quantum of information with characteristic fea-
tures; this quantum of information is called the yield of an active process. The features
z of the yield are used by the stimulus model to learn a function hβ (z) (Section 3). This
function establishes whether or not a stimulus occurred during the specific process
execution.

Example 2.1. Consider the robot process πWiFi managing the connection between
the robot and a remote command base station. We expect that the stimulus occurs
when a high signal becomes low or disappears. So the process πWiFi yields a quantum
of information specified by a set of features zWiFi, such as those indicated in Table I.
The robot, with the help of users, learns to discriminate a stimulus from ordinary
information via the function hβ(zWiFi), discerning between typical zWiFi values and
odd ones. Therefore, the outcome of the learned function hβ is a value y = 1 to fire the
stimulus of WiFi disconnection and y = 0 otherwise.

If the stimulus occurs, the robot has to choose a possible response (e.g., going back to
the last position where it was connected), or it can inhibit the stimulus and continue its
task even though it is disconnected from the operator. Therefore, there are two issues
that need to be modeled:

(1) identify the task that is a possible response to the stimulus;
(2) decide whether to go on with the current task or to switch to the identified response

task.

The first item is dealt with by filling a score matrix A whose values are estimated via
factorization, as described in Section 4.

On the other hand, the decision to either shift from the current task to a new task
in so responding to the stimulus, or to inhibit the stimulus, is based on the payoff of
switching. This is computed considering the risk of continuing the current task, without
taking into account the stimulus, and the effort required to fulfill the stimulus. In turn,
the effort is computed considering two costs: (1) the cost to reconfigure the current
robot state to the new state that switching would lead to and (2) the cost to resolve the
interference due to the interruption of the current task. These costs are computed by
considering the preconditions and effects of each action involved in both the processes
to be interrupted and in the ones to be activated (Section 6). To bind the information
yielded by a process to the domain of reasoning, a special functional E is used, mapping
the process terms of the representation language to the corresponding values of both
the yields and the stimuli at execution time (Section 5).

Example 2.2. Suppose the robot is executing task τ10 (see Table VII, in Appendix A)
that requires the robot to approach a victim in a rescue area. The processes compos-
ing this task are listed in Table VII. Assume that the yield of process πWiFi (named
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connection management in Table VII) fires a stimulus, namely, the current values of its
yields zWiFi induce hβ(zWiFi) = 1. Let the stimulus-response matrix A suggest that the
response task is τ4; namely, recovery WiFi signal. To start the task recovery WiFi signal,
all the required processes have to be activated with their preconditions and postcondi-
tions; therefore, the reasoning system of the robot has to be informed of the stimulus
in order to make a decision by computing the payoff of switching. The mapping E , ap-
plied to the features, transforms them into values that are terms of the representation
language, thus allowing the cost computation to take place.

The article is organized as follows. In the next section, we introduce a representation
of the stimuli. In Section 4, we describe the computation of the stimulus-response
matrix. In Section 5, we describe the fundamental formalism needed to define concepts
such as tasks and processes that are needed to model the transduction between stimuli
and processes. In Section 6, we illustrate both how switching costs are computed and
how the payoff for switching is obtained. Section 7 evaluates, with some experiments,
the performance of the proposed stimulus-response model at managing task switching
when incoming information acknowledges new situations to be faced. In particular,
results are confronted with replanning at execution time as proposed in the context of
CRAM [Beetz et al. 2010] and DTPDDL, implementing POMDP [Talamadupula et al.
2010; Göbelbecker et al. 2011]. The experiments prove the correctness of the robot’s
behavior in the presence of different stimuli, cover many aspects that have not been
adequately treated in the article, and present the whole picture as simply as possible.
In the Appendix, we provide some implementation details of the robotic platform and
its functionalities; we also use tables to illustrate the implementation of several robot
components, their processes, and the stimuli yielded by those processes; finally, we
show the stimulus-response matrix developed for a set of stimuli and tasks.

3. THE STIMULUS MODEL

In this section, we introduce what we define as a robot stimulus and how we estimate
the presence of a stimulus given the information gathered by a process.

Consider the following events applied to a robot, not necessarily in parallel: the
battery is getting low, the WiFi has a very weak or absent signal, saliency is detected in
a sequence of frames, the memory is surcharged, the communication with the operator
is clogged, a request pops up on the interface, and someone is talking at the dialog
box. A robot has to deal with hundreds of events like these. These events are stimuli,
in the sense that they trigger some alert on the information process transduced by an
executive process of an active robot component such as, for the example, the battery, the
WiFi, the attention system, the mapping system, the engines, the dialog system, the
interface, or the obstacle avoidance system. Three concepts are at the core of stimulus
modeling: (1) the information flow caused by an active robot process, (2) the states and
events inducing a stimulus, and (3) the rule by which a stimulus is detected to be so:

it is reasonable to assume that stimuli carry information about the terrestrial environment. That is,
they specify things about objects, places, events, animals, people, and the actions of people. The rules by
which they do so are to be determined, but there is at least enough evidence to warrant discarding the
opposite assumption under which we have been operating for centuries that stimuli are necessarily and
intrinsically meaningless. [Gibson 1960]

Consider a robot process π being executed among a number of others under execution.
This process π has a domain of interest defined by the values it controls; some example
are given in Table I. These values are the realizations of a stochastic variable X : �d �→
Rd, and we identify them as the yield of the active process π . At each instant time t,
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if the process is active, then the stochastic variable is realized and the values it takes
are known; either they induce a stimulus for the process π or they do not.

More precisely, the yield of a process π forms an observation vector z = (z1, . . . , zd)�,
z ∈ Rd and whether these values induce a stimulus or not is the objective of a function
hβ : Rd × β �→ [0, 1] to be learned with parameters β = (β0, β1, . . . , βd)� and arguments
being the yield of the process.

A trial is the set of observations gathered in a discrete time interval T ; if n trials are
performed by n operators, we obtain a training set T of size (nT × (d+1)). The training
set is of the form T = (〈z1, y1〉, . . . , 〈znT , ynT 〉)�, with zi ∈ Rd, yi ∈ {0, 1}.

The logistic regression model can be used to estimate the outcome y. We recall that
the logistic regression model computes the probability of the outcome y as:

hβ(z) = B(g(a)), (1)

where B(x) is the Bernoulli density μx(1 − μ)(1−x) with μ ∈ [0, 1]; a is the activation,
namely, a = β�(1, z�)�; and g is the sigmoid function:

g(a) = 1
1 + exp (−a).

(2)

The goal is to estimate the parameters β of the function hβ .
It is important to note that for this model to predict accurately the occurrence of a

stimulus with the outcome value y, given the features z of the specific process yields,
it is required that the outliers introduced during data gathering are kept under con-
trol before the estimation of the parameters β takes place. In fact, in addition to the
difficulty of obtaining comparable trials, the training set T is extremely noisy due to
operators mistakes made while a trial is running.

Since the noise is mainly introduced by the operator in the difficult task of deciding
whether an observation is or not a stimulus, we have devised a method of rejecting
most of the outliers that severely affect parameter estimation. Indeed, we exploit some
prior knowledge about stimuli/nonstimuli for each process, and we use this to define
a function that is consistent with the typical behavior of the process and that rejects
wrong data in the training set. The proposed function maps to a rejection region all
those outcomes that are classified as stimuli but whose range of yields should in prin-
ciple assign them to a nonstimuli classification since stimuli are extraordinary events.
The function defining the rejection region is:

γ (z, y) =
{ 1 iff y = 1 and z �∈ RejRegion

1 iff y = 0
0 otherwise.

(3)

Here, RejRegion is the rejection region that still need to be defined. This is done
according to the following steps:

(1) Fit nonparametric kernel density to the data (z1, . . . , znT ) using a Gaussian kernel.
(2) Find the modes of the density. The modes indicate where the data are more dense;

in other words, they indicate the values identifying the most typical behavior of the
process yield.

(3) Select the data falling in the regions around the modes {ẑq}, q = 1, . . . , kM, with
kM being the number of modes, and lock these data into an hyperellipsoid whose
dimension is estimated according to the Hotelling test, assuming that these data
come from a Gaussian distribution.

(4) The confidence region for the mean of the selected data is the required rejection
region Rej Region.
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For the first step, we consider a smoothing kernel over the process yield on a d-
dimensional grid. Let x = (x1, . . . , xd) ∈ Rd be a point in the grid, and let zk ∈ Rd be
an observed yield, 1 ≤ k ≤ nT = N; let υ = [( x−zk

hd )�( x−zk
hd )]1/2, with h > 0 the kernel

window. We consider a radial symmetric Gaussian kernel Khd(υ) = 1√
2π

exp (− 1
2υ2). A

nonparametric estimate for the observations that are close to point x is:

fhd(x1, . . . , xn) = 1
N

N∑
k=1

cKhd(υk). (4)

Here, c is the normalization term that, by the fact that
∫ ∞
−∞ K(υ)dυ = 1, is

(hd2
(2π )(d−1)/2)−1. The gradient of the density is

∇ fhd(x1, . . . xd) =
{

c
N

N∑
k=1

− 1
h2d Khd(υk)(xj − zkj)

}
j=1,...,d.

(5)

Then, by some simple algebraic transformation and hiding in c the constant term we
obtain:

∇ fhd(x1, . . . , xd) =
{

fhd(x1, . . . , xd)

(∑N
k=1 Khd(υk)zkj∑N

k=1 Khd(υk)
− xj

)}
j=1,...,d.

(6)

Local maxima of fhd are computed by gradient ascent; these are the modes ẑ of the func-
tion fhd. Let us consider these modes {̂zq}, q = 1, . . . , kM, with kM the number of modes.
Assume these data come from a Gaussian distribution with means μq and covariances
�q, and let zq and Sq be, respectively, the sample mean and sample covariance of the
q-th region under the q-th mode. The confidence region at level (1 − α) for the data
mean μq is:

C Rq = {μq ∈ Rd | (μq − zq)�S−1
q (μq − zq) ≤ d

N − d
F(1−α);d,N−d}, q = 1, . . . , kM. (7)

Here, F(1−α);d,N−d is the 1 − α quantile of the F-distribution with d and N − d degrees
of freedom. That is, we are confident at a level (1 − α) that C Rq contains μq; namely,
p(μq ∈ C Rq) = (1 − α). Now, (μq − zq)�S−1

q (μq − zq), q = 1, . . . , kM are hyperellipsoids

with center μq and semi-axes of length
√

D2
qλsq, where λsq is the s-th eigenvalue of

S−1
q . Since D2

q = d
N−d F(1−α);d,N−d is the maximal ellipsoid surface, enclosing the q-th

confidence region, it follows that these regions correspond to the most typical behavior
of the yield of the process π under consideration. Hence, these are rejection regions for
stimuli—regions where it is most unlikely that a stimulus can occur. Therefore, we are
finally arrived at the definition of rejection region RejRegion:

RejRegion = {z ∈ Rd |(zq − z)�S−1
q (zq − z) ≤ D2

q, q = 1, . . . kM}. (8)

As noted earlier, kM is the number of modes of the nonparametric density. Therefore,
according to Equation (3), the set of samples for which γ (zk, yk) > 0, k = 1, . . . , N (recall
that N = nT ) is the optimal one for classification.

Now, given a complete set of good samples T � = (〈z1, y1〉, . . . , 〈zN, yN〉), the model for
stimulus prediction is provided by logistic regression. Namely, the logistic regression
coefficients β are obtained from the good trial set T � for the yield of process π by
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Table II. Components, Processes, and Stimuli

Component Description Process Description Stimulus Description

Battery Power Level Monitoring Battery Exhaustion
WiFi Connection Management WiFi Disconnection
Robot Engine Temperature Monitoring Temperature Level
Visual Perception Detecting Object/Person Detected Object/Person
Memory Data Writing Write Access to Memory Full
Dialogue Human to Robot Exchanging msg Human to Robot Message

minimizing the following cost function:

L(β) = −1
n

(
N∑

i=1

yi log hβ(zi) + (1 − yi) log(1 − hβ(zi))

)
+ ξ

2n

d∑
j=1

β2
j . (9)

Here, ξ is the regularization parameter and
∑d

j=1 β2
j the regularization term; these

are used just in case the features induce a high-dimensional space, which in general
is kept ≤ 5 to manage the nonparametric density. The Newton-Raphson algorithm
used to minimize Equation (9) requires an update step expressed as a least square
step, namely, as an iteratively reweighted least square. Then, given a new observation
z�, hβ(z�) is the hypothesis returning the binary response within the variable y. More
precisely:

y =
{

1 if hβ(z�) ≥ 0.5
0 if hβ(z�) < 0.5.

(10)

We have thus provided a model to represent the stimuli and for learning when such
stimuli occur. We have also introduced the principle that a large region of nonstimuli
for each process yield can be identified around the most typical values of the yield to
simplify noisy data collection. Note that this concept of typical values for the process
yield grants the possibility of estimating hβ with quite few trials.

4. THE STIMULUS-RESPONSE MATRIX

Given a process π, we have introduced the function hβ that takes as input the yield of
a process and determines whether a stimulus is triggered or not, returning a value 1
if this is the case and a value 0 otherwise. If a stimulus occurs, it is necessary to score
all possible response tasks before any decision can be taken.

In this section, we show how to score the relation stimulus response, which amounts
to scoring the task that would eventually be chosen to respond to the triggered stimulus.
Here, a task is a set of processes; see Table II for an excerpt of the structures linking
robot components, processes, and stimuli, and the more detailed Tables VI, VII, and
VIII in Appendix A. Therefore, while a task is being executed, a stimulus can be
triggered from any of the active processes of the task. To address each case, given a
limited number of tasks for a robot, we introduce a stimulus-responses matrix A that
scores each pair: The score matrix A is formed by two classes of entities, which we refer
to as Tasks (rows) and Stimuli (columns), respectively (see Table VII and Table VIII in
Appendix A). Note that a task is built out of many processes, yet each process can yield
a single stimulus; namely, there is a bijection between each process and the stimulus
it yields.

Matrix A is initially built using a number of experiments and further completed by
estimating the unknown values for the stimulus-response pairs with the regularized
low-rank matrix factorization method [Zhang et al. 2012; Chen 2008; Buchanan and
Fitzgibbon 2005; Canny 2002].
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The experiments for filling A are short-term missions performed by operators who
are well informed about the task library, the processes, and the stimuli that the robot
can handle. Each operator is assigned a task from the task library (see Table VII in
Appendix A, as described in Section 7). During the trial, a stimulus is triggered for an
active process π j . Upon the occurrence of the stimulus, the operator selects the task τi
that he or she considers the most appropriate to respond to the presented stimulus from
among those reported in Table VII (Appendix A) using a graphical user interface (see
Figure 11 in Appendix A). Note that, during the experiment, the operator teleoperates
the robot. The experiment terminates when the operator signifies his or her task choice.
Data from each trial, reporting the occurrence of the pairs 〈τi, yπ j 〉, are collected, and
the corresponding entries aij of matrix A (see Table IX and Table X ) are filled. When
operators did not select the corresponding stimulus-task pair, a dash sign is added.

The problem now is to complete the matrix by finding the missed values. These are
recovered by factorizing matrix A into the product of two smaller matrices, P ∈ Rm×d

and Q ∈ Rn×d, of rank d1. Given that A has dimension (n × m)—namely, n tasks and
m process yields (here, n = 13 and m = 42)—and rank d, in order to complete A, it is
necessary to find two factors explaining A: an (n × d) matrix Q and an (m× d) matrix
P, such that A = QP� . Thus, it is possible to minimize the error norm on the known
values.

Let W be an indicator matrix of the same size as A in which 0’s correspond to
missing elements of A and 1’s correspond to observed data; then, the problem can be
reformulated as:

ε(Q, P) = ‖W � (A − QP�)‖2
F + λ1‖Q‖2

F + λ2‖P‖2
F . (11)

Here, � is the Hadamard component-wise matrix product, ‖ · ‖ is the Frobenius norm,
and λ1 and λ2 are regularizing constants. Several approaches have been proposed to
minimize this error, considering that if one of Q or P are known, there is a closed-form
solution for the other that minimizes Equation (11) (see, e.g., the dumped Newton
algorithm introduced by Buchanan and Fitzgibbon [2005] and the Wieberg algorithm
of Takayuki Okatani and Deguchi [2006]). Here, we have chosen a version of the
alternating-least-squares with weighted-λ-regularization [Zhou et al. 2008], in which
the steps to obtain Q and P are summarized as follows. Initialize Q and P to small
random values and let wi j be the (i, j) element of the indicator matrix W; then, the
schema (11) can be rewritten as follows:

ε(q1, . . . , qn, ρ1, . . . , ρm)) = 1
2

∑
(i, j)

wi j
(
ρT

j qi − aij
)2 + b1

2

n∑
i=1

d∑
k=1

q2
ik + b2

2

m∑
j=1

d∑
k=1

ρ2
jk. (12)

Here, the first term of Equation (12) corresponds to the square error term, and the last
terms are the regularization terms of qi and ρ j , respectively. The terms b1 and b2 are the
regularization parameters. Local optima of the objective function in Equation (12) are
found via Newton-Raphson gradient descent. The update rules, for every i = 1, . . . , n
and for every j = 1, . . . , m are given by the following equations:

qik := qik − ζ1

⎛⎝∑
j

wi j
(
ρT

j qi − aij
)
ρ jk + b1qik

⎞⎠
ρ jk := ρ jk − ζ2

(∑
i

wi j
(
ρT

j qi − aij
)
qik + b2ρ jk

) . (13)

1Here, the letter d is used for the matrix rank, while in the previous section it was used to define the size of
observations.
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Fig. 2. Estimation of accuracy of the parameters ζ and b obtained in Equation (13) given a model with
(a) rank of A = 4 and (b) rank of A = 10.

Once both qi and ρ j have been estimated, then the score matrix A can be completed
by estimating the missing values of the rates âi j as

âi j = ρ j
�qi ∀wi j = 0. (14)

The empirical prediction quality is typically low (see Figure 2(a)). Note that, as
expected, the Mean Squared Error (MSE) considerably decreases with a higher rank
d of the matrix A and, consequently, the empirical prediction quality gets higher (see
Figure 2(b)). Figures 2 shows the accuracy of the prediction when varying the rank of
matrix A.

An example of the score matrix A filled by the trials values for the implemented task
library with their processes and stimuli is illustrated in Tables IX and X , in Appendix A.
The completed stimulus-response matrix, with the whole score set completed, is shown
in Tables XI and XII in the Appendix A.

5. STATES, PROCESSES, AND TASKS

The state of the robot is the set of processes that are active at a specific interval time
�t = [t−, t+], and it coincides with the current task in execution (see the tasks given
in Table VII in Appendix A). The decision to switch or not to a response task, chosen
according to the score matrix A introduced in the previous section, is a matter of how
difficult it is to switch, how many processes need to be interrupted, and how many new
processes need to be activated.

To understand the complications intervening in this decision, we briefly introduce
the representation of processes in the framework of their control, execution, and mon-
itoring, together with the reasoning mechanism required to infer the facts that need
to be appraised before eventually switching to a new task. Namely, switching requires
us to infer an appropriate explanation for enabling all the preconditions for activating
the response task. In this section, we introduce the following concepts to address this
problem:

(1) The representation of actions and processes.
(2) The mechanism generating processes to execute a chosen task.
(3) The constraints between processes working in parallel.
(4) The representation of the robot’s current task state.

Tasks and processes are modeled in the action theory A based on the formalism of
Situation Calculus. Planning, the decision to switch, and execution monitoring are all
expressed in Situation Calculus. In this formalism, the semantic domain is partitioned
in sorts (A, S, T ,U, W) where A stands for actions, S for situations, T for time, U for
the set of boolean values {0, 1}, and W for every other object. Given the sorted domain,
the representation language L (via its signature �L) is made of predicates and terms
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(variables and functions of arity n ≥ 0) and ruled by the first-order predicate calculus,
with the exception of an inductive axiom. We refer the reader to Pirri and Reiter [1999]
for a full description of the formalism. The representation language is used to provide
the robot with a reasoning and knowledge structure about actions by specifying their
preconditions and effects, and about both the processes and the constraints linking
their parallel execution.

A process is a predicate π (x, u, t, do(a, s)) taking as arguments a single term u of sort
boolean for the stimulus, a term t of sort time, a single term do(a, s) of sort situation,
and terms x = (x1, . . . , xn), n ≥ 0 of any other sort. The special function do of sort
situation is an action sequence builder that defines a situation as a list of actions. More
precisely, do is a function taking as arguments a term of sort action and a term of sort
situation and returning a term of sort situation do : A × S �→ S, which is a list of
actions. Actions are functions, and when the term of sort situation explicitly mentions
the sequence of actions it builds, we denote the term with σ . Through its arguments,
a process carries the information about the history of all processes of a component via
all its start and end actions, activated up to the time t. For example, consider one of
the processes given in Table VI, Appendix A: The connection management of the WiFi
component is represented in language L by the following transition statement:

πWiFi(x, u, t, do(a, s)) ≡ [a = startWiFi(x, t) ∧ u = 0] ∨ (∃t′.t′ ≤ t ∧ πWiFi(x, u, t′, s)
∧(∀t′′∀u.(t′′ > t′ ∧ t′′ ≤ t)→E(x, t′′) = u→a �= endWiFi(x, t′′))).

(15)
Here, startWiFi and endWiFi are actions, and t, t′, t′′ are variables of sort time. The
function E maps terms of the representation language L to the values identified by the
stimulus model (Section 3). This function takes as input the realization of the yields
of the process when the process is active, and it returns the value u = 1 if the signal
elicits a stimulus and u = 0 otherwise. This is called a transition axiom, and it specifies
that the robot process managing WiFi connection is active if either the action startWiFi
is executed at time t, or the process was already active at some previous time t′, and,
at any time between t′ and t (the current time), it was not ended by a disconnection
notified by a stimulus nor it was ended by the action endWiFi independently of the
stimulus value. The transduction of a stimulus realization to a term of the language
L requires the existence of a set of transformations binding terms and domains at
execution time. This is better detailed by the following remark.

Remark 5.1 (Transduction between stimuli and processes). A process yield and its
stimulus value are both linked to the signature �L of the action language L by the
mapping E . The domain of L and of the processes’ yields are linked by the interpretation
I of L.

To prove this, we first introduce some auxiliary mappings. Let L be a set of labels,
and let T be time. We introduce the function E+ : Rn × L → �L, the function E� :
[0, 1] × T → �L, and finally the mapping re : Rn × T �→ Rn and the mapping E :
�L × T �→ �L. To these functions, we add the interpretation function I mapping
terms of the language into the interpretation domain, and we assume that equality
is interpreted by itself. We have to show that, via E�, re, and E+, E links the feature
terms with terms of L and that the interpretation links, via the mappings, the sample
domain where the yields take values with the domain of interpretation for L. Let us
assign to each defined process π ∈ L a label, and let X : �n �→ Rn be a multivariate
random variable whose realizations are the observed values z of the yield of π at
time t. The function re serves to specify the realization with respect to the process
yields and time, namely, re(X, t) = z ∈ Rn. Now E+ maps real numbers, labeled by
the specific process of which they are the yield, into terms of the language such as

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 4, Article 21, Publication date: January 2015.



A Stimulus-Response Framework for Robot Control 21:13

E+([z3, z4], LWiFi) = (signal strength, distance f rom source) and so on. Similarly, E�

takes the outcome of the learning function hβ(z) (see Section 3) and maps it to a term of
the language. These terms have a semantics in the domain Dn of L, so that real values
labeled by a process name need to be paired with the interpretation of the terms of the
specific process. So, for example, the interpretation of the term signal strength ∈ �L,
taken as argument by the process π , has to be linked to the corresponding element of
the sample domain �n. Therefore, when the process is active, then t is instantiated,
the transduction closes the loop between the different terms, and binding occurs on the
appropriate instances in the respective domains according to the sorts requirements:

re(X, t) = z ∈ Rn

E+(z, L) = x ∈ �L
E�(hβ(z), t) = u ∈ �L
uI ∈ {0, 1} ⊂ D
E(E+(re(X, t), L), t) = E(x, t) = E�(hβ(z), t) = u ∈ �L
E I(E+(re(X, t), L), t)I = E�,I(hβ(z), t)I = uI ∈ {0, 1} ⊂ D.

(16)

This shows that the mappings E�, E+, re, and E , together with the interpretation I of
the language, are sufficient to define the transduction between stimuli and processes,
both linking the terms of the language and mapping the outcome into {0, 1} ⊂ D.

A process π is active between a startπ and an endπ action. To activate a start or end
action, a special predicate Poss tells the robot whether the action can be done given
the current situation s and time t, for example:

Poss(endWiFi(x, t), u, s) ≡
(at(home, t, s) ∧ ¬ask(operator, t, s) ∨ u = 1) ∧ πWiFi(x, u, t, s) (17)

tells the robot that the WiFi process can be ended if it is at home and if, for exam-
ple, there are no operator requests running or a disconnection signal is detected. This
statement is called a precondition axiom. Note that a state is defined by all the pred-
icates (processes and facts) that are verified at the specific situation and time in the
intended model. Thus, if M is the model of the language satisfying the whole theory,
we might say that M |= ∧

ϕ(t, σ ) to indicate that the finite set of sentences
∧

ϕ holds
at time t in situation σ in the model, and so specify a finite state of the system. On
the other hand, we can also write A |= ∃x, u, t.πC(x, u, t, σ ) to indicate that all the
models (actually the intended model of the axiomatization) of the action theory A are
also models of the process πC at some time t and situation σ , thus indicating that the
situation σ = do(An(x), do(An−1(x), . . . , do(A1(x), S0)) . . .) returns a sequence of actions
that governs the processes that can be activated in S0 to perform some task involving
the component C.

Robot components are both hardware devices and software modules such as engines,
dialog, vision, mapping, planning, path planning, and so on, all handling several pro-
cesses and needing to be regulated not only by transition and precondition axioms, but
also by both temporal and spatial relations. To handle relations between processes, a
parallelization of situations into several timelines has been introduced [Finzi and Pirri
2010], and each timeline assesses the evolution of all the processes of a component. A
timeline is a special situation taking into account only the start and end actions of the
processes of a component. Parallel situations are handled by a set of situations called
bags of timelines. Time constraints are based on the definition of the greatest start
time and least end time, thus bounding a process activity within a start and end time,
up to a fixed time t. The greatest start time is defined as:

greatestStartπ (x, a, t)
def≡ ∃t′.a = startπ (x, t′)∧¬∃t′′, a′′.t′ ≤ t′′ ≤ t∧a′′ = endπ (x, t′′). (18)
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An analogous definition is given for leastEnd, the least end time for an action, thus
characterizing the �t inside which a process is certainly active or certainly not active.
Given this definition, a time relation such as during is defined as follows:

{πi(x, u, t, do(a, σ )) during π j(x
′
, u′, t′, do(a′, σ ′))}[ , ′]

def≡
σ ∈ ∧ σ ′ ∈ ′ ∧ πi(x, u, t, do(a, σ )) ∧ π j(x′, u′, t′, do(a′, σ ′))∧
[greatestStartπi (x, a, t) ≥ greatestStartπ j (x′, a′, t′)]∧
[leastEndπi (x, a, t) ≤ leastEndπ j (x′, a′, t′)].

(19)
Here, and ′ are bags of timelines; specifically, timelines of different robot com-
ponents. Note that in the formulas specifying constraints (as in Equation (19)),
the variables have a lambda binding, which means that the variables are bound by
the quantifiers inside the sentence in which they are embedded because the time
constraints are macro sentences of the language. Temporal constraints are typically
those defined in Allen [1983], among which we consider the set {during, bef ore,
meet, start, f inishes, overlaps, equal}.

For example, the Equation (20) says that to start the process of approaching a certain
location, the path planner process needs to be active, which in turns requires the
mapping to be active:

[πpath−planning(x, u, t, σ ) during πmapping(x′, u′, t′, σ ′)]
before πapproach(x′′, u′′, t′′, σ ′′)[ , ′, ′′] (20)

A constraint formula is indicated by πiopπ j[ i, j], and a set of constraint formulas is
indicated by C. Note that constraints are special formulas because only the definiens
(namely, the left hand side of the definitions) are expressed in the language L.

Different approaches for defining constraints in a first-order language have been
proposed [Baar et al. 2001; Block et al. 2006; Morris et al. 2001; McDermott 2003; Fox
and Long 2003; Carbone et al. 2008; Wittocx et al. 2010]. A definition for each time
constraint between processes, according to linear interval-based time [Allen 1983], is
provided in Finzi and Pirri [2010].

Similar to temporal constraints, spatial constraints are defined following the topo-
logical relations introduced in Randell et al. [1992]. Spatial and time constraints (see
Wolter and Zakharyaschev [2000] and Finger and Gabbay [1996]) are integrated in the
framework.

Now we must specify what happens if the robot needs to switch to a different task
and stop the current one. If at time t, the robot has to infer the processes needed to
execute a task , it may be that for some process the starting action startπ or the ending
action endπ are not derivable; namely, A ∪ C �|= ∃x, t Poss(startπ (x, t), σ ). To modify the
current execution and make the activation of a process possible, it is desirable to obtain
an explanation for enabling a specific action a. This is the formula ψ ∈ L, such that:

A ∪ C ∪ {ψ} �|=, and A ∪ C ∪ {ψ} |= ∃x, t Poss(startπ (x, t), σ ), (21)

where the proviso A ∪ C ∪ {ψ} �|= means that the explanation added to the theory does
not imply the contradiction. Explanations can be computed using first-order abduction
(see, e.g., Marquis [1991] and Cialdea and Pirri [1993]). Here, A is the action theory, C is
the set of temporal-spatial constraints, and ψ is the formula explaining the observation
∃x, t Poss(startπ (x, t), σ ); that is, ψ is the formula to be added to ensure the inference.

Examples of such processes are reported by Finzi and Pirri [2005, 2010], Carbone
et al. [2008], Pirri and Reiter [2000], and Pirri [2011] in the framework of Situa-
tion Calculus [Pirri and Reiter 1999]. However, processes are defined in several other
frameworks, as, for example, in STRIPS, Graphplan, and PDDL [Blum and Langford
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1999; McDermott 2003; Fox and Long 2003; Fikes and Nilsson 1971]. Each of these
has its own advantages in terms of expressive power, computational feasibility, and
constraints expressible in the language. When robot planning requires the orchestra-
tion of all components according to temporal constraints, the planning system usually
takes advantage of temporal networks to manage temporal constraints [Allen 1983;
Dechter et al. 1991; Vilain et al. 1986; Block et al. 2006; Morris et al. 2001]. Here,
we use Situation Calculus to model high-level control of robot processes because of its
expressive power both for managing parallel processes and time-space constraints and
for defining interference and reconfiguration cost. The stimuli and stimulus-response
model proposed in this work could be built on any action theory that handles robot
components, processes, and constraints and is able to express robot mental state at
a precise time, together with all cause-effect relations affected by the response. This
need is clarified in the next section, where we compute the cost of an explanation.

6. TO SWITCH OR NOT TO SWITCH

We are now at a point in the formalization of the stimulus-response where we can
illustrate how a decision can be taken about whether to respond to a stimulus. To
illustrate the decision problem, we continue with the WiFi disconnection example.

Example 6.1. The robot is executing task τ10, expecting to approach victims in
a rescue area. At time t, the process πWiFi get disconnected, hβ(zWiFi) = 1; hence
E(xWiFi, t) = 1. Therefore, the action endWiFi becomes possible, and process πWiFi is
interrupted. From table A, the robot is advised to switch to task τ4, which corresponds
to recovery WiFi signal, so it can choose between continuing the current task without
the WiFi signal or switching to task τ4. To make the switch, it has to discontinue
several active processes in τ10 (see the Table VII in Appendix A), and it has to activate
only process π1,C11 , which is read access to missing data, because all others required
processes are already active in τ10. However, the constraints of the kind πiopkπ j in the
processes have changed, and they need to be recomputed in the new task τ4. Therefore,
the system has to rate the effort and risks that its choice implies.

Here, we assume that before any decision to switch is taken, the response tasks to
switch to has been selected according to the scores given by matrix A (see Section 4).
We first consider the switching cost, given the best scored task to switch to. The cost
to switch from the current to a new task breaks down into a reconfiguration and an
interference cost with respect to a specific task. To these costs we may add a second
reconfiguration cost if we need to return to the current task.

Reconfiguration cost: This is the cost to reconfigure the current robot state, which
amounts to activating new processes πR1 , . . . , πRm. More precisely, the reconfiguration
cost calculates the effort the system has to invest to infer all the transition and precon-
dition axioms that are required to make processes πR1 , . . . , πRm executable by the robot
at the current state.

Interference cost: This is the cost needed to terminate active processes πS1 , . . . , πSk

specifying the current task, which are either not needed or would hinder the newly
chosen task.

Let τi be the current task under execution, and let τ j be a chosen task. Let �R =
{πR1 , . . . , πRm} be all the processes that need to be activated to operate task τ j and which
are not yet active, and let �S = {πS1 , . . . , πSk} be all the active processes that need to
be turned off. Then, according to Equation (21), there is a set of formulas � and a set
of formula � that must be inferred to explain, respectively, how processes �R can be
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activated and how processes �S can be turned off:

A ∪ C ∪ � |= ∃x, t
∧m

i=1 Poss(startπRi
(x, t), σ ) ∧ ∧

i �= j πRi opπRj [ i, j], ∀πRi ∈ �R

A ∪ C ∪ � |= ∃x, t
∧k

i=1 Poss(endπSi
(x, t), σ ) ∧ ∧

i �= j πSi opπSj [ i, j], ∀πSi ∈ �S.

(22)
Note that � and � are not necessarily minimal explanations (see Marquis [1991] and
Cialdea and Pirri [1993] for the minimality problem in computing first-order explana-
tions), but we might assume here that these explanations nevertheless minimize the
action sequences.

The cost of reconfiguration and interference amounts to computing the cost of these
statements. We define the cost considering first the terms of the language; namely,
variables and functions of any arity. We exclude from the cost evaluation the terms
mentioning variables of sort situation and variables of sort action: For example do(a, s)
is excluded, but not do(A(x), S0) since S0 is a constant of sort situation and the action
term A is not a variable. Let η be a term of the language; the cost of η is inductively
given by the function ν, defined as follows:

ν (η) =
⎧⎨⎩

0 if η does not mention terms of sort action
1 if η = startπ (x, t) or η = endπ (x, t)∑k

i=1 ν (Ai) if η mentions A1, . . . , Ak terms of sort action
(23)

Here, t is a term of sort time and x is a list of terms (i.e., variables, constants,
functions of any arity) of any sort. Now, to extend the cost computation to formulas,
we consider the following restrictions. Let ϕ ∈ L; we assume that ϕ either does not
mention terms of sort action and situation or, if it does mention them, these are in
the form do([A1, . . . , Am]), with none of the action terms Ai as variables. Then, let
DNF(ϕ) = Qx[C1(x1) ∨ · · · ∨ Cm(xm)] ≡ ϕ be the equivalent transformation of ϕ into
DNF; namely, into disjunctive normal form in which each clause Ci(xi), 1 ≤ i ≤ m,
is a conjunction of literals, with xi terms varying on all sorts. Variables mentioned in
xi are included in x and bound by the quantifiers matrix Qx. Clearly, any variable x
appearing in xi can neither be of sort action nor situation. Then the cost of the formula
ϕ is inductively defined as follows:

cost (ϕ) =
⎧⎨⎩

ν (x) if ϕ = L (x) is a literal∑
i cost (Li (xi)) if ϕ ≡ Qx

(
L1(x1) ∧ · · · ∧ Lk(xk)

)
min{cost(Ci(xi))} if ϕ ≡ Qx

(
C1(x1) ∨ · · · ∨ Cm(xm)

) (24)

Note that if ϕ is a tautology, then ϕ can be reduced to a tautology—namely ϕ ≡
B∨ ¬B∨ C, for any clause C. Hence, min{cost(ϕ)} = 0, since B does not mention terms
of sort action. On the other hand, if ϕ is a contradiction, then ϕ ≡ B∧¬B∧∧

i ψi for any
conjunction

∧
i ψi of literals of L. Hence, cost(ϕ) = min{∑i cost(Li)}, with

∑
i cost(Li)

tending to infinity since we may take any literal from the language and with any
sequence of actions as argument. Finally, given a set of formulas �, the cost of � is the
sum of the costs of each ψ ∈ �.

We are now ready to determine the cost for inferring the explanations needed to
activate a preferred task τ j in terms of the cost of the preconditions and constraints
for τ j , at time t, according to Equation (22) and in terms of discontinuing a number of
processes occurring in the current task τi. Given Equation (22), the cost of inference
for switching is:

switchCost(〈τ j, τi〉, t) = cost(�, t) + cost(�, t) + J cost(� ′, t′), t′ > t, q ∈ {0, 1}. (25)
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Fig. 3. The switching costs for the task τ12, data retrieval (see Table VII ). The up-rows indicate the processes
the task is assembled from and their yields. In the left column are the tasks that obtained the maximum
switching score in score matrix A. The gray cells indicate the average normalized switching cost to the
preferred task, indicated in the left column.

Here, � ′ is like �, but it is the cost of returning to the current task after the task the
robot has switched to is completed. If J = 0, there is no need to return to the current
task τi.

Having obtained the switching cost and knowing the response task for the triggered
stimulus, we can compute the payoff. Here, the payoff is simply the culmination of
the stimulus-response problem and it is, indeed, the payoff for switching. Let RS be a
function specifying the choice of switching and RI the analogous function for inhibition.
Then the payoff for switching is simply RS − RI .

Obviously, we expect to attribute the switching cost to RS. However, if the switching
cost is computed before any decision is taken, then this is like attributing the cost to
both RS and RI . In fact, by its definition, computing the switching cost is the same as
abducing the set of explanations needed to activate the new task and deactivating the
current state; thus, it follows that this inference process ends up weighting the decision
well before the decision is taken.2

Therefore, to both correctly define the two functions and to avoid burdening the
decision, the switching cost can be replaced by a prediction of it. To predict the switching
cost, as defined in Equation (25), two steps are needed:

(1) Define a trend of the switching cost according to time, in terms of the sequence of
actions entering the σs of the two logical implications in Equation (22).

(2) Produce an estimate of the switching cost for different time durations of the current
task.

To this end, we generate a number of action sequences for as many time lapses within
a time range bounded by 120 minutes. For each of these samples, the cost given in
Equation (25) is computed. An example of the averages of the normalized switching
cost for task τ12—namely, data retrieval—is given in Figure 3 with respect to each of the
response tasks to the stimuli that can be triggered by each of the processes composing
the execution of task τ12.

The trends of the switching cost for a task are established with respect to each of
its processes and for each of the response tasks to the stimuli of its process yields;
therefore, it is defined for each pair 〈τi, τ j〉. Once the trends are obtained, the switching
cost is approximated by its frequencies with respect to time.

To estimate the cost distribution, we define a bivariate random variable X taking
values in the domain T imes × SwitchingCost for each pair 〈τi, τ j〉. The realization of
the bivariate variable X is computed by a nonparametric density fX measuring the
switching cost frequencies to discontinue the current task τi and activate task τ j . Here,
we use a Gaussian kernel to estimate kernal density, as we did in Section 3; here,
however, we have a bivariate estimator (time and cost), so we define the kernel density

2Computing the explanations for switching can be viewed as the intellectual work that the system performs,
as opposed to the practical and physical work of executing tasks.
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Fig. 4. Kernel density fX for switching cost from the task τ12 to task τ4, showing frequencies of switching
cost in a time lapse of 120 minutes, taken with respect to 10 cost trends.

for a generic task as follows:

fX(x) = 1
n

n∑
i=1

1
det(H)

K(diag(H−1)�(x − Xi)). (26)

Here, K(υ) = 1√
2π

exp (− 1
2υ2) and H = n−1/6�1/2, where � is the diagonal covariance

matrix of the samples; namely, H follows the Scott’s rule of thumb, and diag(·) indicates
the diagonal. The grid has resolution H, and the bivariate Xi is built using samples
from the switch cost trend taken at time t for different action sequences. The switching
cost density for tasks (τ12, τ4) is illustrated in Figure 4, where time is presented in
minutes. To compute the modes of kernel density, we proceed as in Section 3. Let
υi = diag(H−1)�(x − Xi) and diag(H) = (h1, h2)�; then the gradient of fX is:

∇ fX(x1, x2) =
{

1
n

n∑
i=1

− 1
hjdet(H)

K(υi)υi

}
j=1,2

=
{

− fX(x1, x2)

(
x1

h2
j

+ x2

det(H)

)

+1
n

n∑
i=1

1
det(H)

K(ui)

(
Xi1

h2
j

+ Xi2

det(H)

)}
j=1,2

(27)

As in Section 3, the modes x̂ are collected by gradient ascent. The modes return the
best prediction of the bivariate x. Where the probability of x is below a threshold ε or
where the probability is high but the estimated switching cost (given time t) is beyond
the effort the robot system can afford, then we introduce a time failure. These failures,
that can be collected for each pair 〈τi, τ j〉, are best explained with an example.

Example 6.2. Continuing Example 6.1, consider the pair (τ10, τ4) at time t = 72.
According to the cost trends, the nonparametric function fX(x) is drawn, and it has
modes at T = (35, 71, 110, 119). At these times, the cost rates are (0.3, 0.5, 0.7, 0.9).
Let ε = 0.6 be the maximum cost the robot can afford to switch. Since t = 72, it follows
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that the cost can be afforded. If t were 110, then the rate would be 0.7 > ε; hence, we
would obtain a failure in the cost computation.

We collect the time to process failure by establishing the switching cost between
〈τi, τ j〉 from the modes x̂ of fX(x) as in the following set, where sc is switching cost, and
ε is the threshold for the effort the robot can afford:

{ti | (ti, sci) ∈ x̂, fX(̂x) < 10−2 ∨ sci > ε}. (28)

Time to failure of the switching cost amounts to the belief that, at the specific time,
either the effort of computing the state update is not affordable, or the switching cost
value cannot be predicted. This time to failure is independent of any previous decision.
Therefore, its best approximation is the exponential distribution with a constant hazard
function; that is, it has no burn-in cost. Let Usc be a random variable with exponential
distribution, with failure rate3 α = 1/θ ′ :

FUsc (z) = 1 − exp (−αz), CDF
fUsc (z) = α exp −(αz), PDF.

(29)

The reliability for time to failure of the process establishing the switching cost is
RUsc (t) = 1 − FUsc (t) = exp (−αt).

At this point, we consider the time to failure of the current tasks τi and the chosen
task τ j . To estimate a task’s time to failure, we introduce a random variable Wτ whose
probability distribution indicates beliefs about the likelihood of failures time. The
random variable Wτ is characterized by a Weibull distribution with parameters (β, θ ),
with θ the average time to failure and β the failure rate4 (decreasing if 0 < β ≤ 1 and
increasing for 1 < β < 3.5):

FWτ
(z; β, θ ) = 1 − exp

(
−

( z
θ

)β
)

, CDF

fWτ
(z; β, θ ) = β exp (− ( z

θ

)β)
( z

θ

)β−1

θ
, PDF.

(30)

Here, β is increasing, 1 < β ≤ 3.5, and θ ranges between 0 and 120 minutes. Then, the
reliability of task τi is RWτi

(t) = P(Wτi > t) = exp (−( t
θ
)β) at t; namely, the probability

that the task will continue without failures for time t < Wτi ≤ tend, needed to wrap
up. For the reliability of the task sequence 〈τi, τ j〉, we consider the reliability function
R〈Wτi ,Wτ j 〉(t):

R〈Wτi ,Wτ j 〉(t) = P(Wτ j > t)P(Wτi > t) = (1 − FWτi
(t; β1, θ1))(1 − FWτ j

(t; β2, θ2))

= exp

⎛⎝−
∑

i∈{1,2}

(
t
θi

)βi

⎞⎠ .
(31)

This expression can be extended to three tasks in sequence.

3Here, α indicates the failure rate and differs from the denotation of confidence level given in Section 3.
4Here, β denotes the rate parameter of the Weibull distribution and differs from the parameters used in
Section 3. Note that if β = 1, then the Weibull reduces to the exponential distribution.
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Fig. 5. Examples of reliability of the current task (the dashed black line) against the reliability of the
parallel composition of the switching cost reliability with the sequence formed by the current task τi and the
chosen task τ j .

Finally, the reliability of the combination of the two tasks, taken in sequence, and the
switching cost estimation, taken in parallel with the two tasks, is defined as follows:

R(〈Wτi ,Wτ j 〉||Usc)(t) = P(Wτ j >t)P(Wτi >t) + P(Usc > t) − P(Wτ j >t)P(Wτi >t)P(Usc>t)

= exp (−tα) + exp

⎛⎝−
∑

i∈{1,2}

(
t
θi

)βi

⎞⎠ − exp

⎛⎝−tα −
∑

i∈{1,2}

(
t
θi

)βi

⎞⎠.

(32)
At this point, we can see that R(〈Wτi ,Wτ j 〉||Usc)(t) and RWτi

(t) are the two sought for functions
RS and RI introduced earlier, and, therefore, the payoff for switching is:

payoff = R(〈Wτi ,Wτ j 〉||Usc)(t) − RWτi
(t). (33)

Clearly, if at the given time t, RWτi
(t) < R(〈Wτi ,Wτ j 〉||Usc)(t), then the payoff is positive

and switching is convenient; otherwise it is negative or null. Some examples showing
reliability are illustrated in Figure 5. The simulation-based computation for task time
to failures is reported in the Appendix A.7, and experiments computing the payoff for
switching are reported in Section 7.3.

7. EXPERIMENTS

In this section, we present the results of experiments undertaken to evaluate the pro-
posed framework’s performance. In Section 7.1 , the performance of the stimulus model
is tested. In Section 7.2, we evaluate the generalizability of the score matrix A, de-
scribed in Section 4. In Section 7.3, we test the switching decision described in Section 6.
The whole framework is tested in Section 7.4. Finally, in Section 7.5, we compare
the performance of the stimulus-response framework with two different approaches to
robot replanning [Beetz et al. 2010; Talamadupula et al. 2010; Göbelbecker et al. 2011].
For all experiments, we recruited 20 operators between 26 and 32 years of age, in good
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Fig. 6. (a) Simulated disaster area. (b) Obstacles located to the disaster area. (c) Operator interacting with
the robot through the task switching interface.

Fig. 7. Performance of the stimulus model: ROC curve of the true and false positives as the time range,
indicated in brackets, changes.

physical conditions. Each operator performed up to 10 trials using the task switch-
ing interface (see Figure 6(c)) and choosing a task from the task library described in
Section A.3, in Appendix A.

7.1. Performance of the Stimulus Model

The performance of the stimulus model is evaluated by the ROC curve of both the true
and false stimuli over a varying time range, with the stimulus occurring in the range.
The performance of the model is measured on a testset, collected as follows. Once a task
is chosen, the operators manually label the yields of the running processes upon the
occurrence of a stimulus. The yields, labeled by the operators, were compared with
the results of the stimuli classification provided by the model (Section 3). Both cor-
rect classifications and mismatches are noted, considering the reference time interval
[init, end] centered at the time the operator notified occurrences of stimuli. Figure 7
shows the ROC curve of the stimulus model with respect to the size of �t. The trend
reports the percentage of true positives versus false positives for every considered time
range. Then,

[−2, 2
]

is taken as the reference time interval to evaluate the correctness
of the stimulus model, due to the tradeoff between the false and true positives.

7.2. Generalizability of the Score Matrix A

The generalizability of score matrix A is measured according to the convergence of
the Mean Square Error (MSE) with respect to two different values of rank d of the
matrices Q and P, factorizing A (Section 4). The dataset for both stimuli and responses
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Fig. 8. Learning curve for the score matrix A given two different rank values of the matrices Q and P,
factorizing A: (a) d = 4 and (b) d = 10. The curve is derived with a k-fold cross-validation technique.

to them is gathered by operators in the field as they execute tasks chosen from the
task library via the task switching interface set to active mode (see Section A.5 in
Appendix A). The operator responds to a stimulus by either switching or continuing–
inhibiting the stimulus. A k-fold cross-validation technique on the gathered dataset is
used to assess the generalizability of the model. Figures 8(a) and 8(b) show the average
of both the MSE training and cross-validation error under two different values (d = 4
and d = 10, respectively) specifying the rank of the matrices Q and P. Indeed, d = 10 is
the reference value of the rank. The completed score matrix, resulting from the cross-
validation process, is given in Tables XI and XII in Appendix A. The MSE error with
respect to the training set is shown in Figure 2.

7.3. Reliability Tests and Payoff

This experiment computes the payoff of switching, taking into account both the time
to failure for each task and the time to failure for the switching cost, as described in
Section 6 (see Table XIII in Appendix A). Table III lists both the values of the reliability
RWτi

(t) of the tasks that the robot was executing before the occurrence of the stimulus
and the reliability R〈〈Wτ j ,Wτi 〉||Usc〉(t) of the combination of the current tasks with the
tasks to switch to. The indices of the tasks in Table III are made explicit in Table VII
in Appendix A. The choice of switching, given the payoff, is indicated in the last column.
These data are used in Section 7.4 to evaluate the whole stimulus-response framework.

7.4. Experimental Evaluation for Task Switching

In this experiment, we compare system decisions with operator decisions. The set of
robot tasks are variations of task τ10; namely, approaching a number of objects located
in the experiment area and already reported in the 3D map. A number of stimuli
are purposefully triggered: battery exhaustion, WiFi disconnection, write access to
full memory, and read access to missing data. During execution, robot choices along
with payoff values and the log for reliability computation are recorded (see Section 6).
In parallel, the responses selected by the operator via the task-switching interface
are recorded. Note that the operator does not have to choose the preferred task from
the score matrix A, as the robot will do. Furthermore, the operator does not see the
robot’s choices, to ensure unbiased decisions. The gathered data were used to build the
sequences of task choices for both the robot and the human operators. In Figure 9,
we report one run, among all those collected, showing operator and robot choices in
parallel. Comparing these sequences, we note that in more than 90% of the cases the
model of task switching correctly induces the robot to shift to the same task as that
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Table III. Reliability Examples Used in Experiment 7.4

Time Current Task Candidate Task RWτi
(t) R〈〈Wτi ,Wτ j 〉||Usc〉(t) Task Switching

11 τ10 τ4 .3065 .4150 Yes
22 τ10 τ6 .3375 .4387 Yes
34 τ10 τ12 .4571 .4705 Yes
45 τ10 τ5 .3917 .4955 Yes
70 τ10 τ4 .2736 .3272 Yes
76 τ4 τ12 .3018 .6043 Yes
89 τ10 τ6 .4181 .5361 Yes
103 τ10 τ12 .3894 .2840 Yes
124 τ10 τ5 .5083 .6735 Yes
134 τ5 τ4 .5310 .5649 Yes
158 τ10 τ12 .2739 .3770 Yes
164 τ12 τ4 .3366 .5213 Yes
179 τ6 τ4 .3861 .6015 Yes
202 τ10 τ5 .2991 .3127 Yes
217 τ5 τ4 .3305 .3820 Yes
246 τ10 τ12 .5937 .6436 Yes
273 τ10 τ4 .4031 .4036 Yes
302 τ10 τ6 .3593 .5912 Yes
321 τ10 τ5 .2859 .3683 Yes
344 τ10 τ12 .2039 .3091 Yes
366 τ10 τ4 .3709 .5905 Yes
395 τ10 τ5 .1901 .2197 Yes

Fig. 9. Sequences of task choices according to both the robot and the human operator, performed during
the mission of approaching selected objects positioned in known places in the experiment area. Vertical
lines denote the occurrences of the stimuli at different times. In more than 90% of the cases, task switching
correctly induces the robot to shift to the same task as that selected by the operator. In more than 41.1% of
cases, the robot anticipates the operator in shifting. At time t = 11 sec., as well as at time t = 217 sec., the
operator inhibits the stimuli while the robot switches to a new task.
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selected by the operator. Among the percentage of correct robot switches, 41.1% happen
in advance. At time t = 11 sec., as well as at time t = 217 sec., the operator inhibits the
WiFi disconnection stimulus, while the model induces the robot to switch to the signal
task recovery.

7.5. Comparison with Robot Replanning

For this experiment, we considered two approaches to robot replanning. The first [Beetz
et al. 2010] is based on the implementation of execution-monitoring (CRAM-EM) in the
CRAM plan language. In this implementation, stimuli are explicitly modeled either as
intrinsicStateChangeEvents or as physicalEvents. Each of these events is associated
with a recovery procedure. The execution-monitoring determines whether the occur-
rence of an event can affect the successful outcome of the execution of the current
plan. In such a case, the monitor generates a new plan on the basis of the set of pre-
defined failure recovery procedures whose execution is intended to restore the state
of the task at hand. The second case [Talamadupula et al. 2010; Göbelbecker et al.
2011] is based on the implementation of a deterministic action goal-oriented POMDP
(DAGO-POMDP) in Decision Theoretic PDDL, in which all actions have no-zero cost,
and an optimal policy can be formulated as a finite horizon contingent plan. Stimuli are
modeled as perceptual propositions (i.e., percepts). Tasks are associated with stimuli by
suitably assigning either high-value rewards or low-value costs to the actions needed to
execute the tasks. In this implementation, plans are possibly rebuilt online to react to
changes in the underlying domain (e.g., when goals are modified or when stimuli occur).
Details about the implementation of both approaches are out of the scope of this work.
The experiments were performed in a real partially destroyed area (see Figure 6(a)),
where robot can overcome some of the obstacles (see Figure 6(b)).

The performance of the model of task switching with respect to both CRAM-EM
and DAGO-POMDP replanning approaches was evaluated by measuring the follow-
ing indexes: (1) the time average of reaction to stimuli (MSRT); (2) the time average
of response to stimuli (MRST); the average time of mission accomplishment (MMA);
(4) the ratio between the number of switches performed by the task switching model
and the number of replanning instances, where the response to stimuli provided by all
the models is the same (SWRPC); (5) the ratio between the number of switches and
the number of replanning instances, where responses are different from each other
(SWRPD); and, finally, (6) the ratio between the number of times the task switching
model inhibited the stimulus and the number of times both CRAM-EM and DAGO-
POMDP decided to replan (IRP).

MSRT measures the average time elapsed between the occurrence of a stimulus and
its identification. For CRAM-EM, this time corresponds to the average time elapsed
between the occurrence of the stimulus and the detection of the corresponding event.
For DAGO-POMDP, this is the average time elapsed between the occurrence of the
stimulus and the decision to rebuild the plan in reaction to it. MRST represents, on
average, the time needed to select the best response to the stimulus (e.g., shifting or
continuing). For both replanning approaches, this index denotes the average time spent
for replanning. To measure these indexes, the experiments were set up as follows. The
robot is instructed to autonomously approach an object whose position is known on
the given 3D map. The time estimated to accomplish the task is about 20 min (this
is a large area). The task ends when either the estimated time expires or the robot
reaches all the targets. The occurrence of a stimulus on WiFi signal quality and on
battery power level is simulated after 6 min. and after 12 min. from the beginning of
the task, respectively. The signal associated with a stimulus is kept up for 2 min. The
pulse of the signal has a trapezoidal profile. The choice of a reduced number of stimuli
is motivated by the fact that we want to bound the domain of both different approaches
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Table IV. Time Comparison with Robot Replanning

Model MSRT (sec.) MRST (sec.) MMA (sec.)
Stimulus-Response 51.49 88.17 837.86

CRAM-EM 70.94 159.03 1093.72
DAGO-POMDP 69.22 131.07 961.91

Table V. Performance Comparison with Robot Replanning

Model SWRPC SWRPD IRP

CRAM-EM .45 .30 .25
DAGO-POMDP .60 .15 .25

to replanning. This guarantees the applicability of the two approaches to replanning.
Both the duration and the profile of the pulse associated with a stimulus have been
chosen to test the degree of proactivity of the stimulus-response, but also to allow both
CRAM-EM and DAGO-POMDP to infer plans that avoid stuck conditions for the robot.
On the other hand, the static setting of the environment allows us to make repeatable
trials. In this setting, 20 trials were performed.

Table IV reports the results obtained from measuring the time indexes MSRT, MRST,
and MMA. The MSRT index of the task switching model is lower than the indexes of the
other models. The main reason is that the stimulus model anticipates the identification
of the stimuli (see Section 3). Instead, both CRAM-EM and DAGO-POMDP require
that the amplitude of the signal associated with a stimulus reaches a certain threshold
in order to detect the stimulus. Both CRAM-EM and DAGO-POMDP perform a state
space search to generate new plans in the replanning phase, whereas the task switching
model use the payoff model to select the best choice for a new task (see Section 6), so no
state space search is required. Therefore, the MRST time index of the proposed model
is the lowest.

The task switching model demonstrated better performance in terms of time needed
to accomplish the mission. In fact, the model can compromise between brave and
conservative behavior, which is not allowed in a purely reactive framework. The pro-
posed model is able to inhibit the stimulus, and thus balance continuous changes by
preserving focus on the task at hand if switching is too demanding. This behavior
outperforms the purely reactive behavior of both CRAM-EM and DAGO-POMDP. The
SWRPC, SWRPD, and IRP indexes reported in Table V validate these considerations,
also showing that the robot not only behaves more rationally but also more rapidly in
accomplishing a mission.

In addition, the indexes MSRT, MRST, and MMA highlight that the system is more
flexible than both CRAM-EM and DAGO-POMDP. The first column of Table V shows
that the robot chooses to switch only in the 45% and 60% of cases in which the other
two models decided to replan. On the other hand, the values of the indexes in the
second column of Table V show that the task selected, when switching is the choice, are
different; this is due to the lack of a stimulus-response matrix learned from humans
in the other two models. Therefore, replanning in both CRAM-EM and DAGO-POMDP
is wired into the behavior and not learned. Finally, the values of the IRP index in the
third column of Table V show the ability of the task switching model to be conservative
with respect to the task at hand.

These considerations prove that the task switching model, by exploiting both high-
level reasoning and learning from operators, effectively harmonizes robot choices with
context requests by conjugating a rational behavior with a flexible one.
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8. CONCLUSION

In this work, we proposed a model for robot stimuli and stimulus-response that can
significantly improve robot control in general, and particularly in the robot’s interaction
with the environment. The proposed approach indicates a new way to address robot
cognitive control by showing that interaction with the environment can be proactive if
stimuli are taken into account not individually but as a whole system whose specific
aspects can be learned by interacting with human users. This gained flexibility in
robot control can increase the usability of the robot, especially for operators who have
to deal with it in extreme environments like first-responder training areas or even
post-disaster environments.

Our approach is completely novel, and, to our knowledge, no other approach to robot
cognitive control has developed these ideas. The proposed method is supported by a
full implementation in an advanced robot platform endowed with multiple abilities
to perform several tasks, in which the interplay with operators plays a crucial role
for both learning and evaluating performance. Our approach is inspired by the wide
psychophysical and psychological literature on human patterns in stimulus-response
and task-switching, although we have provided an integrated model that is tailored for
a robot system and is replicable for other robotic platforms.

Only recently has the need to model the stimulus-response pattern leading to task
switching and the cognitive functions of shifting and inhibition become a hot topic in
cognitive robotics [Medina Ayala et al. 2012; Nakano et al. 2011; Ganesh and Burdet
2013; Ajoudani et al. 2013; Ding and Fang 2013; Tao et al. 2012; Li et al. 2013; Sung
et al. 2013; Jamone et al. 2013; Saglam and Byl 2013; and Li and Cheah 2012]. The
earliest studies were carried out within brain-actuated interaction [Milln et al. 2004],
mechatronics [Capi 2007], behavior learning [Ito et al. 2006], navigation [Althaus and
Christensen 2003], and planning [Finzi and Pirri 2005]. Recently, several studies
posited the need to model task switching to cope with adaptivity and ecological be-
haviors in a dynamic environment [Capi et al. 2008; Suzuki et al. 2009; Wawerla and
Vaughan 2009; Durkee et al. 2011; D’Ambrosio et al. 2011].

In building the stimulus model, the main difficulties we encountered were due to
the experimental setting and data collection from several operators. This led us to
provide an outliers rejection method specifically for the stimuli; this method supports
the selection of the training set on the basis of the features manifold eliciting the
stimuli. This turned out to be a good solution to transfer training data acquired by
human operators to the robot training set. To learn the stimulus-response selection,
we still used several operators, but to infer unknown data we use low-rank matrix
factorization methods [Zhang et al. 2012; Chen 2008; Buchanan and Fitzgibbon 2005;
Canny 2002] widely employed in recommendation systems and collaborative filtering
[Ko and Lee 2002; L. Herlocker et al. 2004]). This model has proved suitable to estimate
the latent parameters underlying stimulus-response mapping, as well as to predict the
weights given by each stimulus to each response, which are missing in the observed
data.

The problem of shifting and inhibition induced by stimuli was modeled by a switching
cost, obtained by conjugating a cost to reconfigure the robot state for the new goal and
the cost to resolve interference with the current activities set. Finally, the decision
problem culminates in the definition of the payoff for switching, which requires us to
consider the risk and effort in computing the cost. We used time to failure to combine
the whole effort and predict the reliability of all the decision components to calculate
the payoff for switching.

We also introduced a connection between stimuli and reasoning level by defining a
boundary shared by the two levels via the mapping E that plays the role of transduction,
lifting the terms from the sample space of features, where yields are sampled, to the

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 4, Article 21, Publication date: January 2015.



A Stimulus-Response Framework for Robot Control 21:27

terms of the language. Thus, logical inference provides the grounds for the causal and
constraint relations among processes carrying the information driven by stimuli. The
logical structure is also the framework within which both processes and the robot’s
mental states can be defined, and it is where the reconfiguration and interference costs
can be fully interpreted.

The proposed method improves both autonomy and flexibility in robot control. Fur-
thermore, according to the experiments done to verify the coherence and rationality
of robot behaviors with respect to operator behavior while teleoperating the robot, the
approach proves to be very promising for improving the proactive interactions with the
environment required by a robot relating to people and their needs.

Comparing the proposed framework with two other approaches to robot replanning,
both robot flexibility and performance, in terms of time and tasks choices, are improved.
It follows that robot usability also is improved since user stress can be reduced by
limiting the workload that continuous monitoring of robot activities demands of the
operator.

A. APPENDIX: IMPLEMENTATION

A.1. Hardware Description

The robotic platform is designed for harsh, unmanned environments. These are large-
scale environments where robot missions last for long time periods and several events
and stimuli burden the robot’s exploration and reporting activities.

The robot platform c©BlueBotics, named Absolem, has a central body where the elec-
tronics is located and has two bogies on the sides. Each bogie is made of a central track
for locomotion and two active flippers on both ends to extend the climbing capabilities.
A breakable passive differential system allows the rotation of the bogies around the
body. Several sensors are installed on the platform, among them a rotating 2D laser
scanner, an omnidirectional camera with a 360-degree field of view, an IMU/GPS, and
a panoramic microphone.

A.2. Low-Level Robot Functionalities

The robot’s Simultaneous Localization and Mapping (SLAM) is based on a real-time
3D ICP [Pomerleau et al. 2013]. A Dead Reckoning Navigation System (DRNS), based
on a Complementary Filter (CF), estimates the Euler angles of the robot body from
the fusion of both odometry and the IMU inertial data [Cao et al. 2009; Kubelka and
Reinstein 2012]. Both ICP-based SLAM and DRNS provide, at real-time, the pose of
the robot as a feedback to the Trajectory Tracking Controller (TTC) [Gianni et al.
2013b]. Static traversability cost assessment of the ground, from point cloud data, is
performed by both physics-based terrain [Stoyanov et al. 2010; Papadakis and Pirri
2012] and physical constraints analysis [Cafaro et al. 2013]. Visual perception of the
environment is limited to object (e.g., signs, cars, and persons) detection accomplished
with an omnidirectional camera [Hurych et al. 2011].

A.3. Robot Model

The robot model provides a representation of both the hardware and software com-
ponents and of the processes activated by each component. For example, the SLAM
software module is modeled as a component, whereas the mapping and localiza-
tion functionalities are represented as processes managed by the SLAM component.
Table VI lists the main components and processes of the robot system model. Here, by
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Table VI. Components and Processes of the Robot Model

Component Id Component Description Process Id Process Description

C1 Battery π1,C1 Power Level Monitoring
C2 WiFi π1,C2 Connection Management

C3

π1,C3 ROS Drivers Running
3D Laser Scan π2,C3 Laser Rotating

π3,C3 Scanning

C4

π1,C4 ROS Packages Running
SLAM π2,C4 2D Mapping

π3,C4 3D Mapping
π4,C4 Localizing

C5

π1,C5 ROS Drivers Running
Vision System π2,C5 Calibrating

π3,C5 Streaming

C6

π1,C6 ROS Packages Running
Visual Perception π2,C6 Detecting Object/Person

π3,C6 Recognizing Object/Person

C7

π1,C7 ROS Drivers Running
Robot Engine π2,C7 Locomotion System Monitoring

π3,C7 Temperature Monitoring
π4,C7 Locking Differential Drive

C8

π1,C8 ROS Packages Running
Trajectory Control π2,C8 Planning

π3,C8 Tracking

C9
Dialogue π1,C9 Human to Robot Exchanging msg

π2,C9 Robot to Human Exchanging msg

C10

π1,C10 ROS Drivers Running
Microphone π2,C10 Hearing

π3,C10 Speech Recognizing

C11

π1,C11 Data Reading
Memory π2,C11 Data Writing

π3,C11 Memory Checking

C12
IMU π1,C12 ROS Drivers Running

π2,C12 Robot Pose Estimating
C13 ROS Master Core π1,C13 ROS Core Running

C14
Central Processing Unit π1,C14 Payload Monitoring

π2,C14 Temperature Monitoring

C15

π1,C15 ROS Packages Running
π2,C15 Traversability Analysis

Terrain Analysis π3,C15 Ground Subtracting & Analysis
π4,C15 Obstacle Detecting
π5,C15 Adapting Robot Morphology

C16
Diagnostic π1,C16 System Check

π2,C16 Repair

Ck we denote the k-th robot component and by π j,Ck the j-th process managed by the
k-th component.

A set of robot processes defines a task. This set of tasks forms the robot task library.
For example, the task to overcome an obstacle requires that all the processes managed
by the 3D Laser Scan component are active, that the 3D mapping process is running,
and that the process adapting robot morphology to the terrain provides the correct
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positions for the flippers. Table VII lists the set of tasks designed in agreement with
the available robot functionalities. Here, by τi we denote the i-th task in the task library.
The right column in Table VII lists all the processes that need to be activated for the
robot to perform the corresponding task.

Each process yields a quantum of information with characteristic features. This
quantum of information is called the yield of the process. For example, the process
monitoring the temperature of the robot engine outputs, over time, the servo-motors
temperature. The information carried by the processes regulates the robot’s behaviors.
For example, the engine temperature could reach a critical level and damage the robot
servo-motors. The critical engine temperature level, as well as the loss of the WiFi
connection between the robot and the remote command post, are stimuli, and they are
identified from the process yields. Table VIII lists a description for each robot stimuli.
Note that each process can trigger a single stimulus; therefore, the number and types
of stimuli are determined by the number and types of processes and these, in turn, are
determined by the number and types of robot components. In the table, the term yπ j,Ck

denotes the stimulus triggered by the yield of the j-th process managed by the k-th
component Ck.

A.4. Robot Control

Robot control is defined by a declarative temporal model of its activities and a planning
engine. The declarative temporal model is specified in the Temporal Flexible Situation
Calculus (TFSC) [Finzi and Pirri 2005; Carbone et al. 2008] so that the main com-
ponents and processes of the robot system reported in Table VI are represented by
cause-effect relationships as well as by the temporal and spatial constraints among
the processes [Pirri and Reiter 2000; Finzi and Pirri 2005], as discussed in Section 5.
Planning is composed of two main logical modules: the plan generator and the execu-
tion monitoring. The plan generator relies on a library of Prolog scripts that designates
the set of tasks (see Table VII) that the robot can perform according to the speci-
fied processes, their temporal constraints (compatibilities), and their preconditions.
Execution-monitoring is a continuous process ensuring that both the set of action se-
quences generated by the plan generator according to the TFSC model and the current
state of the domain knowledge are consistently executed. The execution monitoring em-
beds the model of task switching to regulate the behavior of the robot in responses to
the incoming stimuli. Both the TFSC model and the planning engine are implemented
in Eclipse Prolog [Apt 2006], which optimally combines the power of a constraint solver
(for time and compatibility constraints) with inference in order to generate the set of
action sequences and also to enable continuous updates from incoming new knowledge
by using finite regression [Pirri and Reiter 2000].

The distributed working memory structure interconnects the TFSC model and the
planning engine with the task switching engine and with the robot functionalities
that are integrated in the ROS Operating System (ROS) [Quigley et al. 2009] (see
Figure 10). The structure is distributed over a collection of ROS services, organized as
a set of addressable memory registers. In addition to the usual reading and writing
operations, the structure provides additional operations like memory dumping and
update acknowledgment operations, suitable to check both consistency and persistence
of the state of the memory. The working memory system also takes care of mapping the
internal state of the robot into a representation suitable for planning and reasoning
about tasks.

The overall robot control provides bidirectional communication interfaces with
the human user. It further allows the human operator to switch between several
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Fig. 10. Distributed working memory structure.

operational modalities that lie between autonomous and teleoperated modes during
the execution of a task.

A.5. Task Switching Learning Interface

An interactive interface serves in dataset gathering (see Figure 11). The layout has
four principal panels: (1) the stimulus panel, (2) the robot state panel, (3) the task
state panel, and (4) the control panel. The stimulus panel includes vertical tabs listing
robot components. Each tab is composed of a set of frames, each related to a component
process and displaying the trend of the process and its yields. An additional button
allows the operator to manually notify the robot of the occurrence of a stimulus. The
operator can disable a frame via a check-box button. By selecting a tab in the stimulus
panel, the operator can observe the state of each robot component, as well as the yields
of the processes of that component. The robot state panel is composed of both a text
box reporting the task the robot is currently accomplishing and a table listing all the
running processes required to perform that task. The operator can indicate which task
the robot has to perform via the tasks buttons displayed in the task panel. The control
panel has two horizontal tabs: (1) the robot steering tab and (2) the flipper configuration
tab. In the first tab, a number of control commands are listed for steering the robot.
The latter serves to change flipper configuration and lock/unlock the differential drive
to manually control the robot locomotion system. In addition, the main window reports
both reconfiguration and interference costs. Three radio buttons set the interface for
three different user interaction modalities: (1) passive mode, (2) active mode, and
(3) acquisition mode. The passive mode allows the operator to manually notify the
occurrence of the stimuli by observing the yields of the processes. The active mode
enables a mixed robot-human initiative. In this modality, the interface displays the
data yielded by the active processes and notifies the operator of the occurrence of a
stimulus in real-time. Accordingly, the operator can select the task the robot has to
perform or allow the robot to continue its current task. The acquisition mode gathers
the active processes and shows the robot choice if a stimulus occurs. In this mode, the
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Fig. 11. Task switching interactive interface.

interface notifies the human operator of the occurrence of a stimulus, the choices taken
by the robot to respond, and the task chosen; in this mode, the operator can store his
or her choice for further analysis.

A.6. Stimulus-Response Matrix: An Example

Tables IX and X, read side by side, provide an example of the score matrix A introduced
in Section 4. Each entry aij represents the score given by a stimulus yπ j,Ck

, triggered by
the yield of the j-th process, managed by the k-th component, to a task τi. This matrix
is filled with data gathered from the experiments described in Section 4 using the
graphical user interface described in Section A.5. Dashes denote those stimulus-task
pairs that the operators never selected during the experiments. Tables XI and XII, read
side by side, form the estimated score matrix A.

A.7. Task Failure Rates

For each task listed in Table VII , failure rates have been computed within the simula-
tion environment ARE [Gianni et al. 2013a]. Each task is assigned a time for termina-
tion, and, during the task execution, no stimuli occur. For each task, we repeat up to
10 trials. In the ARE environment, it is possible to generate several events populating
the simulated environment; events blocking one of the running processes determine
the failure of the task. In Table XIII, we report the time to failure for each task in the
simulated environment: In the first column, we list the task identifier, in the second
the execution time to end the task, in the third column the number of failures, in the
fourth the trial at which the failure occurred, and, in the last, the time at which failure
took place.

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 4, Article 21, Publication date: January 2015.



21:34 M. Gianni et al.

Ta
bl

e
IX

.E
nt

rie
s

of
th

e
S

co
re

M
at

rix
(A

)

S
ti

m
u

li
T

as
k

S
ta

te
y π

1,
C

1
y π

1,
C

2
y π

1,
C

3
y π

2,
C

3
y π

3,
C

3
y π

1,
C

4
y π

2,
C

4
y π

3,
C

4
y π

4,
C

4
y π

1,
C

5
y π

2,
C

5
y π

3,
C

5
y π

1,
C

6
y π

2,
C

6
y π

3,
C

6
y π

1,
C

7
y π

2,
C

7
y π

3,
C

7
y π

4,
C

7
y π

1,
C

8
y π

2,
C

8

τ 1
-

.0
6

.4
0

.5
0

.4
0

.4
5

.1
3

.3
5

.6
0

.2
0

.8
0

.2
0

.6
0

-
-

.8
5

.7
0

-
.4

5
.7

1
.3

0
τ 2

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.1
2

-
-

.0
5

.2
-

.6
2

τ 3
.0

8
.0

7
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.0
5

.2
0

-
-

τ 4
-

.4
6

-
-

-
-

.1
0

.1
0

-
-

-
.2

7
.1

0
-

-
-

-
-

-
-

-
τ 5

.4
1

.2
0

.2
5

-
.2

0
-

.1
0

-
-

-
-

.2
5

.1
6

-
-

-
-

.2
0

-
-

-
τ 6

.1
6

-
.0

8
.1

5
-

.1
8

.1
2

-
-

-
-

-
-

.1
7

.1
8

-
.1

4
.1

0
-

.2
1

-
τ 7

.0
8

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.1
3

.1
4

.1
0

-
-

-
τ 8

-
-

.0
7

-
-

-
-

-
-

-
-

-
-

.4
3

.1
8

-
-

.0
5

-
-

-
τ 9

-
-

-
-

-
-

-
.1

1
.1

1
-

-
-

-
-

.1
1

-
-

-
-

-
-

τ 1
0

-
-

-
-

-
-

-
-

-
-

-
-

-
.1

3
.3

0
-

-
-

-
-

-
τ 1

1
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

τ 1
2

.1
0

-
-

.1
0

.2
0

.2
7

.5
0

.2
1

.1
6

.1
8

-
-

-
-

-
-

-
-

-
-

-
τ 1

3
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.3
0

-
-

-

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 4, Article 21, Publication date: January 2015.



A Stimulus-Response Framework for Robot Control 21:35

Ta
bl

e
X

.E
nt

rie
s

of
th

e
S

co
re

M
at

rix
(B

)

S
ti

m
u

li
T

as
k

S
ta

te
y π

3,
C

8
y π

1,
C

9
y π

2,
C

9
y π

1,
C

10
y π

2,
C

10
y π

3,
C

10
y π

1,
C

11
y π

2,
C

11
y π

3,
C

11
y π

1,
C

12
y π

2,
C

12
y π

1,
C

13
y π

1,
C

14
y π

2,
C

14
y π

1,
C

15
y π

2,
C

15
y π

3,
C

15
y π

4,
C

15
y π

5,
C

15
y π

1,
C

16
y π

2,
C

16

τ 1
-

-
-

.2
5

.2
2

-
.1

0
.2

0
-

.6
3

.1
4

.7
5

.3
8

.2
3

.3
3

-
-

-
.3

7
-

-
τ 2

.6
1

-
.6

6
.1

2
-

.1
0

-
-

.0
9

-
-

-
-

-
.1

7
.1

3
-

.2
5

.1
2

-
-

τ 3
.1

0
.3

0
-

.1
0

-
.1

0
-

-
.0

8
-

.4
2

-
-

-
.1

6
.2

0
.4

3
-

.1
2

-
-

τ 4
-

-
-

-
-

-
.1

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
τ 5

.1
0

-
-

-
-

-
.2

0
.2

0
.1

1
-

.1
4

-
.1

6
-

.1
6

.1
2

.2
8

.0
8

.1
2

-
.7

8
τ 6

-
.0

7
-

-
-

.1
2

.5
5

-
.6

2
-

-
-

.0
8

.2
3

.1
5

-
-

-
-

-
-

τ 7
-

-
-

-
-

-
-

-
-

-
-

-
.0

8
.3

8
-

-
-

-
-

-
-

τ 8
-

-
.2

2
.1

1
-

.1
2

-
-

-
-

-
-

-
-

-
-

-
.2

5
-

-
-

τ 9
-

.3
9

.1
0

.1
2

.1
9

.2
2

-
-

-
-

-
-

.0
8

-
-

-
-

-
-

-
-

τ 1
0

.1
2

.1
6

-
.1

2
.4

5
.3

0
-

-
-

-
.1

4
-

-
-

-
.3

7
.1

4
-

.1
2

-
-

τ 1
1

-
-

-
-

-
-

-
-

-
-

.1
5

-
-

-
-

.1
0

.1
4

.2
5

-
-

-
τ 1

2
-

-
-

.1
2

-
-

-
.5

5
-

.0
9

-
-

-
-

-
-

-
-

.1
3

-
-

τ 1
3

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
.7

4
-

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 4, Article 21, Publication date: January 2015.



21:36 M. Gianni et al.

Ta
bl

e
X

I.
C

om
pl

et
ed

S
co

re
M

at
rix

(A
)

S
ti

m
u

li
T

as
k

S
ta

te
y π

1,
C

1
y π

1,
C

2
y π

1,
C

3
y π

2,
C

3
y π

3,
C

3
y π

1,
C

4
y π

2,
C

4
y π

3,
C

4
y π

4,
C

4
y π

1,
C

5
y π

2,
C

5
y π

3,
C

5
y π

1,
C

6
y π

2,
C

6
y π

3,
C

6
y π

1,
C

7
y π

2,
C

7
y π

3,
C

7
y π

4,
C

7
y π

1,
C

8
y π

2,
C

8

τ 1
.0

4
.1

5
.3

9
.4

9
.4

1
.4

4
.1

3
.3

5
.6

0
.2

0
.7

9
.2

1
.6

1
.0

1
.0

2
.8

4
.7

2
.0

4
.4

5
.7

1
.3

0
τ 2

.0
2

.0
2

.0
3

.0
2

.0
1

.0
1

.0
1

.0
3

.0
1

.0
5

.0
2

.0
1

.0
1

.0
1

.1
2

.0
1

.0
1

.0
3

.2
0

.0
1

.6
2

τ 3
.0

8
.0

7
.0

1
.0

3
.0

1
.0

1
.0

1
.0

1
.0

1
.0

5
.0

2
.0

2
.0

2
.0

1
.0

1
.0

1
.0

2
.0

5
.2

0
.0

1
.0

1
τ 4

.0
2

.4
5

.0
2

.0
4

.0
2

.0
1

.1
0

.1
0

.0
1

.0
5

.0
2

.2
6

.1
0

.0
2

.0
1

.0
1

.0
0

.0
3

.0
2

.0
1

.0
1

τ 5
.4

2
.2

0
.2

4
.0

2
.2

0
.0

1
.1

0
.0

3
.0

1
.0

5
.0

2
.2

4
.1

3
.0

2
.0

1
.0

1
.0

0
.1

9
.0

1
.0

1
.0

1
τ 6

.1
7

.0
1

.0
9

.1
5

.0
2

.1
9

.1
0

.0
1

.0
1

.0
6

.0
2

.0
4

.0
3

.1
7

.1
7

.0
1

.1
3

.1
1

.0
1

.2
1

.0
1

τ 7
.0

8
.0

2
.0

1
.0

2
.0

1
.0

1
.0

1
.0

3
.0

1
.0

6
.0

2
.0

1
.0

1
.0

3
.0

1
.1

3
.1

5
.1

0
.0

1
.0

1
.0

1
τ 8

.0
2

.0
1

.0
7

.0
2

.0
2

.0
1

.0
1

.0
1

.0
1

.0
6

.0
2

.0
2

.0
1

.4
3

.1
7

.0
0

.0
1

.0
5

.0
1

.0
1

.0
1

τ 9
.0

2
.0

1
.0

2
.0

2
.0

2
.0

1
.0

1
.1

1
.1

1
.0

5
.0

2
.0

1
.0

1
.0

2
.1

2
.0

1
.0

1
.0

2
.0

2
.0

1
.0

1
τ 1

0
.0

2
.0

1
.0

2
.0

2
.0

2
.0

1
.0

1
.0

2
.0

3
.0

5
.0

2
.0

2
.0

2
.1

3
.2

9
.0

1
.0

0
.0

3
.0

2
.0

1
.0

1
τ 1

1
.0

2
.0

1
.0

2
.0

1
.0

1
.0

2
.0

1
.0

3
.0

1
.0

5
.0

2
.0

3
.0

2
.0

2
.0

1
.0

1
.0

1
.0

2
.0

4
.0

1
.0

1
τ 1

2
.1

0
.0

1
.0

2
.1

1
.2

0
.2

6
.4

8
.2

0
.1

4
.1

8
.0

2
.0

1
.0

1
.0

2
.0

6
.0

0
.0

2
.0

1
.0

1
.0

1
.0

1
τ 1

3
.0

1
.0

3
.0

6
.0

5
.0

5
.0

4
.0

2
.0

7
.0

4
.0

8
.0

2
.1

1
.0

2
.1

1
.0

2
.0

1
.0

1
.3

0
.0

3
.0

1
.0

1

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 4, Article 21, Publication date: January 2015.



A Stimulus-Response Framework for Robot Control 21:37

Ta
bl

e
X

II.
C

om
pl

et
ed

S
co

re
M

at
rix

(B
)

S
ti

m
u

li
T

as
k

S
ta

te
y π

3,
C

8
y π

1,
C

9
y π

2,
C

9
y π

1,
C

10
y π

2,
C

10
y π

3,
C

10
y π

1,
C

11
y π

2,
C

11
y π

3,
C

11
y π

1,
C

12
y π

2,
C

12
y π

1,
C

13
y π

1,
C

14
y π

2,
C

14
y π

1,
C

15
y π

2,
C

15
y π

3,
C

15
y π

4,
C

15
y π

5,
C

15
y π

1,
C

16
y π

2,
C

16

τ 1
.0

08
.0

1
.0

04
.2

40
.2

10
.0

05
.1

00
.2

00
.0

12
.6

10
.1

40
.7

50
.3

70
.2

20
.3

30
.0

09
.0

01
.0

18
.3

70
.0

20
.0

16
τ 2

.6
00

.0
05

.6
70

.1
10

.0
10

.1
10

.0
07

.0
05

.0
90

.0
44

.0
01

.0
20

.0
14

.0
15

.1
70

.1
30

.0
01

.2
50

.1
20

.0
24

.0
20

τ 3
.1

10
.2

90
.0

02
.1

20
.0

22
.0

90
.0

03
.0

09
.0

80
.0

26
.3

90
.0

30
.0

02
.0

17
.1

60
.2

00
.4

30
.0

17
.1

20
.0

21
.0

15
τ 4

.0
06

.0
20

.0
01

.0
05

.0
08

.0
06

.1
00

.0
05

.0
10

.0
21

.0
01

.0
50

.0
04

.0
13

.0
04

.0
11

.0
01

.0
19

.0
03

.0
20

.0
49

τ 5
.1

20
.0

07
.0

02
.0

15
.0

10
.0

04
.1

90
.2

00
.1

20
.0

29
.1

40
.0

10
.1

60
.0

19
.1

70
.1

20
.2

80
.0

80
.1

20
.0

33
.7

50
τ 6

.0
07

.0
70

.0
01

.0
13

.0
05

.1
10

.5
60

.0
01

.6
10

.0
30

.0
01

.0
20

.0
80

.2
30

.1
50

.0
10

.0
01

.0
15

.0
01

.0
21

.0
19

τ 7
.0

05
.0

07
.0

02
.0

07
.0

15
.0

15
.0

10
.0

07
.0

11
.0

20
.0

03
.0

30
.0

80
.3

80
.0

04
.0

10
.0

01
.0

21
.0

03
.0

21
.0

21
τ 8

.0
07

.0
09

.2
10

.1
10

.0
10

.1
10

.0
04

.0
03

.0
12

.0
25

.0
01

.0
20

.0
02

.0
15

.0
03

.0
13

.0
01

.2
50

.0
04

.0
22

.0
18

τ 9
.0

09
.3

80
.1

00
.1

30
.2

00
.2

30
.0

05
.0

04
.0

10
.0

30
.0

01
.0

20
.0

80
.0

16
.0

03
.0

07
.0

01
.0

26
.0

02
.0

21
.0

19
τ 1

0
.1

00
.1

70
.0

02
.1

10
.4

40
.2

90
.0

06
.0

06
.0

12
.0

27
.1

40
.0

30
.0

03
.0

17
.0

05
.3

70
.1

40
.0

17
.1

20
.0

24
.0

16
τ 1

1
.0

08
.0

09
.0

03
.0

08
.0

10
.0

10
.0

03
.0

07
.0

11
.0

23
.1

50
.0

10
.0

02
.0

16
.0

04
.1

00
.1

40
.2

50
.0

04
.0

21
.0

20
τ 1

2
.0

06
.0

07
.0

02
.1

20
.0

10
.0

17
.0

05
.5

50
.0

09
.0

90
.0

01
.0

20
.0

02
.0

14
.0

03
.0

15
.0

01
.0

19
.1

30
.0

23
.0

18
τ 1

3
.0

14
.0

16
.0

01
.0

12
.0

50
.0

03
.0

07
.0

03
.0

13
.0

25
.0

01
.0

20
.0

03
.0

18
.0

04
.0

05
.0

01
.0

18
.0

03
.7

10
.0

19

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 4, Article 21, Publication date: January 2015.



21:38 M. Gianni et al.

Table XIII. Task Time to Failure

Task Id Execution Time (min.) # of Failures Failure time (min.)

τ1 18 0 - -
τ2 16 1 Trial 3 15.23

τ3 46 4

Trial 2 12.51
Trial 3 28.09
Trial 6 31.11
Trial 9 5.06

τ4

Trial 4 19.01
31 3 Trial 7 18.75

Trial 6 19.23

τ5 82 4

Trial 1 10.91
Trial 2 40.05
Trial 4 19.32

Trial 10 47.09
τ6 25 1 Trial 8 7.51
τ7 27 0 - -

τ8
55 2 Trial 1 39.41

Trial 8 38.02

τ9

Trial 2 28.91
46 3 Trial 3 29.78

Trial 9 20.03

τ10

Trial 1 12.01
100 4 Trial 3 27.09

Trial 8 81.53
Trial 9 82.09

τ11

Trial 5 51.79
68 3 Trial 9 28.06

Trial 10 31.55

τ12
39 2 Trial 1 11.77

Trial 7 12.33

τ13

Trial 5 39.60
48 3 Trial 6 40.79

Trial 10 26.56
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