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This document describes the work of providing the TRADR robots with
motion capabilities. For the UGVs we have worked on formation obstacle
avoidance as an enabling technology for collaborative manipulation. We
have also investigated two different ways of using a manipulator to estimate
traversabilty of surfaces. Furthermore, we have continued the work on net-
work resilience in terms of both path planning and teleoperation.

For UAV-UGV collaboration we have studied ways of combining maps
for very different viewpoints as well as sensors. Finally, for UAVs, we have
investigated the possibility of picking and delivery using a magnetic actuator.
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Executive Summary

This report describes work towards providing the TRADR robots, Unmanned
Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) with mo-
tion capabilities, in terms of coordinated motion, network resilient motion,
motion enabled by manipulator actions, motion enabled by coordinated sens-
ing and motion for aerial picking and delivery.

The coordinated motion capability was design to enable a group of UGV
to travel in formation while lifting and transporting an object through a
highly obstacle dense environment. The approach builds upon a combination
of Constraint Based Programming (CBP) and Rapidly exploring Random
Trees (RRTs). By using CBP when trying to find a joint motion between
to sampled states, the probability of a successful motion is much higher,
but the needed computation time rises as well. It was shown that for suffi-
ciently cluttered environments, the benefit of CBP outweighs the drawback
in computations time, compared to a standard RRT approach where the
extra computation is used to sample more nodes in the tree.

The network resilient motion capability is a continuation of the prelimi-
nary work reported earlier, with additional publications and ongoing exten-
sions. By measuring, mapping and predicting the Radio Signal Strengths
(RSS) we are able to improve performance of both teleoperation and au-
tonomous path planning. For teleoperation we have shown that the number
of objects found before connection loss in a search scenario increases, and
for path planning we have improved the reactivity relative to sudden losses
of network Access Points (APs), or reductions of RSS due to other reasons.

The motion enabled by manipulator actions includes passing over areas
with initially uncertain traversibility. Two algorithms were proposed using
Gaussian Process Regression (GPR). First, investigating the terrain shape
in occluded areas, and second estimating the deformability of visible areas
that might look traversable but are not due to e.g. excessive amounts of
mud or water.

The motion enabled by coordinated sensing is the capability to integrate
sensing from very different viewpoints and sensors, such as data from a
UAV and a UGV deployed in the same area. This is very difficult, but as the
same time potentially very useful, as the UGV is dependent on traversability
estimates that itself can only construct locally, while a UAV is free to move
over a much larger space, providing data from areas well beyond the horizon
of the UGV. The techniques investigated include both 3D-feature based
registration and semantic graphs.

The motion for aerial picking and delivery is the capability of doing pick
and place with a UAV. This was also explored in a collaborative fashion,
where the UAV picked an item from the UGV and delivered it to a static
target location nearby. This capability can also be used when the UGV does
sampling of potentially toxic fluids. Then the UAV could quickly bring the
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collected samples out of the disaster zone for further analysis, enabling the
UGV to continue sampling without having to spend time on the arduous
journey back and forth.

Finally, we have made a number of improvements to the navigation sys-
tem, that is crucial to many of the above capabilities. These lie at the
intersection of WP1, WP2 and WP4 and are therefore described briefly in
Section 1.3, and in detail in the WP4 deliverable, Dr4.4.

Role of navigation, exploration and manipulation in
TRADR

Mobility of the TRADR robots is of key importance to the successful execu-
tion of the disaster response scenarios. In many instances, the overall system
performance is improved when both operator and robot can contribute with
their key strengths.

Persistence

Persistence is present in WP2 in terms of maps of both terrain and network
being created, re-used and shared across entities.

Contribution to the TRADR scenarios and proto-
types

The motion capabilities of the TRADR UAVs and UGVs are essential for
the use cases. In particular, the content of this deliverable relates to the
following use cases.

• Generic use case 1: UAV[x] detect/search for X, using method Y Ca-
pabilities for this use case are described in Section 1.3.5 below.

• Generic use case 3: UGV[x] go to location X (optionally via Y). Ca-
pabilities for this use case are described in Section 1.3.2-4 below.

• Generic use case 4: UGV[x] go to location X on (semi)autonomous
mode. Capabilities for this use case are described in Section 1.3.3-4
below.

• Generic use case 5:UGV[x] detect/search for X, using method Y. Ca-
pabilities for this use case are described in Section 1.3.2-4 below.

• Generic use case 6: UGV[x] manipulates object X Capabilities for this
use case are are described in Section 1.3.1 below.

EU FP7 TRADR (ICT-60963) 5
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• Generic use case 7: UGV[x] encounters obstacle X, takes action Y to
overcome Capabilities for this use case are described in Section 1.3.2
below.
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1 Tasks, objectives, results

1.1 Planned work

The work described in this report (D2.4) was performed within the scope of
Tasks T2.7 (Collaborative mobile manipulation) The objectives of this tasks
was to develop cooperative mobile manipulation capabilities for the UGV.

However, in response to the reviewers’ comments below, parts of the
effort in this WP has been shifted from manipulation towards network re-
silience, hence the document title: Collaborative mobile manipulation (and
Network Resilience).

1.2 Addressing reviewers’ comments

Below we collect the reviewer comments made in Year 3 regarding WP2,
with corresponding answers.

1. Overall excellent progress has been achieved in this workpackage.

Response: We thank the reviewers for this overall feedback.

2. A repeating recommendation is that the technologies developed by
TRADR must be network resilient. Rather than focusing on improv-
ing the network robustness, and on methods for detecting and fixing
network failures, the focus should be on developing technologies in
which network failures and limitations are a given, and cannot be
eliminated.

Response: We have shifted resources from manipulation towards net-
work resilience in response to these recommendations.

3. Unfortunately, still a large gap exists for the validation of the strong
claims made for the FLC control mode for UGVs, that it would be
better than other established control modes like third-person view in
any cases.

Response: There seems to be an unfortunate misunderstanding re-
garding the term control mode. By control mode we mean the way
user control inputs are translated to track velocities and camera mo-
tions. Using this terminology gives us the two options of Tank Control
and FLC. We have compared these in the paper. Another important
part of the GUI is the camera view. Either a 1st person camera view
is used (the raw video feed), of a virtual 3rd person view is used, ren-
dered from fused sensor data, showing the robot from the outside in
relation to a model of its surrounding. Thus the concepts of 1st or 3rd
person view is orthogonal to the concepts of Tank Control and FLC,
and can be combined freely. In fact, a number of computer games,
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e.g. the Unchartered series, use FLC with a 3:rd person view. Thus it
makes no sense to compare FLC to a 3:rd person view.

4. The claimed superiority of the FLC is especially questioned for clut-
tered environments which are typical for disaster areas.

Response: There seems to be a misunderstanding on this issue as
well. We completely agree that FLC is not suitable in very cluttered
environments. This was stated in the Y3 slides of WP2, where the
bottom of slide 7 read: “But FLC is not suitable for very cluttered
environments”.

Furthermore, in [68], we write: “In extremely narrow passages, a given
camera motion might cause the UGV chassis to collide with an object.
In applications where this is a problem, allowing the operator to switch
between Tank Control and FLC might be useful.”

5. The conduction of a meaningful scientific study on the different modes
of control of UGV robots in realistic scenarios is strongly recommended

Response: During the work in TRADR, our experience has shown
that this kind of studies are extremely time consuming to perform, and
harder to publish than non-user studies, even though we have human
factor specialist in the team. Given this fact, and the misunderstand-
ings above, we have chosen not to perform user studies beyond the
ones reported in papers [5, 70].

1.3 Results

In this section we will report the results of work done in WP2. However, we
start by mentioning some important work on the navigation system, that
lie in the intersection of WP1, WP2 and WP4, and are reported in detail in
Deliverable DR4.4.

A safe and robust navigation plays a crucial role for many of the TRADR
system capabilities. In order to improve the performance of the autonomous
navigation system of our UGVs, we revised three different components.
First, we revised the onboard path planner pipeline. In particular, we
analysed and tested different point cloud segmentation methods in order
to improve the underlying traversability analysis module and the recogni-
tion of stairs and ramps in the environment. Second, we integrated the
adaptive traversal algorithm into the path planner, with the aim of push-
ing the autonomous UGV navigation capabilities towards more challenging
and harsh terrains. Third, we developed an RGBD-SLAM method, PLVS
(Points, Lines, Volumetric mapping and incremental Segmentation), which
can be used to robustly build a denser point cloud map and enable a more
advanced and accurate analysis of the terrain and surrounding objects.

We now describe the rest of the WP2 results in more detail.

EU FP7 TRADR (ICT-60963) 8
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Figure 1: Example execution of CBP-RRT with 200 obstacles. Non-
accessible areas belonging to obstacles are indicated by blue circles with
a black dot at the center. The start position of the virtual structure is lo-
cated at (-10, -10), while target position is at (10, 10). Smaller green squares
indicates robot positions and blue triangles indicates nodes in the RRT.

1.3.1 Formations for Collaborative Mobile Manipulation

Collaborative mobile manipulation denotes the activity of multiple mobile
manipulators lifting and moving an object in a collaborative fashion. This
is a complex problem since it requires all motions to be synchronized, in
particular the non-arm part of all mobile manipulators need to translate in
a coordinated fashion, and this is the problem addressed in this paper.

We consider obstacles of arbitrary shape, modelled by the union of a
large set of possibly overlapping circular discs, see Figure 1. The formation
is given as a desired rigid shape, that can translate and rotate to get past
obstacles and arrive at the goal, and the robots are modelled as kinematic
points.

In this paper, we will use Constraint Based Programming (CBP) [67]
for formation control, where the constraints will be given by both the for-
mation keeping objective, and the desired obstacle clearance. The objective
function will be the progress towards the next waypoint, and the waypoints
are chosen using an Rapidly Exploring Random Tree (RRT) [48] algorithm.
An example of the CBP local steering function can be found in Figure 2.

We will now compare the performance of the proposed approach (CBP-
RRT) with a standard approach using linear interpolation for local steering
in the RRT algorithm (LI-RRT). We look at the time required for calcu-
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Figure 2: Example of the paths generated by CBP-RRT with a single node,
with a single obstacle (a) and for a non-convex obstacle configuration (b).
Sufficient time to reach the target with one node was provided. Note that
for both cases, LI-RRT would not give a valid solution, due to the collision
check.

lation, and the number of nodes (iterations) needed by CBP-RRT and LI-
RRT respectively. Each run consists of generating an environment through
randomly placing obstacles, and then running the two approaches for the
generated environment. This is repeated, and the average values are pre-
sented. The results are presented in Table 1, where Method is either the
proposed method CBP-RRT, or the baseline method LI-RRT. Obstacles
is the number of obstacles randomly placed in the environment. Nodes is
the number of nodes (iterations) needed until convergence, and Time is the
time required, in seconds, to find a solution (lower is better). Rep. is the
number of runs used to compute the average, with total number of runs in
parenthesis.

Examples of executions with CBP and Linear Interpolation are shown
in Figures 3 and 4. We also supply a link to a video1 showing the execution
of the plan obtained by CBP-RRT.

As can be seen the number of nodes are significantly lower for CBP-RRT
than for LI-RRT, for any example with obstacles present. However, the
linear interpolation is faster than the CBP, so if we look at execution times
the picture is more complex. LI-RRT is faster for low obstacle densities, but
for sufficiently cluttered environments, the computation used for the CBP
is compensated for by the lower number of nodes.

This work was awarded as Finalist for Best Paper at the SSRR 2017 in
Shanghai, China. For details, see the appended paper [4] (Annex Overview
2.1).

1Also available on https://www.youtube.com/watch?v=OtvFIZFg68M
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Figure 3: Execution of path generated by CBP-RRT for 250 obstacles.
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Figure 4: Execution of path generated by LI-RRT for 250 obstacles.
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Table 1: Average results after running both algorithms, with 5 seconds for
execution between each node, ordered by increasing number of obstacles.
Cases where no solution could be found were excluded when calculating the
average.

Method Obstacles [-] Nodes [-] Time [s] Rep. [-]

LI-RRT 0 33.6 0.06 100 (100)

CBP-RRT 0 36.0 0.06 100 (100)

LI-RRT 25 77 0.26 100 (100)

CBP-RRT 25 33.6 2.77 100 (100)

LI-RRT 50 146.4 0.45 100 (100)

CBP-RRT 50 38.0 5.26 100 (100)

LI-RRT 100 1018.8 2.64 100 (100)

CBP-RRT 100 51.8 13.49 100 (100)

LI-RRT 150 6027.8 15.35 100 (100)

CBP-RRT 150 106.6 43.22 100 (100)

LI-RRT 200 30539.6 95.33 100 (100)

CBP-RRT 200 183.0 87.74 100 (100)

LI-RRT 250 93852.1 311.67 91 (100)

CBP-RRT 250 388.4 212.89 100 (100)

1.3.2 Manipulation for Low Visibility Perception

Hostile environmental conditions, that frequently characterize urban search
and rescue scenarios, represent a serious threat to modern vision perception
system. The vast majority of Unmanned Ground Vehicles are equipped
with sensors such as LiDARs, RGB cameras and thermo cameras, that the
robots use to build their understanding of the disaster area. Platforms used
in TRADR, for instance, make heavy use of LiDARs and RGB cameras to
built a geometric (point cloud map) representation of the hot zone that is
then used to plan actions and share knowledge with other team members.
The presence of smoke, fire, fog and other environmental phenomena affects
the performance of these sensors that can produce noisy data and lead the
robot to make wrong guesses on the nature of the surrounding. For example,
the overwhelming presence of layers of grey dust on a post-earthquake USAR
scenario, hide object shapes and colors leading object detection algorithms
to fail. For this reason, we investigate ways of enhancing vision perception
trough the use of tactile sensor systems.

We propose two active perception algorithms, based on Gaussian Process
Regression (GPR) for (I) investigating the terrain shape in occluded areas
surrounding the UGV and (II) estimate the terrain deformability in the
proximity of the UGV.

In the first work, an arm equipped UGV physically investigates the shape
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of the terrain in regions where the point cloud representation is incomplete.
In order to detect the areas of the terrain surface that require a physical
interaction, the framework trains a Gaussian Random Field (2.5D GPR) on
the 3D points of the map located around the robot and then computes a
Delaney triangulation on the same region. Constraints on the triangles size
and eccentricity along with the value of the variance of the GPR, enables
highlighting sparser regions on the point clouds that present higher uncer-
tainty (i.e. the probabilistic model is unable to estimate the surface shape).
The robot then uses its manipulator to touch the surface on the selected
areas in order to obtain a rich signal of tactile information which is fed into
the probabilistic model. The mean of the Gaussian Process is then used to
refine the point cloud representation and therefore the geometric map. With
this approach we enable a UGV to obtain insights on the environment when
its point cloud representation is limited by poor vision conditions.

A muddy or unstable terrain can hamper the robot motion and slow
down the mission significantly. A robot able to estimate the terrain de-
formability can decide to plan trajectories or manipulate objects on rigid sur-
faces. This motivated the development of an interactive perception frame-
work which uses tactile information to estimate the terrain deformability in
the robot surrounding. Following the aforementioned mechanism, the pro-
posed framework trains a Gaussian Random Field (2.5D GPR) on the 3D
points of the map located around the robot. Differently from (I), the system
observes the behavior of the terrain subjected to touch and uses a mathe-
matical framework based on Position Based Dynamics (PBD) to estimate a
parameter (β) that represents the local deformability of the terrain on the
stressed area. The system uses the GPR to obtain compact representations
of the region of the surface under analysis during the physical contact. If
the terrain is rigid the estimated β value will be close to zero, and an elastic
or deformable terrain will generate a β value close to 1. The system then
initializes a second GPR to map the deformability of the terrain trained
on the observed β values. As a result the robot is able to map the hetero-
geneous deformability of the terrain after a few physical interactions and
observations. Contrarily to the computationally expensive and difficult to
tune Finite Element Method (FEM), PBD is faster and requires only few
visual clues to obtain feasible deformability models, which however are less
accurate and do not describe the real physical properties of the shape under
analysis. This allows faster environmental interactions which is a vital re-
quirement of any active perception algorithm designed for USAR operation.

For details, see the appended papers [15] (Annex Overview 2.2), [14]
(Annex Overview 2.3).
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1.3.3 Network Aware Path Planning

Note: Parts of this work was reported in Y3 as a paper in submission, but is
now published in the proceedings of IEEE IROS. We are currently working
on a journal papers extension of the work with the following additions:

• Implementation and testing will be done on real scenarios with real
robots

• A new self re-connection strategy that takes advantage of a redesigned
utility function for our Communication Aware motion Planner. Specif-
ically, we designed a “hierarchical optimization” scheme which suitably
combines together the traversability cost with the estimated RSS in
the underlying randomized A* expansion of the path planner. This
technique automatically steers the robot along planned paths where
traversability cost is minimized while, at the same time, a minimum
RSS quality RSSmin is guaranteed. In this context, when connec-
tion is lost, the active re-connection strategy drives the robot towards
the closest region where the estimated RSS is greater than RSSmin.
Next, the robot is allowed to re-plan a new path towards the assigned
destination.

• More robust Wireless Map Generation. The framework uses a new
sampling strategy for building up the training set used by the Gaus-
sian Process Regression model (GPR). Instead of a moving queue of
sampling points located along the robot trajectory, the framework now
collects RSS measurements depending on the spacial sparsity of the
training set, on the quality of the model prediction and on the life time
of the previously stored samples. The training set grows faster when
the robot explores new locations and becomes sparser (training points
are discarded) on areas explored several time stamps in the past. If
the predicted RSS value on the map, obtained from the GPR, differs
considerably from the measured value at the robot location, the train-
ing set is updated with the new measurement and other local training
points (which are now outdated) are discarded.

• The system can now map multiple wireless distributions, generated by
multiple Access Points (AP) at the same time in a multi layer wireless
map. An important limitation of the previous implementation is that
multiple signal distributions were flattened down into the same wireless
map; now the robot can track the temporal behavior of several access
points independently and plan trajectories accordingly.

An overall description of the work now follows.
In search and rescue robotics, the main task of a robot is often to gather

information from a disaster area. Sometimes this information is delivered
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at the end of the mission, but more often, the human rescue workers get
the information online, during the mission. Then, a reliable and resilient
wireless connection to the robot is vital to the mission success.

Figure 5: Experimental scenario 1. The UGV tries to reach the goal position
avoiding connection drops. The blue dotted line represents the shortest path, that
will cause a connection loss (going outside the AP range). The green line represents
a path that reaches the goal position while keeping the robot connected to the AP.

Experience has shown that wireless connectivity in disaster areas is
bound to be unreliable. Therefore, we propose a Resilient Communication-
Aware Motion Planner (RCAMP). Previous solutions relied on detailed in-
formation on the network, or used back-tracking to improve connection qual-
ity. This work goes beyond that, allowing the system to plan a trajectory
that improves connectivity, based on information that is gathered online,
during the mission. The proposed solution has two key components, a Gaus-
sian Random Field (GRF) based probabilistic model used to map the Radio
Signal Strength (RSS), and traversability map created from a laser sensor.
Based on these two sources of information, we device a strategy to regain
connectivity, while moving towards the given goal. We will now illustrate
the RCAMP in two scenarios.

Scenario 1: In the first scenario, see Fig. 5, the UGV is placed on the
start position and must traverse an area containing a damaged building, to
reach the goal position. An AP is placed on the northern part of the map
(zone N in Fig. 5). The AP uses an omni-directional antenna covering a
circular area that extends to half of the map, leaving the southern part (zone
S in Fig. 5) uncovered. Start and goal positions are placed such that the
shortest connecting path between the two points would traverse the poorly
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connected part of the map (S). Thus, RCAMP must generate a trajectory
that connects the start and goal positions while keeping the robot in the
signal covered area avoiding communication drops. With this scenario we
want to demonstrate the capability of our utility function in keeping the
robot connected to the AP.

Figure 6: Experimental scenario 2. The UGV tries to reach the goal position
avoiding connection drops. The blue dotted line represents the shortest path to the
goal position. The UGV is connected to AP1 in the first part of the path. PE1
indicates the location of the UGV when AP1 shuts down after a simulated hardware
failure. The green line represents a new path that reaches the goal position while
keeping the UGV connected, after switching from AP1 to AP2.

Scenario 2: In the second scenario, see Fig. 6, two different APs cover
the whole map. In this use case we want to test the promptness of the
RCAMP to adapt to drastic changes in the wireless signal distribution. The
robot starts the mission connected to AP1. The RCAMP must generate a
path from the start position to the goal position that ensures WiFi coverage.
During the mission, AP1 is switched off when the robot enters the region
PE1, so to simulate a communication loss event. When the connection is
lost, the robot connects to other APs (if available) in the same network, in
a typical roaming behaviour. Once the robot connects to AP2, the WMG
must adapt its predictive model to the new signal distribution accordingly
and reshape the RSS map. The RCAMP must then promptly update the
path to the goal to ensure WiFi coverage.

For details, see the appended paper [13] (Annex Overview 2.4).

EU FP7 TRADR (ICT-60963) 16
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1.3.4 Network Aware Teleoperation, Design and User Study

Note: Most of this work was reported in Y3 as a tech report, but is now
published in the IJHRI Journal.

Recent and current Urban Search and Rescue (USAR) missions show
that the range and coverage of the wireless connection between the operator
and the teleoperated Unmanned Ground Vehicle (UGV) presents a signif-
icant constraint on the mission execution. For continuing operation, the
operator needs to continuously adapt to the dynamic network connectivity
across the environment in addition to performing the primary navigation,
observation and manipulation tasks.

In this work, a new teleoperation User Interface (UI) is presented that
integrates information on the Direction of Arrival (DoA) of the radio signal.
The proposed approach consists of (1) a method for estimating the DoA and
(2) a color-bar representation surrounding the video feed that informs the
operator which navigation directions of motion are safe, even when moving
in regions close to the connectivity threshold.

The UI was evaluated in a user study with 24 participants who performed
a search task under challenging wireless connectivity conditions. The results
show that using the proposed interface resulted in more objects found, and
less missions aborted due to connectivity problems, as compared to a stan-
dard interface.

Today, teleoperated UGVs play an increasingly important role in a num-
ber of high risk applications, including USAR and Explosive Ordinance
Disposal (EOD). The successful completion of these missions depend on a
reliable communication link between operator and UGV, but unfortunately
experiences from Fukushima and the World Trade Center disaster show that
cables can limit performance, or break [65], and wireless network connectiv-
ity can be lost [62].

Despite improvements in wireless technology, it is reasonable to believe
that the very nature of USAR scenarios imply a high risk of damages to
infrastructure, including electricity and network facilities. To avoid relying
on wireless technology, one possible solution would be to enable the UGVs to
operate autonomously, but for the foreseeable future, human operators will
remain more versatile than autonomous systems when it comes to decision
making, in particular in challenging and unpredictable USAR environments
[89, 64]. Therefore, Connectivity awareness is viewed as a component of
Situation Awareness (SA), determining where the robot can operate.

In this work, we address the problem of improving SA such that the
operator is aware of dynamic network connectivity and adjust the UGV
operation to it. This is done by extending the user interface (UI) with not
only a measure of Radio Signal Strength (RSS), but also a notion of the
motion direction (i.e. the DoA) that would increase this signal strength,
and thereby the communication quality (delay, packet loss, etc.) which has
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shown to affect teleoperation task performance [73].
Using the proposed solution, an operator close to the connectivity limit

knows which way to go to improve the connection. An operator who, for
example, would like to move the UGV a bit more to the left to inspect a
cavity, knows if this move will improve, worsen or leave the RSS unchanged.

The proposed UI is composed of two parts, first the DoA is estimated,
then it is presented to the operator in an efficient manner.

The estimation of the DoA is done by using spatially dispersed wireless
receivers on the four edges of the UGV and applying the finite differences
method to extract the RSS gradient. We then employ spatial and temporal
filtering schemes to mitigate multipath fading effects and transient noises
in the measurements. The estimation and filtering algorithms run online
and dynamically adapts to the wireless environment such as a change in
network connection (e.g. introduction of an intermediate relay robot as a
signal repeater) or a mobile wireless access point connecting the robot to
the base station.

The presentation of the DoA to the operator was chosen in view of the
fact that gaining a good SA is very challenging in USAR missions [47]. In
fact, it was shown in [11, 96] that as much as 49% of mission time is normally
devoted to improving the operator SA. Further, it was recommended in [97]
to use a large central part of the screen for the video feed. Therefore, we
propose to add the DoA information in the form of a color bar surrounding
the video feed to provide SA to the operator in terms of network connectivity
and physical surroundings.

For the evaluation, we identified two important challenges associated
with teleoperation of UGVs in USAR missions: (1) providing effective SA
to the operator and (2) ensuring resilient wireless connectivity with the
UGV. High SA can reduce mission time and improve operator decisions,
while a resilient network connection will avoid losing control of the UGV.
For details, see the appended paper, [70] (Annex Overview 2.5).

1.3.5 Collaborative Mobile Sensing

The task of collaborative mobile sensing focuses on the collaborative percep-
tual assessment and exploration of disaster scenes with multiple heteroge-
neous robots. On one hand this deals with the fusion of heterogeneous data
between robots, e.g., different sensor modalities or view-points into common
representation. On the other hand, this enables transfer of perceptual data
between robots. We have developed a common registration architecture that
relies on an abstraction layer which enables the registration of heterogeneous
robot data, see Fig. 7. To this end, we have developed several integration
strategies, both global and local.
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Figure 7: Global localization system overview. The inputs to the system are
UAV and UGV data, e.g., from different modalities of drastically different
view-points. These are transmitted into an abstraction layer that deals with
the heterogeneity of the data, e.g., using 3D structure or semantics. On this
data, we extract descriptors, match them and estimate the transformation
between the data. Finally, the achieved registration can be used to fuse the
data or enable further autonomy of the robots.

3D UAV-UGV Global Localization

Here, we consider the scenario in which a UAV can be quickly deployed to
survey a large disaster site. While the image data can help first responders to
assess a situation, it can also help the UGVs in their mission planning, e.g.,
by using 3D reconstructions of the environment for mission planning. In the
considered disaster scenarios however, we cannot rely on external sensing for
the robots and require techniques to register data from on-board sensing.
Furthermore, we cannot directly apply the single-modality approaches used
on the UGVs. Since the UGVs rely on 3D data for their traversability anal-
ysis of the terrain, a fusion in this space is desirable as the data can directly
be used by other modules of the system. We therefore use 3D structure as
abstraction layer. In the work of Annex 2.6, we extended our earlier work
on sparse 3D data [32] and evaluated different techniques for registering
dense reconstructions from UAVs with the UGV LiDAR data. Notably, we
evaluated multiple 3D-feature-based registration techniques and devise in-
sights into designing a global localization system based on heterogeneous 3D
data. We evaluated the approaches on two dataset gathered in the TRADR
project, one outdoor at a test location in Montelebretti, Italy and one in-
door at a powerplant in Dortmund, Germany, see Fig. 8. The main benefit
of these approaches is that drastically different view-points can globally be
fused. We illustrate examples of the matching in Fig. 9.
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Figure 8: Example images of the datasets used for 3D registration: (left)
Firemen training site Montelebretti, Italy. (right) Gustav Knepper power-
plant in Dortmund, Germany.

(a) (b)

Figure 9: Illustration of the 3D geometric registration approach, a LiDAR
point cloud from the UGV (red) is matched against the UAV map (color).
(a) Outdoor firemen training site Montelebretti, Italy. (b) Indoor Gustav
Knepper powerplant in Dortmund, Germany.

Semantic Localization using data from UAVs and UGVs

For large scale scenarios on km-scale, registration methods based on 3D
structure can become unreliable and computationally increasingly intense.
Therefore, we developed X-View, a heterogeneous global localization system
based on semantic graphs (see Annex 2.8). Instead of using 3D reconstruc-
tions, X-View leverages recent advances in semantic scene understanding
for efficient localization from drastically different view-points, e.g., UAV to
UGV. Here, graphs of semantic instances are extracted and matched using
random walk descriptors while using a similar estimation back-end as the
3D registration approach presented in the previous section. This enables
the system to outperform contemporary localization algorithms on real and
simulated dynamic urban outdoor data, especially in the presence of drasti-
cally different view-points. Annex 2.8 demonstrates the system implemented
for semantic data extracted from RGB images using CNNs, as illustrated
in Fig. 10. However, the system is generic in the sense of the used input
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Figure 10: Exemplary approach of the X-View system: A database graph
is constructed from data of one robot view. Then a small query graph is
constructed from another view and localized against the database graph
using semantic graph descriptors.

modality, and it can potentially be extended to fusing between modalities
in the future.

Aerial following and transportation

While the registration techniques rely on global localization between the
robot data, we have also worked on direct collaboration between UGVs and
UAVs, by enabling UAVs to apply visual servoing to move above a target
and transport samples. This can for example be useful to let the UAV
automatically follow the UGV and extend its view point with a 3rd-person
view. Furthermore, the outfit of a UAV with a gripper is an interesting
feature as it can potentially pick up samples from an in-field UGV and
rapidly deliver these outside the disaster area, while the UGV can continue
its mission. In addition to contributing to the collaborative sensing, this is
furthermore a feature towards the goal of collaborative manipulation, and
an example is illustrated in Fig. 11.

1.4 Relation to the state-of-the-art

In this section we will describe how the results of D2.4 relate to the state-
of-the-art.
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(a) (b) (c) (d)

Figure 11: Illustration of the aerial gripping approach. (a) UAV visually
servoes above moving UGV, (b) UAV approaches and picks sample from
UGV, (c) UAV ascends to operation height, (d) UAV delivers sample to
target location.

1.4.1 Formations for Collaborative Mobile Manipulation

Constraint Based Programming (CBP) is an approach for designing robot
controllers that take a set of constraints, in terms of equalities and inequal-
ities into consideration [67]. CBP has its roots in the concepts of the ad-
ditional tasks of [79], the user defined objective functions of [71], and the
sub-tasks of [85]. Similar ideas were used in the Stack of Tasks approach
[53, 54], the iTaSC approach [23, 81], and in a variation using Quadratic
programming that was proposed in [103] and [102].

In this paper, we will use CBP for formation control, where the con-
straints will be given by both the formation keeping objective, and the de-
sired obstacle clearance. The objective function will be the progress towards
the next waypoint, and the waypoints are chosen using an Rapidly Exploring
Random Tree (RRT) algorithm.

RRTs are sampling based path planners [48],[49] that are known to out-
perform grid based planners when there are a large number of dimensions,
and/or a need for very small grid cells.

The main contribution of this paper is that we combine CBP with RRTs
to solve formation obstacle avoidance problems in very cluttered environ-
ments. In this way, the local reactive properties of CBP, allowing the for-
mation to rotate and translate past the obstacles, is combined with the
global properties of RRT, avoiding local minima problems and efficiently
exploring the statespace. To the best of our knowledge, this has not been
done before.

1.4.2 Manipulation for Low Visibility Perception

In recent years, a large variety of machine learning techniques have been
developed to model and represent complex surfaces, as in [82] and [69]. In
particular, probabilistic models based on Gaussian Processes (GP)[74] have
proved to be especially suitable for modeling terrain shapes [88, 87, 66]. An
application of 3D Gaussian Processes called Gaussian Process Implicit Sur-
faces (GPIS) [91] allows to extend implicit surfaces to include uncertainty,
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a property needed when the model is the result of sensor data fusion [25].
Properly representing the morphology of the terrain is vital for navigation
tasks in any UGV, as demostrated by the authors in [105] who developed
an algorithm that allows a mobile robot to autonomously traverse natural
complex obstacles in a forest. Occlusion and reflections, e.g. caused by a
puddle of water or broken glass, can trick the vision system of the robot
to generate incomplete point clouds, and lead the system to make wrong
assumption on the nature of the terrain.

In our works we propose two interactive perception[9] frameworks based
on Gaussian Processes, that merge visual and tactile information in order
to identify and reconstruct incomplete regions in the point cloud map and
estimate the deformability behavior of a portion of terrain.

When the visual perception system of the robot fails, we ask a robotic
arm to strategically explore the environment around the UGV and collect
tactile data.

In order to estimate the heterogeneous deformability of the terrain we
take advantage of a fast Position-Based Dynamics (PBD) simulator as op-
posed to most of the existing methods which rely on computationally ex-
pensive force based simulators [30].

Additionally, our systems do not require a complex setup as the one
in [6], but uses only a mobile manipulator equipped with a tactile force
sensor.

The computational power on board the robot, the battery capacity and
the available time are key constraints in many urban search and rescue mis-
sion. For this reasons, the perception frameworks proposed in our work aim
to reduce the environmental interactions as much as possible while recon-
structing the surface and estimating its deformability.

1.4.3 Network Aware Path Planning

To address this problem, several researchers have focused on Communication-
Aware Motion Planning (CAMP) to simultaneously handle motion and com-
munication constraints and finding and executing an optimal path towards
a destination [101]. In particular, Mostofi et al. laid solid foundations in
this research area [37, 52, 95]. It can be noted that most previous works
consider either a binary or a disk based connectivity model, or an accurate
communication model to optimize the robots motion and communication
energy without focusing on resilience. Additionally, none of the previous
works explicitly addresses the problem of efficiently re-establishing the com-
munication in case of a connection loss, in ways beyond straightforward
backtracking.

In this paper, we propose a Resilient Communication-Aware Motion
Planner (RCAMP) that combines two key elements: 1) a Gaussian Random
Field (GRF) based probabilistic model to map the Radio Signal Strength
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(RSS) of an unknown environment and use it to predict the communication
quality of the planned path; 2) a motion planning strategy that starting
from sensory information (such as LIDAR), computes a traversability map
for a given robot taking into account environmental constraints. Addition-
ally we propose a strategy to autonomously repair a communication loss by
steering the robot towards a communication-safe position using the proposed
RCAMP.

Specifically, inspired by [27], we use GRFs for dynamically mapping the
heterogeneous distribution of the RSS. We then merge this online framework
with a motion planner

• to obtain a semi-optimal path considering both communication and
motion constraints, and

• to quickly re-establish connection in case of signal loss.

We demonstrate the feasibility of our approach through extensive sim-
ulations on a variety of use cases that reproduce realistic wireless network
changes (e.g. a sudden connection loss) in single and multi-channel set-ups.
Contrarily to many existing methods [52, 24], we do not assume any prior
knowledge about the positions and the number of transmission sources or
the dielectric characteristics of the obstacles in the environment. The main
advantages of our planner compared to others are the response to dynamic
changes in the network configuration (e.g. disruptions or movement in Ac-
cess Points) or in the environment (e.g. path planning in presence of dynamic
obstacles) and the fact that we do not require prior knowledge of the net-
work, such as the location of the Access Points. We propose a fully online,
dynamic and reactive CAMP that adapts to recent sensory information.

1.4.4 Network Aware Teleoperation, Design and User Study

The main contributions of this work are three-fold. We first propose a new
way of estimating DoA for teleoperated UGVs. We then propose a way
of integrating this DoA information in a UGV teleoperation UI. Lastly, we
perform a user study, showing that the proposed approach in fact increases
the number of found objects during a search mission, and decreases the
chances of losing the connection to the UGV. To the best of our knowledge,
none of these items have been done in a UGV teleoperation context before.

The wireless network connectivity of USAR UGVs have often proved
unreliable [63, 17], with examples including real incidents where robots were
lost during disaster inspection operations [65, 62]. Casper et al. [18] in-
vestigated user confidence in remotely operated robots with intermittent
communications, and found that these problems had a significant impact on
the usability of the systems. They even suggested that because of commu-
nication dropout problems, wireless robots should be avoided. However, the
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flexibility of wireless systems compared to tethered robots still make them
an important alternative in many applications.

A natural way of avoiding loss of communications is to make the user
aware of the connection quality. A decade ago, this information was usually
not displayed in the Operator Control Unit (OCU) [28], but more recently, it
is often added in the form of a ”signal bar” (as in modern cell phones) or in
form of a percentage. Typical examples of such representation can be seen
in [46, 38] including the recent Quince 2 robot’s OCU [99]. Furthermore,
the Wayfarer OCU for Packbot robots [94] represent the radio signal level
in a vertical bar manner, in addition to a numeric indicator.

The literature on robot interfaces also include examples where informa-
tion about gradients and directions is made available to the user. In [39]
two microphones on the left and right of the robot were used to estimate
the direction of a sound source, which was displayed (overlaid on the video)
in the form of a pointer floating on a horizontal line. A similar representa-
tion was used in [38] to show robot speed information. In [22], the authors
proposed a tactile belt that vibrates in the direction of detected collisions
to improve SA, while in [80] a study found that the use of a tactile vest did
not improve SA significantly in navigation tasks.

An influential study in Human-Robot Interface (HRI) design [97] ad-
vocates the use of a large single interface with a significant percentage of
the screen dedicated to video. The authors also recommend providing more
spatial information about the environment to increase SA, and using fused
sensor information to lower the cognitive load on user.

In this work we go beyond the related work described above by having
the teleoperation interface include not only a scalar value to describe the
network connectivity situation, but also the direction in which it is expected
to improve, i.e. the DoA. Assessing the geographic distribution of network
connectivity is a spatial task, for which the visual modality fits best with the
human information processing (e.g., see the multi-resource model of Wickens
[90]). Therefore we choose to present the DoA in the form of visual gradient
bars surrounding the video feedback.

Carefully integrating the DoA information into the visual feedback is
crucial. For this we use FLC (Free Look Control) [68] as the control layer.
FLC is essentially a ”navigate-by-camera” mode as envisioned in [98]. In the
FLC mode, the operator controls the UGV in relation to the camera frame
instead of the world frame, making it more intuitive than the traditional so-
called Tank Control mode. Hence it is appropriate to use FLC for presenting
the DoA information in direct reference to the camera frame, making the
UGV control easier while simultaneously enhancing local SA. The proposed
DoA interface integrated with FLC indeed has the potential to satisfy all the
three levels of SA (perception, comprehension, and prediction/projection)
mentioned in [26].
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1.4.5 Heterogeneous global localization

Heterogeneous global localization is a difficult task for robotic systems. In
contrast to homogeneous systems, the assumptions of same sensor modality
or similar view-point does not hold anymore. This review is based on our
literature reviews in [33], and [35].

A common approach to global localization is visual feature matching.
A large amount of approaches have been proposed in the last decade, giv-
ing reliable performance under perceptually similar conditions [31, 50, 21].
Several extensions have been proposed to overcome perceptually difficult sit-
uations, such as seasonal changes [61, 20], daytime changes [12, 1], or varying
view-points using CNN landmarks [84, 19]. However, drastic view-point in-
variance, e.g., between views from aerial and ground robots continues to be
a challenging problem for appearance-based techniques.

The field of 2D metrical map-merging based on overlapping map seg-
ments is well studied in the literature [7, 8, 77? ]. However, the task is
increasingly difficult when moving to 3D environments [78], especially when
dealing with heterogeneous robotic teams, where 3D data is generated from
different sensors and with different noise characteristics [16].

Michael et al. [60] demonstrate a system for collaborative UAV-UGV
mapping. The authors propose a system where a UGV equipped with a
LiDAR sensor performs 2.5D mapping, using the flat ground assumption
and consecutively merging scans using ICP. In dedicated locations, a UAV
equipped with a 2D LiDAR is launched from the UGV and maps the en-
vironment using a pose-graph SLAM algorithm. Maps generated from the
UAV are then fused online with the UGV map using ICP initialized at the
UAV starting location.

Forster et al. [29] go a step further in fusing UAV-UGV map data from
different sensors, i.e., RGB-D maps from the UGV and dense monocular
reconstruction from the UAV. The registration between the maps is per-
formed using a 2D local height map fitting in x and y coordinates with an
initial guess within a 3m search radius. The orientation is a priori recovered
from the magnetic north direction as measured by the IMUs. In a related
setting, Hinzmann et al. [40] evaluate different variants of ICP for register-
ing dense 3D LiDAR point-clouds and sparse 3D vision point-clouds from
SfM recorded with different UAVs into a common point-cloud map using an
initial GPS prior for the map alignment.

Instead of using the generated 3D data for localizing between RGB and
3D LiDAR point-cloud data, Wolcott and Eustice [92] propose to generate
2D views from the LiDAR point-clouds based on the surface reflectivity.
However, this work focuses only on localization and it is demonstrated only
on maps recorded from similar points of view.

In our previous work [32] we presented a global registration scheme be-
tween sparse 3D LiDAR maps from UGVs and vision keypoint maps from
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UAVs, exploiting the rough geometric structure of the environment. Here,
registration is performed by clustering of geometric keypoint descriptors
matches between map segments under the assumption of a known z -direction
as determined by an IMU.

Zeng et al. [100] present geometric descriptor matching based on learn-
ing. However, this approach is infeasible in unknown SaR scenarios, as the
descriptors do not generalize well to unknown environments.

Assuming good initialization of the global registration, Zhou et al. [104]
perform a robust optimization. The work claims faster and more robust
performance than ICP.

Other approaches to global localization are based on topological map-
ping [41, 56]. Here, maps are represented as graphs encoding relationships
between vertices. While these works focus on graph merging by exhaus-
tive vertex matching on small graphs, they do not consider graph extraction
from sensory data or ambiguous vertices. Furthermore, the computationally
expensive matching does not scale to larger graph comparisons.

With the recent advances in learning-based semantic extraction methods,
using semantics for localization is a promising avenue [? 45, 10, 2]. In [10, 2]
the authors focus on the data association problem for semantic localization
using EM and the formulation of the pose estimation problem for semantic
constraints as an error minimization. The semantic extraction is based on
a standard object detector from visual key-points.

Stumm et al. [83] propose to use graph kernels for place recognition
on visual key-point descriptors. Graph kernels are used to project image-
wise covisibility graphs into a feature space. The authors show that graph
descriptions can help localization performance as to efficiently cluster mul-
tiple descriptors meaningfully. However, the use of large densely connected
graphs sets limitations to the choice of graph representation.

In summary, the community addresses the problem of heterogeneous
global localization. However, there is a research gap in globally localizing
from one sensor modality to the other in full 3D without strong assumptions
on view-point, terrain or initial guess. We have identified the use of seman-
tic information [35] or 3D structure [33] as promising research avenues to
address these challenges.

1.4.6 Aerial transportation

We focus our review of related work on recent advances in aerial gripping and
servo positioning techniques for reliably detecting and approaching objects
using a MAV. The review is adopted from [34].

In [36] the authors propose an integrated object detection and gripping
system for MAVs using IR diodes for detection and a mechanical gripper for
gripping stationary objects. In contrast, our system aims to detect objects
using a standard RGB camera and also grip moving objects with an partly
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ferrous surface.
Transportation of objects using MAVs was reported in [59, 57, 75]. How-

ever, the authors mainly focus on the control of MAVs transporting objects.
In contrast to our work they do not implement a grip and release mechanism
which is an important aspect for fully autonomous delivery.

An aerial manipulation task using a quadrotor with a two DOF robotic
arm was presented in [43]. The kinematic and dynamic models of the com-
bined system were developed and an adaptive controller was designed in
order to perform a pick and place task. Such system offers high manipu-
lability, however, the shape of the objects to be picked is limited since the
robotic arm is only able to pick thin objects in specific configurations, i.e.,
thin surfaces pointing upwards. Furthermore, this work assumes that the
position of the object to be picked is known in advance.

A self-sealing suction technology for grasping was tested in [42]. A sys-
tem capable of grasping multiple objects with various textures, curved and
inclined surfaces, was demonstrated. Despite being able to achieve high
holding forces, the gripping system requires a heavy compressor and an ac-
tivation threshold force to pick up the objects. Also, all the tests were
performed using a motion capture system with known object positions.

Another type of mechanical gripper was shown in [58]. The gripper uses
servo motors to actuate the pins that penetrate the object and create a
strong and secure connection. A similar design was also presented in [3].
The main limitation of such a gripper is its restriction to pick only objects
with a penetrable surface. Furthermore, if the surface is not elastically
deformable, the gripper might cause irreversible damage to the object.

In [93], a bio-inspired mechanical gripper was designed in order to allow
quadcopters to carry objects with large flat or gently curved surfaces. In ad-
dition to being small and light, the gripper consists of groups of tiles coated
with a controllable adhesive that allows for very easy attachment and detach-
ment of the object. Nevertheless, the gripper is limited to smooth surfaces,
requires tendon mechanism for attachment, and has a limited payload.

OpenGrab EPM2 is a gripper developed using the principle of electro-
permanent magnets [44]. It is a low-weight, energy efficient and high-payload
solution developed for robotic applications and because of its advantages, we
have decided to use the same principle for our own gripper. Since OpenGrab
EMP is only able to pick flat surfaces, we have developed a more sophisti-
cated design which allows our gripper to pick objects with curved surfaces,
while maintaining an equal load distribution on all contacts between object
and gripper.

Visual Servoing (VS) is a well established technique where information
extracted from images is used to control the robot motion [72, 51, 36]. There
are many approaches to deal with VS, however some of the most popular

2http://nicadrone.com/
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include image based VS and pose based VS. In the vision based approach,
the control law is based entirely on the error in the image plane, no object
pose estimation is performed. In [76] the authors employ this method to
perform pole inspection with MAVs, while in [86] it is used to bring a MAV
to a perching position, hanging from a pole.

In the pose based approach, the object pose is estimated from the image
stream, then the robot is commanded to move towards the object to perform
grasping or an inspection task for instance [55].
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2 Annexes

2.1 Baberg (2017), “Formation Obstacle Avoidance using
RRT and Constraint Based Programming”

Bibliography Baberg and Ögren “Formation Obstacle Avoidance using
RRT and Constraint Based Programming” In Proceedings of the IEEE SSRR
2017, Shainghai, China, 2017.

Abstract In this paper, we propose a new way of doing formation obsta-
cle avoidance using a combination of Constraint Based Programming (CBP)
and Rapidly Exploring Random Trees (RRTs). RRT is used to select way-
point nodes, and CBP is used to move the formation between those nodes,
reactively rotating and translating the formation to pass the obstacles on
the way. Thus, the CBP includes constraints for both formation keeping and
obstacle avoidance, while striving to move the formation towards the next
waypoint. The proposed approach is compared to a pure RRT approach
where the motion between the RRT waypoints is done following linear in-
terpolation trajectories, which are less computationally expensive then the
CBP ones. The results of a number of challenging simulations show that the
proposed approach is more efficient in scenarios with high obstacle densities.

Relation to WP Formation obstacle avoidance is an enabling technology
for doing collaborative manipulation, in particular for collaboratively lifting
and moving large objects.

Availability Unrestricted.

2.2 Caccamo (2016), “Active Perception and Modeling of
Deformable Surfaces using Gaussian Processes and Position-
based Dynamics”

Bibliography Caccamo, Guler, Kjellstrom, and Kragic. “Active Percep-
tion and Modeling of Deformable Surfaces using Gaussian Processes and
Position-based Dynamics” In Proceedings of the IEEE Humanoids 2016.

Abstract Exploring and modeling heterogeneous elastic surfaces requires
multiple interactions with the environment and a complex selection of phys-
ical material parameters. The most common approaches model deformable
properties from sets of offline observations using computationally expen-
sive force-based simulators. In this work we present an online probabilistic
framework for autonomous estimation of a deformability distribution map of
heterogeneous elastic surfaces from few physical interactions. The method
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takes advantage of Gaussian Processes for constructing a model of the en-
vironment geometry surrounding a robot. A fast Position-based Dynamics
simulator uses focused environmental observations in order to model the
elastic behavior of portions of the environment. Gaussian Process Regres-
sion maps the local deformability on the whole environment in order to
generate a deformability distribution map. We show experimental results
using a PrimeSense camera, a Kinova Jaco2 robotic arm and an Optoforce
sensor on different deformable surfaces.

Relation to WP This paper describes a mobile manipulation approach
applicable in low visibility situations.

Availability Unrestricted.

2.3 Caccamo (2016), “Active Exploration Using Gaussian
Random Fields and Gaussian Process Implicit Surfaces”

Bibliography Caccamo, Bekiroglu, Ek, and Kragic “Active Exploration
Using Gaussian Random Fields and Gaussian Process Implicit Surfaces”. In
Proceedings of the IEEE IROS 2016.

Abstract In this work we study the problem of exploring surfaces and
building compact 3D representations of the environment surrounding a robot
through active perception. We propose an online probabilistic framework
that merges visual and tactile measurements using Gaussian Random Field
and Gaussian Process Implicit Surfaces. The system investigates incomplete
point clouds in order to find a small set of regions of interest which are then
physically explored with a robotic arm equipped with tactile sensors. We
show experimental results obtained using a PrimeSense camera, a Kinova
Jaco2 robotic arm and Optoforce sensors on different scenarios. We then
demostrate how to use the online framework for object detection and terrain
classification.

Relation to WP This paper describes a mobile manipulation approach
applicable in low visibility situations.

Availability Unrestricted.

2.4 Caccamo (2017), “RCAMP: A Resilient Communication-
Aware Motion Planner for Mobile Robots with Autonomous
Repair of Wireless Connectivity”

Bibliography Caccamo, Parasuraman, Freda, Gianni and Ögren “RCAMP:
A Resilient Communication-Aware Motion Planner for Mobile Robots with
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Autonomous Repair of Wireless Connectivity” In Proceedings of the IEEE
IROS 2017.

Abstract Mobile robots, be it autonomous or teleoperated, require sta-
ble communication with the base station to exchange valuable information.
Given the stochastic elements in radio signal propagation, such as shadowing
and fading, and the possibilities of unpredictable events or hardware failures,
communication loss often presents a significant mission risk, both in terms
of probability and impact, especially in Urban Search and Rescue (USAR)
operations. Depending on the circumstances, disconnected robots are either
abandoned, or attempt to autonomously back-trace their way to the base
station. Although recent results in Communication-Aware Motion Planning
can be used to effectively manage connectivity with robots, there are no re-
sults focusing on autonomously re-establishing the wireless connectivity of
a mobile robot without back-tracing or using detailed a priori information
of the network. In this paper, we present a robust and online radio signal
mapping method using Gaussian Random Fields, and propose a Resilient
Communication-Aware Motion Planner (RCAMP) that integrates the above
signal mapping framework with a motion planner. RCAMP considers both
the environment and the physical constraints of the robot, based on the
available sensory information. We also propose a self-repair strategy using
RCMAP, that takes both connectivity and the goal position into account
when driving to a connection-safe position in the event of a communication
loss. We demonstrate the proposed planner in a set of realistic simulations
of an exploration task in single or multi-channel communication scenarios.

Relation to WP This paper describes network aware UGV mission plan-
ning.

Availability Unrestricted.

2.5 Parasuraman (2017), “A New UGV Teleoperation Inter-
face for Improved Awareness of Network Connectivity
and Physical Surroundings”

Bibliography Ramviyas Parasuraman, Sergio Caccamo, Fredrik B̊aberg,
Mark Neerincx, Petter Ögren. “A New UGV Teleoperation Interface for
Improved Awareness of Network Connectivity and Physical Surroundings.”
In Journal of Human Robot Interaction 2017.

Abstract A reliable wireless connection between the operator and the tele-
operated unmanned ground vehicle (UGV) is critical in many urban search
and rescue (USAR) missions. Unfortunately, as was seen in, for example,
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the Fukushima nuclear disaster, the networks available in areas where USAR
missions take place are often severely limited in range and coverage. There-
fore, during mission execution, the operator needs to keep track of not only
the physical parts of the mission, such as navigating through an area or
searching for victims, but also the variations in network connectivity across
the environment. In this paper, we propose and evaluate a new teleopera-
tion user interface (UI) that includes a way of estimating the direction of
arrival (DoA) of the radio signal strength (RSS) and integrating the DoA
information in the interface. The evaluation shows that using the interface
results in more objects found, and less aborted missions due to connectivity
problems, as compared to a standard interface. The proposed interface is an
extension to an existing interface centered on the video stream captured by
the UGV. But instead of just showing the network signal strength in terms
of percent and a set of bars, the additional information of DoA is added in
terms of a color bar surrounding the video feed. With this information, the
operator knows what movement directions are safe, even when moving in
regions close to the connectivity threshold.

Relation to WP This paper describes network aware UGV teleoperation.

Availability Unrestricted.

2.6 Gawel (2017a), “3D registration of aerial and ground
robots for disaster response: An evaluation of features,
descriptors, and transformation estimation”

Bibliography Abel Gawel, Renaud Dube, Hartmut Surmann, Juan Ni-
eto, Roland Siegwart, Cesar Cadena. “3D registration of aerial and ground
robots for disaster response: An evaluation of features, descriptors, and
transformation estimation.” In IEEE International Symposium on Safety,
Security and Rescue Robotics (SSRR), 2017.

Abstract Global registration of heterogeneous ground and aerial mapping
data is a challenging task. This is especially difficult in disaster response
scenarios when we have no prior information on the environment and cannot
assume the regular order of man-made environments or meaningful semantic
cues. In this work we extensively evaluate different approaches to globally
register UGV generated 3D point-cloud data from LiDAR sensors with UAV
generated point-cloud maps from vision sensors. The approaches are real-
izations of different selections for: a) local features: key-points or segments;
b) descriptors: FPFH, SHOT, or ESF; and c) transformation estimations:
RANSAC or FGR. Additionally, we compare the results against standard
approaches like applying ICP after a good prior transformation has been
given. The evaluation criteria include the distance which a UGV needs to

EU FP7 TRADR (ICT-60963) 43



Deliverable 2.4 Ögren, Freda, Gianni, Worst, Gawel, Dube et al.

travel to successfully localize, the registration error, and the computational
cost. In this context, we report our findings on effectively performing the
task on two new Search and Rescue datasets. Our results have the potential
to help the community take informed decisions when registering point-cloud
maps from ground robots to those from aerial robots.

Relation to WP This paper describes 3D registration between UAV and
UGV.

Availability Unrestricted.

2.7 Gawel (2017b), “Aerial picking and delivery of magnetic
objects with MAVs”

Bibliography Abel Gawel, Mina Kamel, Tonci Novkovic, Jakob Widauer,
Dominik Schindler, Benjamin Pfyffer von Altishofen, Roland Siegwart, Juan
Nieto. “Aerial picking and delivery of magnetic objects with MAVs.” In
IEEE International Conference on Robotics and Automation (ICRA) 2017.

Abstract Autonomous delivery of goods using a Micro Air Vehicle (MAV)
is a difficult problem, as it poses high demand on the MAVs control, percep-
tion and manipulation capabilities. This problem is especially challenging if
the exact shape, location and configuration of the objects are unknown. In
this paper, we report our findings during the development and evaluation
of a fully integrated system that is energy efficient and enables MAVs to
pick up and deliver objects with partly ferrous surface of varying shapes
and weights. This is achieved by using a novel combination of an electro-
permanent magnetic gripper with a passively compliant structure and in-
tegration with detection, control and servo positioning algorithms. The
systems ability to grasp stationary and moving objects was tested, as well
as its ability to cope with different shapes of the object and external dis-
turbances. We show that such a system can be successfully deployed in
scenarios where an object with partly ferrous parts needs to be gripped and
placed in a predetermined location.

Relation to WP This paper describes visual servoing over moving tar-
gets, collection of samples, and transportation using UAVs.

Availability Unrestricted.
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2.8 Gawel (2018), “X-View: Graph-Based Semantic Multi-
View Localization”

Bibliography Abel Gawel, Carlo Del Don, Roland Siegwart, Juan Nieto,
Cesar Cadena. “X-View: Graph-Based Semantic Multi-View Localization.”
In IEEE Robotics and Automation Letters (RA-L) 2018.

Abstract Global registration of multi-view robot data is a challenging
task. Appearance-based global localization approaches often fail under dras-
tic view-point changes, as representations have limited view-point invari-
ance. This work is based on the idea that human-made environments con-
tain rich semantics which can be used to disambiguate global localization.
Here, we present X-View, a Multi-View Semantic Global Localization sys-
tem. X-View leverages semantic graph descriptor matching for global local-
ization, enabling localization under drastically different view-points. While
the approach is general in terms of the semantic input data, we present and
evaluate an implementation on visual data. We demonstrate the system in
experiments on the publicly available SYNTHIA dataset, on a realistic ur-
ban dataset recorded with a simulator, and on real-world StreetView data.
Our findings show that X-View is able to globally localize aerial-to-ground,
and ground-to-ground robot data of drastically different view-points. Our
approach achieves an accuracy of up to 85 % on global localizations in the
multi-view case, while the benchmarked baseline appearance-based methods
reach up to 75 %.

Relation to WP This paper describes semantic localization between het-
erogeneous robots.

Availability Unrestricted.
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Formation Obstacle Avoidance using RRT
and Constraint Based Programming

Fredrik Båberg1 and Petter Ögren1

Abstract— In this paper, we propose a new way of doing
formation obstacle avoidance using a combination of Constraint
Based Programming (CBP) and Rapidly Exploring Random
Trees (RRTs). RRT is used to select waypoint nodes, and CBP
is used to move the formation between those nodes, reactively
rotating and translating the formation to pass the obstacles on
the way. Thus, the CBP includes constraints for both formation
keeping and obstacle avoidance, while striving to move the
formation towards the next waypoint.

The proposed approach is compared to a pure RRT approach
where the motion between the RRT waypoints is done following
linear interpolation trajectories, which are less computationally
expensive than the CBP ones. The results of a number of
challenging simulations show that the proposed approach is
more efficient for scenarios with high obstacle densities.

I. INTRODUCTION

In this paper, we study the problem of formation obstacle
avoidance, i.e. moving a formation through an environment
with obstacles, as seen in Figure 1. This problem is important
for a number of reasons. In general, it is believed that having
a multi agent system, i.e. a group of agents, perform a
task can improve robustness, flexibility and performance, as
compared to having a few more complex agents. Robust-
ness is improved by reducing the impact of single failures.
Flexibility is improved by the possibility of moving agents
to different locations to perform simultaneous work, and
performance can be improved by e.g. providing sensing
capabilities across a larger area in a search task.

Formation obstacle avoidance is important when e.g. a
group of robots are jointly carrying an object, when they need
to cover an area, using a formation that is optimized relative
to their sensors, or when they need to maintain relative
distances to enable the best use of some communication
channel.

All of the tasks above can be applicable to, for instance,
search and rescue applications. A formation which optimizes
the use of sensors could be used, or the robots could transport
a larger object on top of the formation.

In a bit more technical detail, the obstacles we consider
can be of arbitrary shape, modelled by the union of a large
set of possibly overlapping circular discs. The formation is
given as a desired rigid shape, that can translate and rotate
to get past obstacles and arrive at the goal. The robots are
modelled as kinematic points.

The work on formation obstacle avoidance can be struc-
tured based on how strict the formation keeping objective is,

1Both authors are with the Robotics, Perception and Learning Lab, Centre
for Autonomous Systems, Royal Institute of Technology (KTH), SE-100 44
Stockholm, {fbaberg,petter}@kth.se
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Fig. 1: Example execution of CBP-RRT with 200 obstacles.
Non-accessible areas belonging to obstacles are indicated by
blue circles with a black dot at the center. The start position
of the virtual structure is located at (-10, -10), while target
position is at (10, 10). Smaller green squares indicates robot
positions.

relative to the objectives of reaching the goals and avoiding
the obstacles.

In some approaches, the formation requirement is quite
loose, corresponding to animal flocking. In [1] the robots
need to avoid coming closer than a given minimum separa-
tion to both obstacles and other robots, but there is no ideal
formation shape to be achieved.

In other approaches, the system itself is allowed to make
a tradeoff between an ideal formation and avoiding obsta-
cles, this includes behavior based approaches [2] and other
potential field methods [3].

Work on navigation functions represent a formal extension
of the potential field ideas, but require that the obstacles are
enough separated so that robots can pass between them [4].
This assumption is also present in work focussing on the
control of the actual vehicles [5].

With loose formation requirements you can also allow the
robots to break formation in order to pass obstacles, formally
creating a safe mode, including formation keeping, and a
danger mode disregarding the formation objective [6].

In cases where the formation keeping, up to translation,
is a strict requirement we have approaches building on grid
based path planning [7], [8]. There the formation shape, with
a possible margin for control errors, is treated as a fixed

2017 IEEE International Symposium on
Safety, Security and Rescue Robotics (SSRR)
Shanghai, China, October 11-13, 2017

978-1-5386-3923-8/17/$31.00 ©2017 IEEE 1



super robot used to create configuration space obstacles for
all formation positions that imply a collision between a robot-
obstacle pair. These configuration obstacles are then captured
in a grid map in which the motion planning is done.

Constraint Based Programming (CBP) is an approach for
designing robot controllers that take a set of constraints, in
terms of equalities and inequalities into consideration [9].
CBP has its roots in the concepts of the additional tasks
of [10], the user defined objective functions of [11], and the
sub-tasks of [12]. Similar ideas were used in the Stack of
Tasks approach [13], [14], the iTaSC approach [15], [16],
and in a variation using Quadratic programming that was
proposed in [17] and [18].

In this paper, we will use CBP for formation control,
where the constraints will be given by both the formation
keeping objective, and the desired obstacle clearance. The
objective function will be the progress towards the next
waypoint, and the waypoints are chosen using an Rapidly
Exploring Random Tree (RRT) algorithm.

RRTs are sampling based path planners [19], [20] that are
known to outperform grid based planners when there are a
large number of dimensions, and/or a need for very small
grid cells.

The main contribution of this paper is that we combine
CBP with RRTs to solve formation obstacle avoidance
problems in very cluttered environments. In this way, the
local reactive properties of CBP, allowing the formation to
rotate and translate past the obstacles, is combined with the
global properties of RRT, avoiding local minima problems
and efficiently exploring the statespace. To the best of our
knowledge, this has not been done before.

The outline of this paper is as follows. We will first
give a brief introduction to CBP and RRT in Section II
before formulating a combined problem, and suggesting
our solution, in Section III. In Section IV we present an
experiment for validating the approach, followed by results
in Section V. Discussion and conclusions are provided in
Section VI and VII.

II. BACKGROUND

We will now give a brief introduction to RRTs, followed
by CBP.

A. RRTs

RRT is a sampling based algorithm used for path planning,
where a tree is built up by sampling states and connecting
new states to the tree. The psuedo-code for RRT [19] is
shown in Algorithm 1. The function names are fairly self-
explaining, with state denoted by x, control sequence by u
and the tree denoted by T . Note that collision detection can
be embedded in step 5, where a control sequence is sought
bringing the state from xnear to xrand , or as close as possible
if xrand cannot be reached.

B. Constraint Based Programming

Consider the following control problem with constraints:

Algorithm 1 GENERAT E RRT (xinit ,K,∆t))

1: T.init(xinit);
2: for k=1 to K do
3: xrand ← RANDOM STATE();
4: xnear← NEAREST NEIGHBOR(xrand ,T );
5: u← SELECT INPUT(xrand ,xnear);
6: xnew← NEW STATE(xnear,u,∆t);
7: T.add vertex(xnew);
8: T.add edge(xnear,xnew,u);

return T

Problem 2.1: Given a time interval [t0, t f ], initial state
q(t0) = q0 and a control system

q̇ = h(q,u),

where q∈Rn and u∈Rm, solve the following optimal control
problem

min
u(·)

f j(q(t f ), t f ), j ∈ I (1)

(s.t.) fi(q(t), t)≤ 0, ∀i ∈ Iie, t > t0 (2)
fi(q(t), t) = 0, ∀i ∈ Ie, t > t0, (3)

where fi : Rn → R, i ∈ I ⊂ N and we assume that the
constraints are satisfied at t0, i.e. fi(q0, t0)≤ 0 for all i ∈ Iie
and fi(q0, t0) = 0 for all i ∈ Ie and Iie, Ie ⊂ I, where Ie, Iie is
the set of indices for equality and inequality constraints.

Being an optimal control problem, this is in general very
hard to solve to optimality. CBP instead applies a reactive
local approach by converting the problem above to a series of
convex Quadratic Programming Problems (QPs) to be solved
at every time step. In detail we have

Problem 2.2:

min
u

ḟ j(q(t),u, t)+uT Qu, j ∈ I (4)

(s.t.) ḟi(q,u, t)≤−ki fi(q, t), ∀i ∈ Iie, (5)

ḟi(q,u, t) =−ki fi(q, t), ∀i ∈ Ie, (6)

where ki are positive scalars and Q is a positive definite
matrix.
To verify that a solution to Problem 2.2 is also a feasible
solution to Problem 2.1, we first compare the inequality
constraints. As long as t > t0 we can see that if (5) is satisfied
then (2) is satisfied. In the case of equality in (5), then the
bounds of (2) will be approched, but not violated, with time
constant 1/ki. For the equalities we have, in a similar way,
that as long as (6) is satisfied then (3) will also be satisfied,
for t > t0. For the objective function, if we keep the derivative
minimized then the objective f j(q(t f ), t f ) will be kept small.
In order to avoid sudden large changes in the output we add
a quadratic cost u>Qu, where Q is a positive-definite matrix
assigning relative weights to the elements in u.

Now, in order to express this in coordinate velocities, we
use the relation

ḟ =
∂ f
∂q

q̇ (7)

to obtain the following:

2



Problem 2.3:

min
u

∂ f j(q(t),u, t)
∂q

q̇+uT Qu, j ∈ I (8)

(s.t.)
∂ fi(q,u, t)

∂q
q̇≤−ki fi(q, t), ∀i ∈ Iie, (9)

∂ fi(q,u, t)
∂q

q̇ =−ki fi(q, t), ∀i ∈ Ie. (10)

This means that we need to find the derivative with respect
to coordinates q, for the constraints and the objective.

If the system is a kinematic point, q̇ = u, we can write
Problem 2.3 in matrix notation as follows

Problem 2.4:

min
u

u>Qu+ p>u (11)

(s.t.) Gu≤ h (12)
Au = b (13)

which is a classical QP. With this background, we will
continue with the problem formulation.

III. PROBLEM FORMULATION AND SOLUTION

In this section we will state the problem we address and
the solution we propose.

Problem 3.1: Control the robots such that they

A) Reach the target position
B) Stay in a given formation
C) Stay clear of obstacles

Our proposed solution is a combination of CBP and RRT,
denoted CBP-RRT, where CBP implements the reactive local
control (SELECT INPUT) in Line 5 of Algorithm 1, see
Section II.

Remark 3.1: Note that the proposed approach can be
applied to many different extensions of RRT, such as RRT*
[21] and bidirectional RRT [20], but the focus in this paper
is to investigate the implications of combining CBP with
methods of the RRT family. Thus our comparison focuses
on how standard RRT compares to CBP-RRT. One could
also imagine comparing bidirectional RRT with bidirectional
CBP-RRT, but we believe that the results would be similar.

In each execution of SELECT INPUT we run CBP for
a fixed number of timesteps. Note that as CBP is a reactive
approach, there will be instances where non-convex obstacles
prevent the algorithm from reaching the waypoint. Then,
SELECT INPUT will return the closest node it can find.
The new nodes spawned by the RRT iterations will however
sooner or later enable a safe passage of the non-convex
obstacle. The advantages of using CBP is the ability of mov-
ing past some obstacles, significantly reducing the number
of RRT nodes needed to find the goal. As will be shown
below, this results in reduced overall computation times in
highly cluttered environments. To quickly find solutions in
open areas, we first try linear interpolation, and if that does
not return a valid solution we apply CBP. For the formation
keeping we will use a standard virtual structure approach,
as described in [22].

A. RRT formulation

The standard RRT described in Algorithm 1 is used, with
the addition that the algorithm terminates when the new state
is within a given distance of the target state.Thus if a solution
is found we will not add more nodes to the tree. Furthermore,
since we know which state we want to reach, we sample the
target location directly at every N:th sample.

As described above, in the RRT, the CBP implements the
SELECT INPUT step, with xnear as a starting state, xrand
as a target state, and returning a state that is as close to
xrand as possible. Thus, in some sense the RRT approach is
addressing Problem 3.1 by solving a set of simpler instances
of the same problem (i.e. Problem 3.1). In standard RRT,
these need to be collision free, whereas in CBP-RRT it is
enough if they are solvable using CBP.

B. CBP formulation

Now, we need to apply the approach described in Problem
2.3 i.e., Equations (8)-(10), to solve Problem 3.1, that is reach
the target position, stay in a given formation, and stay clear
of obstacles.

To formalize this problem we first need to introduce
some notation. Let q = [pT

vs,θvs, pT
1 , ..., pT

M]T ∈R3+2M denote
position and orientation of the virtual structure (vs), and po-
sition of agents and u = [uT

vs,ωvs,uT
1 , ...u

T
M]T ∈R3+2M denote

velocity and angular velocity of the virtual structure and the
velocities of agents, with, q̇ = u, for M agents. Finally, the
goal is given by a position and orientation pgoal ,θgoal , the
obstacles are given by positions pobs−k and radii rk, and the
formation is given by offsets di ∈ R2 relative to pvs.

In order to use Equations (8)-(10) we must first formalize
the three objectives above, i.e. target position (A), formation
keeping (B) and obstacle avoidance (C). We do this by
creating quadratic functions as follows

fA(q) = (pvs− pgoal)
T (pvs− pgoal)+(θvs−θgoal)

2 (14)

fBi(q) = (pi− pvs−R(θ)di)
T (pi− pvs−R(θ)di) = 0 (15)

fCik(q) = (pi− pobs−k)
T (pi− pobs−k)− r2

k ≥ 0 (16)

where R(θ)=
[

cosθ −sinθ

sinθ cosθ

]
. Differentiating the functions

above with respect to time, using Ṙ(θ) = R(θ +π/2)ω we
get

ḟA(q) = 2(pvs− pgoal)
T uvs +2(θvs−θgoal)ωvs (17)

ḟBi(q) = 2(pi− pvs−R(θ)di)
T (ui−uvs−R(θ +

π

2
)diωvs)

(18)

ḟCik(q) = 2(pi− pobs−k)
T ui (19)

Now, looking at equations (8)-(10) we let the function fi
be given by fA for i = j, fB for i ∈ Iie, and fC for i ∈ Ie, i.e.,
the objective function in (8) is given by fA, the equalities in
(10) are given by fBi, for all agents i, and the inequalities
in (9) are given by fCik, for all combination of agents i and
obstacles k.
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IV. EXPERIMENTS

In order to evaluate the approach we perform a number of
simulations. We will first introduce the software used.

The algorithms have been implemented in Python, with
the optimization solver CVXOPT1.The simulation engine is
implemented in Python.

We investigate the approach using a setting with five robots
modelled as kinematic points, with two degrees of freedom,
position pi. The goal is to navigate between two formation
states given by position and orientation (start, target), while
satisfying the constraints stated in Problem 3.1. The virtual
structure has three degrees of freedom, position pvs, and
rotation θvs. A number of obstacles, that the formation has
to avoid, are placed in the environment. An example map
can be seen in Figure 1, with the start and target state.

For benchmarking we use LI-RRT with linear interpolation
between waypoints of the RRT. Examples of execution of
CBP-RRT for a single node with a single small obstacle and
a larger obstacle are shown in Figures 2 and 3, respectively.

For the experiments we sample the target position every
20th time (N = 20). 5 seconds are allowed for movement,
a maximum of 200.000 nodes can be sampled for the tree.
Obstacle clearance is set to 0.5m, and the resolution of the
solver is 0.2s. A solution is considered found by the RRT if
the norm of the difference of the target state and the virtual
structure state is less than 0.01.

V. RESULTS
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Fig. 2: Example of the path generated by CBP-RRT with
a single node (only step 5 in Algorithm 1), with a single
obstacle. Sufficient time to reach the target with one node
was provided. Note that LI-RRT would not give a valid
solution, due to the collision check.

We will now present the results of the experiments. For
comparison we look at the time required for calculation,
and the number of nodes (iterations) needed by CBP-RRT
and LI-RRT respectively. Each run consists of generating an

1http://cvxopt.org/
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Fig. 3: Same setup as in Figure 2, for a non-convex obstacle
configuration instead of a single obstacle. Also in this case,
for a single node, LI-RRT would not give a valid solution.

environment through randomly placing obstacles, and then
running the two approaches for the generated environment.
This is repeated, and the average values are presented. The
results are presented in Table I, where Method is either the
proposed method CBP-RRT, or the baseline method LI-RRT.
Obstacles is the number of obstacles randomly placed in
the environment. Nodes is the number of nodes (iterations)
needed until convergence, and Time is the time required,
in seconds, to find a solution (lower is better). Rep. is the
number of runs used to compute the average, with total
number of runs in parenthesis. When calculating the average,
only cases where a solution could be found were included.
Examples of executions with CBP-RRT and LI-RRT are
shown in Figures 4 to 9. In the video2 execution of the plan
obtained by CBP-RRT is shown.

TABLE I: Average results after running both algorithms,
with 5 seconds for execution between each node, ordered
by increasing number of obstacles. Cases where no solution
could be found were excluded when calculating the average.

Method Obstacles [-] Nodes [-] Time [s] Rep. [-]
LI-RRT 0 33.6 0.06 100 (100)
CBP-RRT 0 36.0 0.06 100 (100)
LI-RRT 25 77 0.26 100 (100)
CBP-RRT 25 33.6 2.77 100 (100)
LI-RRT 50 146.4 0.45 100 (100)
CBP-RRT 50 38.0 5.26 100 (100)
LI-RRT 100 1018.8 2.64 100 (100)
CBP-RRT 100 51.8 13.49 100 (100)
LI-RRT 150 6027.8 15.35 100 (100)
CBP-RRT 150 106.6 43.22 100 (100)
LI-RRT 200 30539.6 95.33 100 (100)
CBP-RRT 200 183.0 87.74 100 (100)
LI-RRT 250 93852.1 311.67 91 (100)
CBP-RRT 250 388.4 212.89 100 (100)

For 200 obstacles, LI-RRT required more than 100.000

2Also available on https://www.youtube.com/watch?v=
OtvFIZFg68M
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nodes in three of the runs.

−20 −10 0 10 20
Width [m]

−15

−10

−5

0

5

10

15

H
ei

gh
t

[m
]

Obstacle

Obstacle radius

Start

Goal

Robot position

Robot path

Fig. 4: Execution of path generated by CBP-RRT for 150
obstacles.
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Fig. 5: Execution of path generated by LI-RRT for 150
obstacles.

VI. DISCUSSION

We will now give a brief discussion on the results pre-
sented above.

In the comparison presented in Table I, we use 5 robots. In
all scenarios, on average, CBP-RRT has fewer nodes in the
RRT than LI-RRT. The execution times are however smaller
for LI-RRT in the top of the table (scenarios with fewer
obstacles). This is due to the fact that the execution of Line
5 in Algorithm 1 is fairly fast for LI-RRT, including linear
interpolation and collision checks, whereas for CBP-RRT it
includes the actual simulation of the CBP algorithm over a
number of timesteps.

As the environments gets more cluttered, from 200 obsta-
cles and above, the ability of CBP to negotiate the obstacles
and actually reaching the waypoints chosen by the RRT starts
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Fig. 6: Example of the path generated by CBP-RRT for 200
obstacles. Blue triangles indicates nodes in the RRT.
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Fig. 7: Example of the path generated by LI-RRT for 200
obstacles. The plot also includes the nodes of the RRT.

paying off, with overall shorter execution times and at 250
obstacles a higher success rate. With 250 obstacles, 200.000
nodes was not enough for LI-RRT to find a solution in all
of the runs. LI-RRT finds a solution in 91 of the 100 runs,
whereas CBP-RRT succeeds in all of the 100 runs.

Example executions of the scenarios are shown in Figures
4-9. In Figures 4 and 5 a scenario with 150 obstacles
is shown. Note that the LI-RRT has more straight robot
trajectories between obstacles than the CBP-RRT.

In Figure 6 and 7 a scenario with 200 obstacles is shown,
together with the nodes of the RRT in both cases. The huge
number of nodes needed to find a solution in the LI-RRT is
evident, as compared to the CBP-RRT.

In Figure 8 and 9 a scenario with 250 obstacles is shown.
Note that getting the formation from start to goal without
colliding is quite challenging.
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Fig. 8: Execution of path generated by CBP-RRT for 250
obstacles.

−20 −10 0 10 20
Width [m]

−15

−10

−5

0

5

10

15

H
ei

gh
t

[m
]

Obstacle

Obstacle radius

Start

Goal

Robot position

Robot path

Fig. 9: Execution of path generated by LI-RRT for 250
obstacles.

VII. CONCLUSIONS

In this paper we propose to use CBP-RRT, a combina-
tion of contraint based programming and RRT, for doing
formation obstacle avoidance in very cluttered environments.
The proposed CBP-RRT approach was compared to LI-RRT,
the classical approach using linear interpolation collision
checking. The results show that CBP-RRT outperforms LI-
RRT when the obstacle density is high enough.
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RCAMP: A Resilient Communication-Aware Motion Planner
for Mobile Robots with Autonomous Repair of Wireless Connectivity

Sergio Caccamo, Ramviyas Parasuraman, Luigi Freda, Mario Gianni, Petter Ögren

Abstract—Mobile robots, be it autonomous or teleoperated,
require stable communication with the base station to exchange
valuable information. Given the stochastic elements in radio
signal propagation, such as shadowing and fading, and the
possibilities of unpredictable events or hardware failures, com-
munication loss often presents a significant mission risk, both
in terms of probability and impact, especially in Urban Search
and Rescue (USAR) operations. Depending on the circumstances,
disconnected robots are either abandoned, or attempt to au-
tonomously back-trace their way to the base station. Although
recent results in Communication-Aware Motion Planning can be
used to effectively manage connectivity with robots, there are
no results focusing on autonomously re-establishing the wireless
connectivity of a mobile robot without back-tracing or using
detailed a priori information of the network.

In this paper, we present a robust and online radio signal
mapping method using Gaussian Random Fields, and propose
a Resilient Communication-Aware Motion Planner (RCAMP)
that integrates the above signal mapping framework with a
motion planner. RCAMP considers both the environment and
the physical constraints of the robot, based on the available
sensory information. We also propose a self-repair strategy using
RCMAP, that takes both connectivity and the goal position into
account when driving to a connection-safe position in the event
of a communication loss. We demonstrate the proposed planner
in a set of realistic simulations of an exploration task in single
or multi-channel communication scenarios.

Index Terms—Mobile Robots, Self-Repair, Wireless Communi-
cation, Communication-Aware Motion Planning.

I. INTRODUCTION

Recent years have witnessed an increased development of
wireless technologies and significant improvements in com-
munication performance and quality. As wireless networks
possess many advantages over a tethered connection, such
as the ease of deployment and fewer physical constraints,
it has become the ’de facto’ means of communication in
mobile robots. However, this development has not come with-
out problems. A 2004 study [1] found a drastic increase in
communication-related failures in robots compared to its prior
in 2002.

These problems are important under normal circumstances,
but become even more significant in USAR scenarios, where
electromagnetic infrastructure is often damaged. Furthermore,
USAR missions often rely more on bi-directional commu-
nication channels than other robotic applications, since the

The authors S.Caccamo, P.Ögren are with the Computer Vision and
Active Perception Lab., Centre for Autonomous Systems, School of Com-
puter Science and Communication, KTH Royal Institute of Technology,
Sweden. R.Parasuraman is with Purdue University, West Lafayette, USA.
L.Freda and M.Gianni are with ALCOR Laboratory, DIAG, Sapienza
University of Rome, Italy. e-mail: {caccamo∣petter}@kth.se,
ramviyas@purdue.edu, {freda∣gianni}@dis.uniroma1.it

Fig. 1: The simulated mobile robot (UGV) with its receiver and an
omnidirectional transmitter on a urban search and rescue scenario.

performance of a combined human-robot team is still superior
compared to purely autonomous solutions in tasks such as
inspecting or assessing potentially hazardous areas [2], [3].

To address this problem, several researchers have focused
on Communication-Aware Motion (or path) Planning (CAMP)
to simultaneously optimize motion and communication con-
straints and finding and executing an optimal path towards a
destination [4]. In particular, Mostofi et al. laid solid foun-
dations in this research area [5]–[7]. It can be noted that
most previous works consider either a binary or a disk based
connectivity model, or an accurate communication model
to optimize the robots motion and communication energy
without focusing on resilience. Additionally, none of the
previous works explicitly addresses the problem of efficiently
re-establishing the communication in case of a connection loss.

In this paper, we propose a Resilient Communication-Aware
Motion Planner (RCAMP) that combines two key elements:
1) a Gaussian Random Field (GRF) based probabilistic model
to map the Radio Signal Strength (RSS) of an unknown
environment and use it to predict the communication quality
of the planned path; 2) a motion planning strategy that
starting from sensory information (such as LIDAR), computes
a traversability map for a given robot taking into account
environmental constraints. Additionally we propose a strategy
to autonomously repair a communication loss by steering
the robot towards a communication-safe position using the
proposed RCAMP.



Specifically, inspired by [8], we use GRFs for dynamically
mapping the heterogeneous distribution of the RSS. We then
merge this online framework with a motion planner

● to obtain a semi-optimal path considering both commu-
nication and motion constraints, and

● to quickly re-establish connection in case of signal loss.
We demonstrate the feasibility of our approach through

extensive simulations on a variety of use cases that reproduce
realistic wireless network changes (e.g. a sudden connection
loss) in single and multi-channel set-ups. The main advantages
of our planner compared to others are the response to dynamic
changes in the network configuration (e.g. disruptions or
movement in Access Points) or in the environment (e.g. path
planning in presence of dynamic obstacles) and the fact that
we do not require prior knowledge of the network, such as
the location of the Access Points. We propose a fully online,
dynamic and reactive CAMP that adapts to the recent sensory
information.

II. RELATED WORK

Considerable efforts have been made to address the problem
of maintaining robust wireless communication between mobile
robot(s) and a base station [3], [9], [10]. Many solutions focus
on using mobile repeater (relay) robots to establish and/or
repair an end-to-end communication link [11]–[13]. Other
solutions focus on means to provide situation awareness of
wireless connectivity to the robot or the teleoperator [14].

An overview of the CAMP problem is presented in [4].
Several works rely upon an oversimplified model in which the
connectivity is modelled as a binary function. In this case,
the predicted Signal to Noise Ratio (SNR) and the estimated
distance from the robot (aerial or ground) to the radio source
are empirically thresholded in order to identify regions with
high probability of communication coverage [15].

In [16], the authors propose an optimization strategy to
compute a path along which the predicted communication
quality is maximized. They make use of supervised learning
techniques (Support Vector Regression) to predict the link
quality such as the Packet Reception Ratio. It is worth noting
that in this case the learning mechanism is offline and hence
can only be applied to a static environment.

A communication aware path planner is proposed in [17]
for an aerial robot. Here, the authors present a probability
function which is based on the SNR between two nodes. The
SNR model is learned from the measurements online using an
Unscented Kalman Filter (UKF) model.

Works that combine communication and motion planning
are strongly influenced by Mostofi et al. In [6], the authors
developed a mathematical framework to predict the commu-
nication quality (mainly the SNR) in unvisited locations by
learning the wireless channels online. This prediction model
is then used to define a motion planner either to improve the
channel assessment [5] or to optimize for communication and
motion energy to reach a given target [7]. This framework
is further extended in [18] to include online channel learning
for co-optimization of communication transmission energy and

motion energy costs. Here, the transmission power is modelled
as a function of SNR, whereas the motion power is a function
of the robot’s velocity and acceleration.

Recovering from a communication failure is a topic that has
not been given much attention in the community. A simplistic
solution is to back-track the robot along the path it has already
travelled, until it regains communication. Alternatively, the
robot can predict positions where the connection has high
quality and move towards those locations in case of connection
loss. In [19], a decentralized algorithm is proposed to move
the disconnected robot towards the known position of the
gateway (radio signal source or relay) by taking into account
obstacles along the way. In [10], the authors demonstrated a
behaviour to drive the disconnected robot towards the closest
robot node (assuming a multi-robot network) and repeat this
until connection is restored. Note that in the above mentioned
works, the wireless channel parameters are not estimated, but
instead perfect knowledge on the network topology is assumed
(e.g, the positions of the gateway nodes, base station, etc.).

In the Wireless Sensor Networks (WSN) community, where
it is commonly assumed that ample amounts of hopping nodes
are available, the problem of repairing a connectivity failure
is viewed differently. In this case, mobile robots can be used
as sensor nodes which can be repositioned or added to replace
failed nodes [20], [21].

It can be seen that predicting the communication quality
in regions not explored by a mobile robot is a challenging
problem. As pointed out above, probabilistic approaches such
as maximum likelihood and UKF have been used to model
the path loss and shadowing components of the RSS. Yet
these models perform efficiently only when there is at least
some prior information available regarding the network, such
as source or relay node positions, which is difficult to know in
field robotics applications such as the emergency deployment
of robots to help in disaster response operations. In [8], a
Gaussian Process based method is proposed to estimate the
channel parameters and map the RSS in real-time using a few
sample measurements. Taking inspirations from this work, in
this paper, we propose a truly online Gaussian Random Field
model to assess the RSS by continuously learning from the
field measurements.

We make use of this probabilistic model to obtain the
communication cost of a given path. We then co-optimize
this cost along with the motion costs (ensuring feasibility of
traversal by taking into account environment obstacles and
constraints) to compute a path to a given destination. The
motion planner then executes this path by actively re-planning.
In case of a connection loss and if no destination is defined,
the motion planner makes use of the online GRF model to
quickly drive to a position that has the highest probability to
restore connectivity, by setting the robot’s starting position as
the goal.



III. METHODOLOGY

In this section, we first define the RSS model, and then
discuss how to apply Gaussian Random Fields (GRF1) to
generate an online prediction map of the RSS distribution
which will be used in both motion planning and reconnection
planning. We conclude this section with a description of the
Communication-Aware Motion Planner and its utility function.
Note that the method can be extended to 3D and hence be
applied to aerial robots as well.

A. Radio Signal Strength Model

When a radio signal propagates from a source to a des-
tination, its strength attenuation depends on environmental
factors such as distance (path loss), objects in the environment
(shadowing) and spatio-temporal dynamics (multipath fading)
[22]. A frequently used model to represent the RSS is given
by [23]:

RSS(d,t) = RSSd0 − 10η log10( dd0 )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
path loss

− Ψ(d)´¸¶
shadowing

− Ω(d,t)´¹¹¹¸¹¹¹¶
multipath

.

(1)

Here, RSSd0 is the RSS at a reference distance d0 (usually
1m), which depends on the transmit power, antenna gain, and
the radio frequency used. η is the path loss exponent which is
a propagation constant of a given environment. d = ∣∣x − x0∣∣
is the distance of the receiver (at position x) from the radio
source (at position x0). Ψ ∼ N(0, σ) is a Gaussian random
variable typically used to represent shadowing while Ω is a
Nakagami-distributed variable representing multipath fading.

Usually, the RSS measurements (in dBm) coming from
wireless adapters are prone to noise and temporal fluctuations
in addition to multipath fading. This noise can be mitigated by
applying an exponentially weighted moving average (EWMA)
filter [12]:

RSSf(i) = RSSf(i − 1) + α(RSS(i) −RSSf(i − 1)), (2)

where RSS(i) is the RSS value measured at the ith instant,
RSSf is the filtered RSS value and α is an empirical smooth-
ing parameter.

We use Gaussian Processes for regression (GPR) [24] for
modeling the radio signal distribution as demonstrated in
[8], [25], [26]. A key difference compared to the previous
approaches is that we employ online learning with dynamic
training size that adapts to the changes in the environment
(e.g. change from line of sight to non-line of sight of the
source, switching between access points, losing/regaining a
connection, etc.). Below we briefly describe how the GPR is
performed.

1GRF is a term for the Gaussian Process Regression with 2.5 dimensional
datasets where each x − y coordinate has a single value v.

B. Gaussian Random Fields

The RSS distribution can be described with a function
f ∶ R2 → R where each vector of xy-coordinates generates
a single RSS. Such a function can be efficiently modeled by a
GRF which places a multivariate Gaussian distribution over the
space of f(x). The GRF allows us to probabilistically handle
noisy meausurements of a dynamic and unknow process and
predict the behaviour of such a process at unknown and unex-
plored states. GRF have been widely used on a broad range of
robotics problems such as haptic and visual perception [27],
geometric shape description and planning [28]. As shown in
[26], environmental observation of RSS can condition a GRF
so that its posterior mean defines the signal distribution of
interest. The GRF is in fact shaped by a mean function m (x)
and a covariance function k (xi,xj).

To properly describe the probabilistic model we define the
set RV = {r1, r2 . . . rN}, with ri ∈ R3, of measurements of
robot xy-positions and corresponding RSS. DRF = {xi, yi}Ni=1
is a training set where xi ∈ X ⊂ R2 are the xy-coordinates of
the points in RV and yi the RSS readings from the mobile
robots wireless adapters. X∗ ≡ Xrf∗ ⊂ R2 represents a set
of M test points where xrf i ∈ R2 is a xy-coordinate of the
environment.

The joint Gaussian distribution on the test set X∗, assuming
noisy observation y = f (x) + ε with ε ∼ N (0, σ2

n), assumes
the following form

[y
f∗] ∼ N (m (x) , [K + σ2

nI k∗
kT∗ k∗∗]) (3)

where K is the covariance matrix between the training points[K]i,j=1...N = k (xi,xj), k∗ the covariance matrix between
training and test points [k∗]i=1...N,j=1...M = k (xi,x∗j) and
k∗∗ the covariance matrix between the only test points[k∗∗]i,j=1...M = k (x∗i,x∗j).

We use the popular squared-exponential kernel

k (xi,xj) = σ2
eexp

⎛⎝−(xi − xj)T (xi − xj)
σ2
w

⎞⎠ . (4)

as it better represent the variance in RSS [8], [26].
Following the example of [8], we could define a model-

based potential prior based on the path loss eq. (1) to improve
the accuracy of prediction

m (x) = RSS0 − 10η log10 (∥x − xs∥) , (5)

where xs is the source location which is an unknown param-
eter in the mean function. One could potentially optimize the
mean hyper-parameters (θm = [RSS0, η, x

s]) by training the
model with the measured data. In [8], [25], [26], they either
assumed the knowledge of the source location or estimated it
in a dedicated control/training phase with the measured data.

However, given the unbounded nature of the source location
xs and the fact that only sparse measurements in a limited
explored area is available in a practical robotic application,
optimizing these hyper-parameters will result in extensive
computation and low accuracy.



Moreover, this model can be applied only to a fixed ra-
dio source (Access point). Therefore, considering a practical
USAR scenario, where the Access Points can be mobile or
is frequently moved, trying to optimize the source location in
eq. (5) with the measured data will not only be inaccurate, but
also result in poor prediction performance of the GPR model.

Finally, more complex potential priors can be used or
interchanged in order to incorporate propagation phenomenas
(e.g. attenuation due to walls, floors, etc.) or environmental
knowledge and improve the prediction on those regions of
the map far from the measured data [29]. However, such ap-
proaches require a larger amount of information and increase
the number of hyperparameters to be optimized.

Thus in our work, we consider a constant mean function,

m (x) = C, (6)

for practical and computational aspects. Note that this mean
function has shown low prediction errors in [30] when com-
pared to a linear mean function.

The predictions are obtained from the GPR conditioning the
model on the training set [24] :

p (f∗∣X∗,X,y) = N (f∗,V [f∗]) (7)

f∗ =m (x) + kT∗ (K + σ2
nI)−1 (y −m (x)) (8)

V [f∗] = k∗∗ − kT∗ (K + σ2
nI)−1 k∗ (9)

The predictive variance of the GRF highlights regions of
low density or highly noisy data. The hyper-parameters of the
mean and the kernel θ = [C,σc, σw] are periodically optimized
while the mobile robot moves and collects measurements. The
optimization (hyperparameter estimation) is done by maximiz-
ing the marginal logarithmic likelihood of the distribution on
the measured data.

For online optimization purposes, we efficiently train the
GPR after each measurement by dynamically adjusting the
training set size based on the magnitude of the changes in
the measurements. We optimize the GPR and start with the
RSS prediction after the robot has moved enough to acquire
the minimum amount of training samples (around 5 meters
of displacement). The GPR model is continuously re-trained
with every new collected sample. When the connection status
is active, we keep increasing the training set size up to a
certain maximum limit. If the connection is lost, we keep
decreasing the training size until the minimum limit. The
hyper-parameters are re-optimized with current measurements
whenever the training size reaches a certain minimum.

Next we describe how to define a utility function that takes
into account the prediction of the RSS and its uncertainty
to generate trajectories that guarantee communication or to
re-establish a connection in case of signal loss. We use the
term ”Wireless Map Generator (WMG)” to refer the above
described Gaussian random field that generalizes over robot
positions and RSS measurements to generate wireless distri-
bution maps.

C. Communication-Aware Motion Planner

We use the RSS predictions from the GPR along with the
traversibility cost in the RCAMP to plan and execute a path
to a given destination. As the planner is dynamic, it keeps
track of both RSS predictions and the traversibility based on
the incoming sensory information. We detail the basic steps
below.

1) Mapping and Point Cloud Segmentation: As a necessary
prerequisite for path planning, a map representationM of the
environment is incrementally built in the form of a point cloud.
An ICP-based SLAM algorithm is used in order to register
the different 3D laser scans collected by the robot. At each
new scan, both the map and a structure interpretation of it are
updated. In particular, the point cloud map M is segmented
in order to estimate the traversability of the terrain.

In a first step, M is filtered using an efficient occupancy
voxel-map representation [31]: recursive binary Bayes filtering
and suitable clamping policies ensure adaptability to possible
dynamic changes in the environment.

Next, geometric features such as surface normals and prin-
cipal curvatures are computed and organized in histogram dis-
tributions. Clustering is applied on 3D-coordinates of points,
mean surface curvatures and normal directions [32]. As a
result, a classification of the mapM in regions such as walls,
terrain, surmountable obstacles and stairs/ramps is obtained.

2) Traversability Cost: Traversability is then computed on
the mapM as a cost function taking into account point cloud
classification and local geometric features [33]. In particular,
the traversability cost function trav ∶ R3 z→ R is defined as

trav(p) = wL(p)(wCl(p) +wDn(p) +wRg(p)) (10)

where p ∈ R3 is a map point, the weight wL(p) depends on the
point classification, wCl(p) is a function of the robot obstacle
clearance, wDn(p) depends on the local point cloud density
and wRg(p) measures the terrain roughness (average distance
of outlier points from a local fitting plane). A traversable mapMt is obtained fromM by suitably thresholding the obstacle
clearance wCl(⋅) and collecting the resulting points along with
their traversability cost.

3) Global and Local Path Planners: Path planning is
performed both on global and local scales. Given a set of
waypoints as input, the global path planner is in charge of
(1) checking the existence of a traversable path joining them
and (2) minimizing a combined RSS-traversability cost along
the computed path. Once a solution is found, the local path
planner safely drives the robot towards the closest waypoint
by continuously replanning a feasible path in a local neigh-
bourhood of the current robot position. This allows us to take
into account possible dynamic changes in the environment and
local RSS reconfigurations.

Both the global and the local path planners capture the
connectivity of the traversable terrain by using a sampling-
based approach. A tree is directly expanded on the traversabil-
ity map Mt by using a randomized A* approach along the
lines of [33]. The tree is rooted at the starting robot position.



Visited nodes are efficiently stored in a kd-tree. The current
node n is expanded as follows: first, the robot clearance δ(n)
is computed at n; second, a neighbourhood N(n) of points
is built by collecting all the points of Mt which falls in a
ball of radius δ(n) centred at n. Then, new children nodes
are extracted with a probability inversely proportional to the
traversability cost. This biases the tree expansion towards more
traversable and safe regions. The total traversal cost of each
generated child is evaluated by using eqn. (12) and pushed
in a priority queue Q. The child in Q with the least cost is
selected as next node to expand.

4) Cost Function: The randomized A* algorithm computes
a sub-optimal path {ni}Ni=0 in the configuration space C by
minimizing the total cost

J = N∑
i=0 c(ni−1,ni) , (11)

where n0 and nN are respectively the start and the goal
configurations, and ni ∈ C. In this paper we define the cost
function c ∶ C × C z→ R so as to combine traversability and
RSS predictions. In particular

c(ni,ni+1) = (d(ni,ni+1)+
h(ni+1,nN))π1(ni+1)π2(ni+1)

π1(n) = λt trav(n) − travmin
travmax − travmin + ε + 1

π2(n) = λrαre−t/τ rssmax − rss(n)
rssmax − rssmin + ε + 1

(12)

where d ∶ C × C z→ R+ is a distance metric, h ∶ C × C z→ R+
is a goal heuristic, λt, λr ∈ R+ are scalar positive weights,
rss ∶ C × C z→ R is the estimated RSS, αr ∈ [0,1]
is a confidence which can be obtained by normalizing the
variance of the RSS prediction (as returned by the GPR),
ε is a small quantity which prevents division by zero and
τ is an exponential decay constant (determines the amount
of time after which π2 goes to its minimum value 1). In
particular, with abuse of notation we use trav(n) to denote
the traversability of the the point corresponding to n. The
first factor in eq. (12) sums together the distance metric and
the heuristic function (which depends on the distance to the
goal). The other two factors π1 and π2 respectively represent
a normalized traversability cost and a normalized RSS cost,
whose strengths can be increased by using the weights λt and
λr respectively (πi ≥ 1). The exponential decay is used to
decrease the effect of the RSS cost after a certain time (e.g.
before the path planner is stopped by a timeout in case a path
solution is difficult to find).

Note, instead of jointly optimizing the motion and commu-
nication energy for a given path as in [7], we plan an optimized
trajectory to a given goal position using a cost function that
represents a balanced optimization between communication
and traversibility costs, includes normalization of the used
metrics, and allows setting different priorities using the pa-
rameters λt and λr.

Fig. 2: Experimental scenario 1. The UGV tries to reach the goal
position avoiding connection drops. The blue dotted line represents
the shortest path, that will cause a connection loss (going outside
the AP range). The green line represents a path that reaches the goal
position while keeping the robot connected to the AP.

Self-recovery: The cost function in eq. (12) gives us
the leverage in generating a trajectory that recovers from
communication loss. In the case of a connection loss, we
define the goal position as the robot’s initial position or the AP
position (if known), so as to bound the search and to guarantee
the re-establishment of connectivity.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance of the proposed method
through a series of experiments made on simulations using
V-REP. Using the 3D model of the real UGV used in [34]
we created 3 different simulation environments, reproducing
typical USAR use cases, containing several obstacles and
sources of signal (APs). The AP is simulated following eq. (1)
with typical parameters such as η = 3, σ = 2 [23] considering
a 2.4 GHz Wi-Fi communication. For each environment, we
changed the positions of the robot and APs and repeated the
experiments in several trials. All the software components
including the RCAMP ran under the Robot Operating System
(ROS).

Note we do not evaluate the GRF model separately. Never-
theless, the GRF with mean functions in eq. (5) and (6) have
shown to perform well in signal source prediction and location
estimations [25], [26], [30].

A. Experimental scenarios

Scenario 1: In the first scenario, see Fig. 2, the UGV
is placed on the start position and must traverse an area
containing a damaged building, to reach the goal position. An
AP is placed on the northern part of the map (zone N in Fig. 2).
The AP uses an omni-directional antenna covering a circular
area that extends to half of the map, leaving the southern part
(zone S in Fig. 2) uncovered. Start and goal positions are



Fig. 3: Experimental scenario 2. The UGV tries to reach the goal
position avoiding connection drops. The blue dotted line represents
the shortest path to the goal position. The UGV is connected to AP1

in the first part of the path. PE1 indicates the location of the UGV
when AP1 shuts down after a simulated hardware failure. The green
line represents a new path that reaches the goal position while keeping
the UGV connected, after switching from AP1 to AP2.

placed such that the shortest connecting path between the two
points would traverse the poorly connected part of the map
(S). Thus, RCAMP must generate a trajectory that connects
the start and goal positions while keeping the robot in the
signal covered area avoiding communication drops. With this
scenario we want to demonstrate the capability of our utility
function in keeping the robot connected to the AP.

Scenario 2: In the second scenario, see Fig. 3, two different
APs cover the whole map. In this use case we want to test
the promptness of the RCAMP to adapt to drastic changes in
the wireless signal distribution. The robot starts the mission
connected to AP1. The RCAMP must generate a path from the
start position to the goal position that ensures WiFi coverage.
During the mission, AP1 is switched off when the robot enters
the region PE1, so to simulate a communication loss event.
When the connection is lost, the robot connects to other APs (if
available) in the same network, in a typical roaming behaviour.
Once the robot connects to AP2, the WMG must adapt its
predictive model to the new signal distribution accordingly
and reshape the RSS map. The RCAMP must then promptly
update the path to the goal to ensure WiFi coverage.

Scenario 3: Finally, in the last scenario, see Fig. 4, we test
our self-repair strategy in case of a complete connection loss
event. The UGV is tele-operated until the connection drops
(blue circle, outside the WiFi coverage area). The goal position
(red circle) cannot be reached with teleoperation because of
the missing communication channel. In this scenario, the UGV
must autonomously re-establish the connection while moving
to the goal position. If the goal position was not specified (e.g.
during an exploration task) the UGV must move to the closest
location in the map where the RSS is high enough to ensure
re-connection to the AP.

Fig. 4: Experimental scenario 3. The UGV is teleoperated in a USAR
mission. The operator drives the robot outside the WiFi coverage area
(at point TP) and the connection is lost. The system autonomously
re-establishes the connection driving the UGV to a location with high
RSS and then continues to reach the goal.

V. RESULTS

In the following we discuss the results of the experiments
described in Sec. IV. Fig. 6 shows the recorded RSS and the
path taken for the three scenarios. We present a comparison
between the proposed RCAMP and a common path planner
(PP). In the the first column we report the RSS values sensed
by the antenna on-board the mobile robot.

In the first row (first experimental scenario) the PP leads
the robot to lose connection whereas the RCAMP defines a
trajectory that maintains the robot inside the operative range
of the radio transmitter as it is possible to see in the second
column of the same row. The second row of Fig. 6 shows
that the RCAMP adapts to the drastic variation of the radio
signal distribution (due to the simulated hardware failure
and consecutive connection loss) and modifies the trajectory
accordingly maintaining the robot inside the operative range
of the new AP. The PP leads the robot to lose connection
again. This demonstrates how the WMG promptly reacts to a
connection loss in case a new source of signal is present.

Finally, in the last row we present the results for the third
scenario where the mobile robot, after a brief exploration step,
is tele-operated outside the wireless range. The RCAMP first
brings the robot back to a position where the connection can
be reestablished and then moves the robot to the goal position.
The RSS value of the robot using the RCAMP, red signal in
the third row, increases after the connection loss.

Fig. 5 shows the predicted radio signal distribution (WMG)
for experiments 1 and 2. A red color indicates low or miss-
ing signal whereas a blue-purple color indicates high signal
strength. As described in Sec. III-B, the training set consists
of the last visited points in the environment along with the
measured RSS. The size of the training set depends on the
quality of the sensed signal. The first row (A1-5) shows the
predicted radio signal distribution during the first experiment.



Fig. 5: Radio signal distributions for various trajectories in the maps of scenario 1 (A1-A5) and 2 (B1-B5). The white points represent
the APs positions along with their operative ranges. The blue trajectories represent the training samples for the WMG. We can observe
the changes in the RSS map generated by the WMG as the robot explores the region (without RCAMP). Note in A4 the robot is initially
connected but is in a disconnected region the moat of the trajectory.

Fig. 6: Comparison between our RCAMP versus a normal path plan-
ner. The first column shows the RSS values measured using the on-
board antenna during the three experimental scenarios. The RCAMP
enables the robot to maintain an higher RSS value throughout the
whole exploration. The second column shows the trajectories from
start position to goal position for the three scenarios.

When the robot drives inside the operational range of the
AP the training set increases and the model predicts correctly
the position and the shape of the radio signal distribution
(A1,2,5). Viceversa, when the mobile robot moves outside the

operational range the communication with the AP drops and
the training set shrinks as there is less useful information. This
strategy allows the system to promptly adapt to a new source
of signal as show in the last row. Initially the system adapts to
the first source of signal (AP1) as is visible in B1-2. When the
first AP is shut down, the systems quickly re-sizes the training
set size and the WMG converges to the new signal distribution
allowing to identify the position of the second AP.

VI. CONCLUSIONS

Robots have a major potential in aiding first responders
in USAR missions. In recent robot deployments, wireless
networks were used in order to support mobile robot communi-
cation. This mean of communication poses several challenges,
such as sudden network breakdowns and limited communi-
cation bandwidth. Based on our own experience in helping
the Italian Firefighters with our UGVs and drones (under
the EU-FP7 project TRADR [34]) to assess the damages in
historical buildings after the recent earthquake in Amatrice, we
concluded that the inherent limitations of a wireless network
can compromise the outcome of a USAR mission. Most
notably, the Access Points supporting robot communication
had to be regularly relocated in order to let the robot re-
estabilish communication.

To address some of these challenges, we proposed a
Resilient Communication-Aware Motion Planner (RCAMP).
Given a goal point, the RCAMP computes a trajectory by
taking into account traveled distance, communication quality
and environmental constraints. We used an online Gaussian
Random Field to estimate the Radio Signal Strength requested
by the motion planner in order to find a feasible path that



takes both traversability and connectivity into account. We
also proposed an efficient strategy to autonomously repair-
ing a communication loss by steering the robot towards a
communication-safe position computed using the RCAMP.
Alternatively, if a specific destination is available, the robot
plans a path that combines the objectives of reaching the
destination, and re-establishing the connection.

We demonstrated the proposed framework through simu-
lations in V-REP under realistic conditions and assumptions.
In future work, we plan to test the presented framework on
real UGVs and further evaluate and analyze the performance
and limits of the algorithms through more extensive field
experiments.
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A reliable wireless connection between the operator and the teleoperated unmanned ground vehicle
(UGV) is critical in many urban search and rescue (USAR) missions. Unfortunately, as was seen in,
for example, the Fukushima nuclear disaster, the networks available in areas where USAR missions
take place are often severely limited in range and coverage. Therefore, during mission execution,
the operator needs to keep track of not only the physical parts of the mission, such as navigating
through an area or searching for victims, but also the variations in network connectivity across the
environment.

In this paper, we propose and evaluate a new teleoperation user interface (UI) that includes a
way of estimating the direction of arrival (DoA) of the radio signal strength (RSS) and integrating
the DoA information in the interface. The evaluation shows that using the interface results in more
objects found, and less aborted missions due to connectivity problems, as compared to a standard
interface.

The proposed interface is an extension to an existing interface centered on the video stream
captured by the UGV. But instead of just showing the network signal strength in terms of percent
and a set of bars, the additional information of DoA is added in terms of a color bar surrounding
the video feed. With this information, the operator knows what movement directions are safe, even
when moving in regions close to the connectivity threshold.

Keywords: teleoperation, UGV, search and rescue, FLC, network connectivity, user interface

1. Introduction
Today, teleoperated UGVs play an increasingly important role in a number of high risk applications,
including urban search and rescue (USAR) and explosive ordinance disposal (EOD). The successful
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Figure 1. The youBot mobile robot equipped with wireless network hardware used
in the experiments (left) shown along with the user interface (UI) displaying the RSS
DoA as a color bar around the video feed from the robot.

completion of these missions depend on a reliable communication link between operator and UGV,
but unfortunately, experiences from Fukushima and the World Trade Center disasters show that
cables can limit performance, or break (Nagatani et al., 2013), and wireless network connectivity
can be lost (Murphy, 2014).

It is reasonable to believe that the very nature of USAR scenarios imply a high risk of damages
to infrastructure, including to electricity and wireless network facilities. To avoid relying on a stable
network connection, one possible solution would be to enable the UGVs to operate autonomously,
but for the foreseeable future, human operators will remain more versatile than autonomous systems
when it comes to decision making, particularly in challenging and unpredictable USAR environ-
ments (Muszynski, Stuckler, & Behnke, 2012; Wegner & Anderson, 2006).

Yanco and Drury (2004) defines the situation awareness (SA) in the context of human-robot
interaction as follows: the perception of the robots’ location, surroundings, and status; the compre-
hension of their meaning; and the projection of how the robot will behave in the near future. Thus,
the connectivity awareness is viewed as a component of SA (network status), determining where the
robot can operate.

In this paper, we address the problem of improving SA such that the operator is aware of dynamic
network connectivity status and adjust the UGV operation to it. This is done by extending the
user interface (UI) with not only a measure of radio signal strength (RSS), but also a notion of the
motion direction (i.e. the DoA) that would increase this signal strength, and thereby communication
quality (delay, packet loss, etc.), which is known to affect teleoperation task performance (Owen-
Hill, Parasuraman, & Ferre, 2013; Rank, Shi, Mller, & Hirche, 2016).

Using the proposed solution, an operator close to the connectivity limit knows which way to go
to improve the connection. An operator who, for example, would like to move the UGV a bit more
to the left to inspect a cavity knows if this move will improve, worsen, or leave the RSS unchanged.

The proposed UI is composed of two parts; first the DoA is estimated, then it is presented to
the operator in an efficient manner. The estimation of the DoA is done by using spatially dispersed
wireless receivers on the four edges of the UGV (as can be seen in Fig. 1) and applying the finite dif-
ferences method to extract the RSS gradient. We then employ spatial and temporal filtering schemes
to mitigate multipath fading effects and transient noises in the measurements. The estimation and
filtering algorithms run online and dynamically adapt to changes in the wireless environment, such
as a change in network connection (e.g., introduction of an intermediate relay robot as a signal
repeater) or movement of a mobile wireless access point connecting the robot to the base station.

The presentation of the DoA to the operator was chosen in view of the fact that gaining a good
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Figure 2. A map of the RSS in an office environment and two examples of the
UI with the UGV at positions A and B. Note the green and red gradient, indicating
higher and lower signal directions (DoA) in the color bars surrounding the videos.

SA is very challenging in USAR missions (Larochelle & Kruijff, 2012). In fact, it was shown in
Burke, Murphy, Coovert, and Riddle (2004) and Yanco and Drury (2004) that as much as 49% of
mission time is normally devoted to improving the operator SA. Further, it was recommended in
Yanco and Drury (2007) to use a large central part of the screen for the video feed. Therefore, we
propose to represent the DoA information in the form of a color bar surrounding the video feed (see
Fig. 2) to provide SA to the operator in terms of connectivity status and physical surroundings. Note
that there are many possible variations on the proposed idea of graphically illustrating the DoA,
including arrows of different forms and placements. However, we focus the investigation on the
potential benefits of providing such information. Comparing different variations on the theme is
beyond the scope of this study.

For the evaluation, we identified two important challenges associated with teleoperation of
UGVs in USAR missions: (1) providing effective SA to the operator and (2) ensuring resilient wire-
less connectivity with the UGV. High SA can reduce mission time and improve operator decisions,
while a resilient network connection will avoid losing control of the UGV.

The main contributions of this paper are threefold. We first propose a new way of estimating
DoA for teleoperated UGVs. We then propose a way of integrating this DoA information in a
UGV teleoperation UI. Lastly, we perform a user study, showing that the proposed approach, in
fact, increases the number of found objects during a search mission and decreases the chances of
losing the connection to the UGV. To the best of our knowledge, none of these items have been
done in a UGV teleoperation context before. This paper extends our previous work (Caccamo,
Parasuraman, Båberg, & Ögren, 2015), with an improved design and a thorough evaluation of the
proposed interface.

The paper is organized as follows. First, Section 2 reviews the literature on this topic and Sec-
tion 3 describes the proposed approach. Then, Section 4 describes the human in the loop experi-
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ments, with results in Section 5 and the discussion in Section 6. Finally, we conclude in Section 7
and provide suggestions for further work.

2. Related Work
The wireless network connectivity of USAR UGVs has often proved unreliable (Carlson & Murphy,
2005; Murphy, 2004), with examples including real incidents where robots were lost during disaster
inspection operations (Murphy, 2014; Nagatani et al., 2013). Casper and Murphy (2003) investigated
user confidence in remotely operated robots with intermittent communications, and found that these
problems had a significant impact on the usability of the systems. They even suggested that because
of communication dropout problems, wireless robots should be avoided. However, the flexibility
of wireless systems compared to tethered robots still makes them an important alternative in many
applications.

A natural way of avoiding loss of communications is to make the user aware of the connection
quality. A decade ago, this information was usually not displayed in the operator control unit (OCU)
(Fong & Thorpe, 2001), but more recently, it is often added in the form of a “signal bar” (as in
modern cell phones) or in form of a percentage. Typical examples of such representation can be
seen in Larochelle, Kruijff, Smets, Mioch, and Groenewegen (2011) and Hedström, Christensen,
and Lundberg (2006), including the recent Quince 2 robot’s OCU (Yoshida, Nagatani, Tadokoro,
Nishimura, & Koyanagi, 2014). Furthermore, the Wayfarer OCU for Packbot robots (Yamauchi,
2004) represents the radio signal level in a vertical bar manner, in addition to providing a numeric
indicator.

The literature on robot interfaces also includes examples where information about gradients and
directions is made available to the user. In Hestand and Yanco (2004) and Baker, Casey, Keyes, and
Yanco (2004), two microphones on the left and right of the robot were used to estimate the direction
of a sound source, which was displayed (overlaid on the video) in the form of a pointer floating
on horizontal and vertical lines. A similar representation was used in Hedström, Christensen, and
Lundberg (2006) to show robot speed information. In Barros, Lindeman, and Ward (2011), the
authors proposed a tactile belt that vibrates in the direction of detected collisions to improve SA,
while in Smets, Brake, Neerincx, and Lindenberg (2008) a study found that the use of a tactile vest
did not improve SA significantly in navigation tasks.

An influential study in human-robot interface (HRI) design (Yanco & Drury, 2007) advocates
the use of a large single interface with a significant percentage of the screen dedicated to video. The
authors also recommend providing more spatial information about the environment to increase SA
and using fused sensor information to lower the cognitive load on the user. Moreover, multi-sensory
interfaces had also been advocated in the literature (Barros & Lindeman, 2014).

In this paper, we go beyond the related work described above by having the teleoperation in-
terface include not only a scalar value to describe the network connectivity situation, but also the
direction in which it is expected to improve (i.e., the DoA). Assessing the geographic distribution of
network connectivity is a spatial task, for which the visual modality fits best with the human infor-
mation processing (see, e.g., the multi-resource model of Wickens (2008)). Therefore, we choose to
present the DoA in the form of visual gradient bars surrounding the video feedback.

Carefully integrating the DoA information into the visual feedback is crucial. For this, we use
FLC (Free Look Control) (Ögren, Svenmarck, Lif, Norberg, & Söderbäck, 2014) as the control layer.
FLC is essentially a “navigate-by-camera” mode as envisioned in Yanco et al. (2006). In the FLC
mode, the operator controls the UGV in relation to the camera frame instead of the world frame,
making it more intuitive than the traditional so-called Tank Control mode. Hence, it is appropriate
to use FLC for presenting the DoA information in direct reference to the camera frame, making the
UGV control easier while simultaneously enhancing local SA.
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Figure 3. UGV equipped with a camera, one wireless adapter at the center, and four
wireless adapters with directional antennas at the corners.

3. The proposed approach
The new user interface, as for most robot teleoperation UIs, is composed of two parts: receiving
control commands from the operator and providing feedback to the operator. In the former, we use
a gamepad controller and the FLC interface (Ögren, Svenmarck, Lif, Norberg, & Söderbäck, 2014)
and in the latter, we present the DoA as an extra sensory feedback in addition to the video stream.
Below, we present the hardware configuration and associated signal processing required to realize
the new interface.

3.1 FLC interface

FLC, a UGV control interface inspired by the first person shooter (FPS) video games genre, com-
bines camera and platform control, thus permitting the operator to completely focus on commands
for moving the UGV camera (the UGV adjusts its heading accordingly) through the remote environ-
ment (world frame) without worrying about the orientation of the UGV chassis. This is in contrast
with the standard interface, Tank Control, which is used in most of the teleoperated UGVs today,
where the operator is required to mentally keep track of at least two orientations while teleoperating
an UGV: the camera angle relative to the UGV, and the platform orientation with respect to the world
frame. The advantages of FLC compared to Tank Control were investigated in Båberg, Caccamo,
Smets, Neerincx, and Ögren (2016), and more details about implementing FLC can be found in
Ögren, Svenmarck, Lif, Norberg, and Söderbäck (2014).

3.2 DoA estimation

A good estimate of the DoA forms a core part of the new interface. It has been shown that the DoA
can be estimated by the direction of the RSS gradients (Han, Andersen, Kaminsky, Papagiannaki, &
Seshan, 2009). For calculating RSS gradients, we use four wireless adapters connected to external
directional antennas placed on the corners of the UGV,1 as shown in Figs. 1 and 3. We also use a
fifth wireless adapter connected to an omnidirectional antenna. The former four adapters are used for

1 The squared planar arrangement of antennas is suggested in Parasuraman, Kershaw, and Ferre (2013), due to its robust
nature. Moreover, the directional antennas are chosen due to high stability and accuracy in the measurement and higher link
throughput (Min, Matson, & Khaday, 2013).
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DoA estimation, whereas the latter is used for actual communication for the teleoperation between
the UGV and the control station.

We measure the RSS (in dBm) from all the wireless adapters using the received signal strength
indicator (RSSI2) metric, which is usually prone to noise and temporal variations (due to environ-
mental dynamics) (Lindhè, Johansson, & Bicchi, 2007; Rappaport, 2001). These noise fluctuations
are mitigated by applying an exponentially weighted moving average (EWMA) filter on the mea-
sured RSS from each wireless adapter using the following model (Parasuraman et al., 2014):

Rf(i) = Rf(i − 1) + α(R(i) −Rf(i − 1)), (1)

where R(i) is the RSS value measured at the ith instant, Rf is the filtered RSS value and α is an
empirical smoothing parameter. In addition to the EWMA filter, a moving average filter (MAF) is
also applied to mitigate spatial multipath fading, with a window size equal to about 10λ (λ being the
wavelength) as suggested in Valenzuela, Landron, and Jacobs (1997). The MAF window depends
on the UGV velocity, RSS sampling frequency, and the wavelength of the radio signal.3

Modeling the RSS as a two-dimensional scalar field4 it is possible to obtain the gradient of the
RSS field (Ð→g = [gx, gy]) with respect to the center of the UGV using the central finite difference
method (Bezzo et al., 2014; Parasuraman, Fabry, Kershaw, & Ferre, 2013):

gx = (RFR −RFL)
2∆SX

+ (RBR −RBL)
2∆SX

, gy = (RFR −RBR)
2∆SY

+ (RFL −RBL)
2∆SY

, (2)

where ∆SX , ∆SY are the corresponding spatial separations between the antennas,RFR,RFL,RBR
and RBL are the filtered RSS values of the front-right (FR), front-left (FL), bottom-right (BR),
bottom-left (w.r.t the center of the UGV) receivers respectively, as can be seen in Fig. 3. The ori-
entation of each antenna is aligned with its placement. It is possible to employ redundant gradient
estimation methods to tackle device failures or misreadings, as discussed in (Parasuraman et al.,
2014).

From the RSS gradient (Ð→g ), the DoA of the radio signal is obtained as,

DoAθ = tan−1(gy
gx

). (3)

3.3 User Interface

A large video feed on the OCU is used for teleoperating the UGV. This visual interface is extended to
include wireless connectivity information by adding a colored gradient bar surrounding the real time
video feed from the UGV. The added color bar illustrates the DoA relative to the camera view. This
setup was inspired by computer game interfaces, where the direction of threats causing health-level
changes is communicated using flashing colors in the appropriate part of the screen. Consequently,
the new interface can be categorized as Type 3.2.2.1 (additional visual input: type - communication
level) in the framework for analyzing human robot interaction (Richer & Drury, 2006).

In the UI, we create a rectangular border around the video, as illustrated in Fig 2. As the DoA
computed with Eq. (3) is first given in the UGV frame, it is converted to the camera frame (to provide
a first person view of the DoA to the operator). Then we translate the DoA to a color gradient bar
around the camera view by scaling the color intensity according to a linear interpolation of the

2 RSSI is a vendor-specific metric and therefore reports different values (or quantities) in different devices. The wireless
adapters used in this paper reported reliable values of absolute signal power (dBm) as RSSI.
3 For instance, if the UGV velocity is 0.2m/s, RSS sampling frequency is 5Hz, and using 2.4GHz signal (wavelength
λ = 12.5 cm), the MAF window size should be ≈ 30 to filter samples within 1.25 m (10λ) displacement of the UGV.
4 Being a ground vehicle, the UGV moves locally in a plane.
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measured RSS values around the corners. A green color in the color bar indicates the higher signal
strength direction, whereas a red color indicates a lower signal strength direction. Thus, the interface
not only represents DoA but also gives a sense of the absolute RSS.

3.4 Experimental verification

In Caccamo, Parasuraman, Båberg, and Ögren (2015), we investigated the accuracy of the proposed
DoA estimate. Specifically, we performed experiments to verify that the variation of the RSS along a
robot path is indeed predicted by the DoA estimates. We summarize the key findings in this section.

Firstly, it was found that the DoA estimation had high accuracy in both line-of-sight and non-
line-of-sight conditions, the absolute mean DoA error was within 0.2 rad (12 degrees), an accuracy
that will turn out to be good enough for our purposes.

Secondly, a set of experiments were performed to evaluate the sensitivity, specificity, accuracy
and precision of the DoA feedback provided by the interface. To gather data, the robot was tele-
operated by a human operator, simulating short missions following different paths. Eight different
trials of this kind were conducted. During each trial, we logged the robot position data obtained
from the dead-reckoning of the wheel odometers, the RSS data, the estimated DoA and the streamed
video. The dead-reckoning of the wheel odometers was not accurate, but this was not a problem as
both motion directions and estimated DoA are given in the same local coordinate system. A video
illustrating the proposed method with an example trial is available online.5 As seen in the video
illustration, the estimated DoA sometimes pointed towards the corridor or the doorways (instead of
the true source location). This is expected because of substantial exposure of radio signals from
these regions.

In a noise-free world, the following equality would hold:

dR

dt
= dR
dx

dx

dt
, (4)

where x ∈ R2 is the spatial dimension. The real world is however far from noise free, and we had to
experimentally verify that our estimates provide useful information to the human operator. For the
estimates to be useful, the measured RSS should increase when the UGV is moved in the direction
of the DoA (i.e., the two sides of Eq. 4 should have the same sign). We used temporal differences
in the measured RSS at the central receiver (RC) to estimate dR

dt
, Ð→g as the estimate of dR

dx
, and the

odometer robot velocity Ð→ν to estimate dx
dt

. The scalar (dot) product between the robot velocity and
the computed RSS gradient at each instant is given by:

p(t) = ⟨Ð→g (t),Ð→ν (t)⟩. (5)

By comparing the scalar product p(t) with the change in the RSS at the central receiver ∇tRC =
dRC

dt
, we evaluated the efficacy of the proposed system. We expected a steep increase in RC when

p(t) is positive and close to 1 (i.e. when the user is moving towards the DoA). Similarly, we expected
a sharp decrease in Rc when the p(t) is negative and close to -1 (i.e. when the user moves the robot
away from the DoA).

Fig. 4 shows the variations of RSS at the central receiver (RC) and the scalar product p(t) with
time for a sample trial. To quantify the system performance, we measured the number of true/false
(T/F) positives/negatives (P/N) in the outcome. Using these measures, we computed sensitivity
( TP
TP+FN ), specificity ( TN

FP+TN ), precision ( TP
TP+FP ), and accuracy ( TP+TN

TP+TN+FP+FN ) metrics.
In Table 1, we present the key results obtained from the eight experiments with an average

mission time of 9.2 minutes each. The proposed system delivered high accuracy and precision in
5 https://youtu.be/YcbPi1c7eaQ
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Figure 4. Quantitative evaluation of the new UGV teleoperation interface with the
RSS DoA feedback. The estimate is useful when the scalar product p(t) has the
same sign as the derivative of the RSS. i.e. the changes in the RSS values follow the
directions indicated by p(t).

Table 1: Evaluation of the DoA feedback for sensitivity, specificity, precision and
accuracy.

Sensitivity Specificity Precision Accuracy
Mean 0.74 0.83 0.82 0.78

guiding the teleoperator with network connectivity feedback in an indoor environment. As the anal-
ysis depended on the UGV’s velocity from the odometer, we note that odometry errors could have
impacted the analysis of the accuracy of the proposed system. Thus, a better localization technique
would have improved the overall system analysis. Note that the system has shown reasonable sen-
sitivity in directing the operator into high wireless signal regions (towards DoA) while maintaining
high specificity in pointing out low-wireless signal regions.

Although the above quantitative results are fairly promising, a qualitative evaluation with user
studies is required to investigate the effectiveness of the overall system. This will be done in the
following sections.

4. User evaluation
To evaluate the actual system performance of the new interface, we conducted experiments with
human subjects. The experimental setup consisted of an exploration task (search for symbols) with
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Figure 5. Visualization of the proposed VDOA (A) and the standard BAR (B) inter-
faces to represent connectivity information.

a remotely operated UGV platform in an unfamiliar, maze-like environment. The objective of the
experiments was to evaluate the new visual DoA interface (denoted VDOA hereafter) against the
(state-of-the-art) standard OCU interface that displays radio connectivity using a signal bar and
percentage value (denoted BAR). The two interfaces are shown in Fig. 5. To allow a fair comparison,
both interfaces used FLC as control layer. Note that we are interested in the evaluation at the first
two levels of SA (perception, comprehension) (Endsley, 2000) because the proposed DoA interface
does not predict the future connectivity status (Level 3 - prediction). Nevertheless, VDOA allows the
operator to infer the present and future network availability in different travel directions.

4.1 Evaluation framework

When designing the experiments, we followed the situated cognitive engineering (sCE) method
(Neerincx & Lindenberg, 2008) in which we first identified the two core functions that we want to
compare (see items 1 and 2 below). Then, we formulated a number of claims, that is, hypothesis
connected to the core functions, listing a number of possible upsides (benefits) and downsides (draw-
backs) of each hypothesis. These upsides and downsides are then used to define what to measure in
the experiments. Finally, having performed the experiments, we can then see which of the possible
upsides/downsides are confirmed by data and, hence, draw conclusions about the claims and when
the different core functions can be beneficial.

The following core functions describe what the corresponding systems do.

1. VDOA provides a graphical indication of the DoA and the RSS value in the periphery of the
teleoperation display (see Fig. 5, left). It also shows the RSS value in the same way as BAR.

2. BAR shows the RSS value in the form of both a percentage and a set of signal bars (see Fig. 5,
right).

Listed below are the claims that we make on the core functions, with corresponding up-
sides/downsides (U/D) and what to measure in parenthesis.

Claim 1: VDOA leads to UGV trajectories in higher signal strength regions.

• U11: Less error in the estimated DoA (radio source localization)

• U12: Increased connectivity and less connection loss (signal strength, loss of con-
nectivity)
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• U13: More useful area covered and more time spent during exploration due to less
connection loss (coverage, execution time)

• D11: Less concentration on the surroundings, such as objects and obstacles in the
robot proximity (e.g., while the user follows the VDOA guidance to change direc-
tion) (collisions, ease of finding symbols)

Claim 2: VDOA provides better situation awareness.

• U21: Better SA on the search task and connectivity status (situation awareness)

• U22: More symbols found (symbols found)

• U23: More spatial understanding (symbols mapping accuracy, radio source local-
ization)

• D21: Higher mental effort due to additional information (mental effort6)

Claim 3: VDOA improves user experience.

• U31: Better usability and satisfaction of the useful DoA information on the interface
(usability, preference)

• U32: Higher time utilization or longer time spent on actual tasks due to higher
connectivity awareness and less connection loss (execution time, symbols found)

• U33: Better understanding of the network connectivity across various regions (radio
source localization, loss of connectivity)

Claim 4: BAR increases focus and concentration on the actual task.

• U41: Less collisions during exploration (collisions)

• U42: Lower mental effort (mental effort)

• U43: Easier to operate the robot and use the interface due to its simplicity (prefer-
ence, usability)

• D41: More connection loss, since it is more difficult to understand spatial (2D)
wireless connectivity using BAR (loss of connectivity, signal strength)

• D42: Less situation awareness and less spatial understanding in terms of network
status (situation awareness, coverage, execution time, symbols mapping accuracy)

These claims are used to argue which interface is better suited for UGV teleoperation, especially
in a USAR scenario. The upside or downside of a claim can be confirmed if it is supported by at
least one of its measures. The validation of these claims help us to determine the interface that is
effective (maintains better connectivity), productive (higher task utilization, higher coverage areas),
and is more appreciated by the operators (preference and better usability).

4.2 Method

4.2.1 Experimental design Considering that the radio propagation in a given environment is
unique to specific settings, we conducted “between-subjects” trials instead of “within-subjects”
trials for comparing the two interfaces. This is due to the very high probability of carryover effects
associated with the memory of radio signal coverage if a “within-subjects” design is performed.
Therefore, following a “between-subjects” design, N participants in each interface group (VDOA
6 Rating Scale of Mental Effort (RSME) (Zijlstra & Doorn, 1985)
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Table 2: Measurement variables used in the user evaluation.

Measurement How? Claim
Subjective
Reported overall usability Q U31, U43
Mental effort Q D21, U42
Preference Q U31,U43
Ease of finding symbols Q D11
Situation Awareness (exploration, network) Q U21, D42
Objective
Number of symbols found Obs U22, U32, D42
Situation Awareness (spatial - symbols mapping) Q+Datalog U23, D42
Number of collisions Obs D11, U41
Execution time Obs+Datalog U13, U32
Localization of radio source Q+Obs U11, U23, U33
Coverage (area/distance) Datalog U13, D42
Number of connection losses Datalog U12, U33, D41
Radio Signal Strength (RSS) Datalog U12, D41

and BAR) are recruited for executing tasks based on a set of instructions (explained below). The
nature of the opponent group/experiment is revealed to the participants only at the end of the exper-
iment (and survey) to avoid biasing effects.

4.2.2 Participants Based on statistical expectations on the outcome and the characteristics of the
measured variables, the results of sample size and power calculations reveal that at least eight7

participants are required for each group. Thus, a total of at least 16 participants were required.
However, we recruited a total of 24 participants for this study to increase the power. The participants
(15 male and 9 female) were all university students and staff in the same age group (mean age: 27.9).
Most of the participants did not have prior experience with robots or UGVs (mean experience: 2.04
out of 5). Although we conducted the user study with 24 participants, the data of 4 participants were
not useful because of technical issues such as motor drive fault, operator fault, etc. faced during the
experiment. Therefore, we used the data of 20 participants (12 male, 8 female) with ten (N = 10) in
each control group in our analysis.

4.3 Variables

In accordance with the claims to be tested, Table 2 lists the variables measured in the experiments.
In the How column, the way of collecting the measurements is indicated as data logging in the real
robot (Datalog), through manual observations (Obs), or through a questionnaire (Q). The Claim
column shows the associated claims (upsides/downsides) of each measurement.

4.4 Test environment

4.4.1 Procedure Written and verbal instructions were given to the participant at the beginning.
Participants then had to answer (fill in) general questions on their experiences with robots and games.
They were then informed about the experiment, as per the instructions. This was followed by a
training session where the users were asked to drive the UGV in a rectangular path in a small room
without colliding. The user was also given the real position of the radio transmitter (used for training)
in order to assess the connectivity information in the UI. The training session lasted until the users

7 This number was derived using the standard power tests (Dell, Holleran, & Ramakrishnan, 2002) assuming a power level
of 80% and false positive rate of 5% with at least 20% difference in the expected means of the two groups (with a standard
deviation of 20%).
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Figure 6. (Left) The map of the task scenario where the participant is asked to find
symbols by exploring a given maze area. (Right) Snapshot of RSS map captured
using a commercial wireless site survey tool from Ekahau. The radio source (WiFi
router) location is marked as AP.

expressed comfort in using both the FLC for control and the UI for perception. 8 The real evaluation
experiments commenced after the training session. The evaluation task is explained below. Note
that we used two wireless routers placed in different positions, one for training and the other for the
actual task.

After completing the experiments, the participants were asked to complete questionnaires on
their experiences, situation awareness,9 metal effort, and various other factors that are listed in Table
2 with the label ”Q”. The participants were also asked to indicate on a map similar to the one in
Fig. 6, the location of symbols they found, the estimated radio source location, and the path taken
by the UGV including the end position and orientation.

4.4.2 Hardware We used the same hardware and experimental setup as in Caccamo, Parasuraman,
Båberg, and Ögren (2015).

4.5 Task

Participants were asked to drive around an indoor environment (as they are more challenging for
wireless signals) to search for known symbols as depicted in Fig. 6. For this, a specially built maze
was used. The maze is virtually split into eight regions as indicated with dotted lines. A time limit

8 All training sessions lasted between 2–5 min.
9 The key questions related to SA (on a scale of 1(No/Hard) to 5(Yes/Easy)) are the following: I have found all the symbols;
I had enough time for exploring the area; How difficult was it to find the objects in the environment?; I think I have drawn the
positions of the source correctly into the map; I think I have drawn the end position and orientation correctly; How difficult
was it to find the source in the environment?
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(3 minutes) was given to find symbols within the maze. The symbols shown in the figure have an
area of approximately 40 cm2 and are placed on the walls of the maze with full visibility when the
camera is aimed at them.

The goal of the operator was to find as many symbols as possible without losing connectivity to
the UGV. The experiment was stopped when either a timeout period was reached or when the user
had lost connectivity. The participant had no direct line of sight with the UGV, and the only source
of SA was the UI.

During the task, data such as odometry, RSS, and loss of connectivity were recorded in a datalog.
Execution time and the number of collisions were observed by a supervisor. The actual location of
the radio source is indicated as AP on the map in Fig. 6 (which was not revealed to the participants).
Often, the regions A and B experienced poor connectivity with high probability to lose connection,
whereas the regions C and E experienced average connectivity but had a lower probability to lose
connection. Finally, D, F, G and H experienced high connectivity levels. Thus, as will be seen,
how and when the regions A and B are approached turned out to be crucial to mission performance.
Note that, as can be seen in Fig. 6, the symbols are placed in a manner such that they are equally
distributed in different connectivity zones (poor, medium, high) of the exploration area.

5. Results
Fig. 7 presents a boxplot result of the important variables. A summary of the user evaluation results
can be found in Table 3. Below we describe the results in more detail, first in general, then specifi-
cally for the exploration task, and finally, we present the results related to the wireless network.

5.1 General results

5.1.1 Usability To measure the interface usability, we used a questionnaire that required seven
responses,10 each of which is scored between 1 (disagree) to 5 (agree), resulting in an overall value
between 0 and 28 (5×7-7), where 0 is the most difficult to use and 28 is the easiest to use. The
resultant value is obtained by summing the scores of four positive statements, subtracting the scores
of three negative statements, and adding an offset of 11 to obtain a positive scale of 0–28.

A two-tailed11 independent samples t-test was conducted to compare the usability of the VDOA
and BAR. There was a significant difference in the reported usability with VDOA (M = 21.3, SD
= 3.88) and BAR (M = 10.4, SD = 2.91) conditions (t(18) = 7.09, p < 0.01). This shows that the
participants found the VDOA interface significantly easier to use than the BAR interface.

5.1.2 Mental Effort To rate mental effort we used the RSME scale (0 - absolutely no effort to 150
- extreme mental effort), which is essentially a one-dimensional version of the NASA-TLX scale.
The resulting RSME scores of VDOA participants are M = 54.9 and SD = 26.25, whereas in the
BAR group, the scores are M = 49.1 and SD = 20.2, respectively. It is interesting to note that there is
no significant difference between the RSME scores of the two groups (t(18) = 0.55, p = 0.58). This
means that the users of the VDOA interface experienced slightly but not significantly higher mental
effort than the BAR group. Thus, the addition of the DOA interface did not have much impact on
the cognitive load of the participants.

5.1.3 Preference As a between-subject study where each participant is assigned only to one group,
the evaluation of the users’ preference is handled as follows. After the whole experiment and at the
end of the questionnaires, we briefly explained the alternative interface (VDOA in case of BAR
participants and vice versa) and asked the participant to answer the question if they would choose
10 Sample statements: I thought the interface was intuitive; I found the various functions in this interface well integrated;
The interface response was slow; I thought the interface was easy to use; I enjoyed the experiment.
11 All the analyses made in this paper are of two-tailed nature. M indicates mean and SD indicates standard deviation.
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Table 3: Summary of the user evaluation results. A (+) sign indicates relatively better
value.

Measurement Predicted Best in Eval. VDOA M VDOA SD BAR M BAR SD t(18) p
General measures
Reported usability - VDOA 21.3(+) 3.88 10.4 2.91 7.09 <0.01
Mental effort BAR No sign. res. 54.9 26.25 49.1(+) 20.2 - -
Preference - VDOA 1.8(+) 1.23 4.1 1.45 -3.82 <0.01
Task-related measures
No. of Symbols Found VDOA VDOA 4.5(+) 0.97 2.6 2.07 2.63 <0.05
Ease of finding symbols BAR No sign. res. 4(+) 1.25 3.3 1.42 - -
Execution Time (s) VDOA VDOA 167.8(+) 20.53 120.5 67.2 2.13 <0.05
No. of collisions BAR No sign. res. 0.8 0.92 0.4(+) 0.7 - -
Coverage (m) VDOA VDOA 8.78(+) 2.84 5.28 3.3 2.55 <0.05
Situation awareness (explore) VDOA VDOA 4.2(+) 1.32 2.5 1.78 2.42 <0.05
Situation awareness (spatial) VDOA No sign. res. 1.63(+) 0.81 1.65 0.99 - -
Network-related measures
Localization of Router/AP (m) VDOA VDOA 1.39(+) 1.02 2.47 1.56 -1.83 <0.1
Situation awareness (network) VDOA VDOA 4.5(+) 0.97 3.6 1.26 1.78 <0.1
Connection loss VDOA VDOA 4/10(+) - 6/10 - - -
Connection quality (RSS, dBm) VDOA VDOA 2.83(+) 1.02 -0.54 3.45 2.96 <0.01

the alternative interface if they were given another chance. The user could answer between 1 (No)
to 5 (Yes). Note the measure used is preference to the alternative interface and not the absolute
preference to the used interface. Participants that used the VDOA interface were less likely to switch
to the BAR interface (i.e., not to keep using VDOA) with an average score of 1.8 (SD = 1.23), while
significantly more participants in the BAR group preferred to switch to VDOA interface with mean
score of 4.1 (SD = 1.45). The significance conditions are t(18) = -3.82 and p < 0.01. Note that this
measure could be biased due to the general notion that humans tend to think more information is
better.

5.2 Results for the exploration scenario

5.2.1 Finding symbols Here we analyze how participants explored the maze in terms of the main
exploration task, which is to find as many symbols as possible.

Number of symbols found - An independent samples t-test was conducted to compare the number
of symbols found in the explore task. There was a significant difference in the number of objects
found in VDOA (M = 4.5, SD = 0.97) and BAR (M = 2.6, SD = 2.07) conditions (t(18) = 2.63, p <
0.05). More symbols were found with VDOA than with BAR in the actual exploration task which
means the participants were able to focus on the task more productively.

Ease of finding symbols - In terms of finding symbols with ease, we asked the participants to
indicate how difficult it was to find symbols during the task. The participants rated the difficulty
between 1 (hard) and 5 (easy). We expected the participants that used VDOA to have found it harder
to find symbols as they had to share their focus between both video and the DOA interface. However,
the results suggests otherwise. The VDOA (M = 4, SD = 1.25) respondents reported more ease in
finding symbols than the BAR ones (M = 3.3, SD = 1.42), but the difference is not statistically
significant.

We may conclude that adding the DOA interface did not affect the operators’ ability to under-
stand the spatial surroundings.

5.2.2 Execution time Recall that we provided 180 seconds (3 minutes) for each participant to ex-
plore the maze. The only reason for termination before the given time limit is when the robot loses
connectivity with the control station, which will be displayed in the UI as a “SIGNAL LOST” mes-
sage on front of the video feed. We manually observed with a stopwatch and logged the execution
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Figure 7. Resultant scores of important variables shown as boxplots. The red lines
indicate the median values. A higher value indicates better results, except in the
following variables: absolute number of collisions; preference to switch to the other;
accuracy of locating the AP.
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times. As the participants did not know in advance how many symbols were there, they would
normally spend all of the 180 seconds searching for symbols. The hypothesis is that VDOA users are
less likely to lose connection and hence end up with longer execution times. We found a significant
difference in the execution time for VDOA (M = 167.8 s, SD = 20.53 s) and BAR (M = 120.5 s, SD =
67.2 s) conditions (t(18)= 2.13, p = 0.047). See the plot on “Completion Time” in Fig. 7. In a typical
USAR mission, being able to use the robot for searching for the maximal amount of available time
(as decided by, e.g., time between battery changes) is of high importance, and the VDOA interface
has shown to achieve this.

5.2.3 Collisions During the task, collisions may happen between the robot and the walls (usually
when turning). This is because there was no active collision avoidance system running, and par-
ticipants may misinterpret the distances and sizes to obstacles in the video stream.We observed the
number of collisions (shown in Fig. 7) with the walls of the maze in the exploration task of each
participant. The average number of collisions in VDOA was 0.8 (SD = 0.92) whereas in the BAR
group, the mean was 0.4 (SD = 0.7). Although the absolute number of collisions in VDOA was
higher than the BAR group, the difference in means was not statistically significantly (t(18) = 1.09,
p = 0.29) given the population size.

We believe the reason for this was twofold. First, the VDOA users ran longer missions, as they
were able to stay connected longer (see Section 5.2.2 below). Second, they explored more difficult
parts of the map, in particular the upper part, where a u-turn was needed after covering the upper
right corner (see Fig. 8, and as noted above most collisions occurred when turning).

Perhaps, a better measure is the number of collisions per path length as used in Barros and
Lindeman (2013). However, since there were many participants that had no collisions in both groups,
it would not be possible to have a fair comparison with the collisions/meter metric. For instance, the
means of the collisions per path length in the participants that had at least one collisions is VDOA
(M = 0.15, SD = 0.01), and BAR (M = 0.17, SD = 0.01). On the other hand, the sum of distance
traveled by all the participants that had zero collisions in VDOA is 37.7 m (4 participants), whereas
it is 28.63 m in BAR (7 participants).

5.2.4 Localization of radio source Participants were asked to guess the radio source (a concealed
wireless router) location and mark it on the map. We manually calculated the distance of the marked
location from the actual location of the router on the map from each participant answer sheets.
Following a simple rule to measure the distance, we used the Euclidean measure (shortest distance)
if the marked location was within the line of sight (LOS) from the router and the Manhattan measure
(shortest ray distance) when the marked location was in a non-line of sight (NLOS) from the router.
From Fig. 6, we can clearly observe that the regions A and B are NLOS and all other regions are
LOS. We followed this strategy not to exaggerate markings in the NLOS regions but to represent
reality based on the RF propagation principles.

The scores of localization error in each participant range from 0 to 6 meters. The VDOA group
mean was 1.39 m (SD = 1.02 m) and the BAR group mean was 2.47 m (SD = 1.56 m). The difference
in means are statistically significant under conditions t(18) = -1.83 and p < 0.1. This means that the
DoA information in the UI enabled the VDOA participants to better understand the connectivity sit-
uation in real time, which is particularly helpful in increasing search and rescue mission capabilities
without losing control over the robot.

5.2.5 Coverage To measure the explored areas, we discretized the maze area in 15×15 cm squares
and accumulated the number of visits the robot made in each square. A graphical representation of
the coverage map is shown in Fig. 8, where a lighter color indicates unexplored regions. It can be
seen from the map that the VDOA users spent more time exploring the regions with higher signal
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Figure 8. Two color maps showing the covered area in both groups. A lighter color
represents the least explored region while a darker color represents the most covered
region. Red triangles represent points of connection loss. Note how VDOA users
spent more time searching the upper area, where no connection losses occurred,
compared to the BAR users.

coverage than the BAR users. Specifically, the BAR group went more often into the low signal
regions and also lost the connections much more often than the VDOA group.

We also calculated the total traveled distance by summing all the Euclidean displacements. The
scores obtained are 8.78 m (M) and 2.84 m (SD) for VDOA and 5.28 m (M) and 3.33 m (SD) for BAR
groups. A significant difference of the coverage area between both groups is noted (conditions: t(18)
= 2.55, p < 0.05). Group using VDOA traveled farther in the area and covered a larger area than did
their BAR counterparts.

5.2.6 Situation awareness In this study, we measured SA using a form, including both subjective
(self-ratings) and objective (estimating positions in a map) components. In the experiments, the
participants were given a fairly short time period (up to 3 minutes) to explore a fairly small exper-
imental area. The reason for this is to provide a well-controlled experiment. All participants faced
the same intersection, symbol placements, connectivity variations, user interface quality, and so on,
without having decisions regarding search strategies influencing the data. However, the short mis-
sion times made it difficult to measure SA using methods such as SAGAT (Endsley, 1988) (which
requires questionnaire interventions during a task). Hence, we partly evaluated the SA using self-
ratings from the participants, methods that, according to Gatsoulis, Virk, and Dehghani-Sanij (2010),
perform equally well compared to objective methods in evaluating SA.

The participants rated their confidence level in SA on a scale of 1 (lowest) to 5 (highest). There
was a significant difference in how confident the participants felt that they had found all available
symbols in the entire area using VDOA (M = 4.2, SD = 1.32) and BAR (M = 2.5, SD = 1.78)
conditions (t(18) = 2.42, p = 0.026). With VDOA, the participants were more confident that they
had explored the entire area. Note that the participants were not informed on the number of symbols
existing in the environment.

Spatial SA (Symbols mapping) - We assessed the users’ spatial awareness by asking the partic-
ipants to mark the symbols they found during the task. Using the ground truth, we calculated the
offset in the reported and actual positions in a discrete grid map of resolution 50 cm. The offset
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measure was in grid spacing with 0 meaning the same grid and 9 meaning an offset of 9 grid cells.
The offsets of all the found symbols were averaged to arrive at the score of each participant. A lower
offset value means a better spatial awareness. Two participants in the BAR group did not find any
symbols and therefore they are not considered in this analysis. We found no significant difference
between the symbol mapping accuracy (spatial SA) of VDOA (M = 1.63, SD = 0.9) and BAR (M =
1.65, SD = 0.99) groups under conditions: t(16) = -0.04; p = 0.48. In Fig. 7, the presented boxplot
of this measure is a normalized12 version to correspond with the scale of other SA measures.

On a different question, we asked participants if they felt that they had drawn the position of the
radio source correctly on the map. The results (VDOA: M = 4.5, SD = 0.97; BAR: M = 3.6, SD =
1.26) reveal a significant difference between the groups (t(18) = 1.78, p < 0.1). The VDOA group
felt more aware of the network situation than the BAR group.

Finally, we asked participants to draw the path taken by the robot along with the final orienta-
tion after they finished the task and asked a question how confident they felt in marking the path.
Although the VDOA group (M = 4.5, SD = 0.85) had higher confidence than the BAR group (M =
4, SD = 1.25) in general, there was no significant difference. This may attribute to the fact that both
group used the same FLC control and may mean that having an additional indicator for directional
wireless connectivity does not inhibit operator awareness of the robots position and orientation.

5.3 Network parameters

5.3.1 Connection loss The connection loss measure is directly related to the execution time, as the
exploration task was terminated before the timeout only when the participant lost the connection.
Therefore, one might expect that the analysis of the execution time holds also for the connection
loss measure. However, a t-test on how many participants lost connection (4 out of 10 for VDOA
and 6 out of 10 for BAR) during the study showed no significant difference between the means
of VDOA (M = 0.4, SD = 0.52) and BAR (M = 0.6, SD = 0.52). One reason for this might be
that when mission time grows to infinity, the chances of losing connectivity at some point tends to
one, regardless of what interface is used. Furthermore, after detecting a certain number of symbols,
VDOA users tended to adopt a riskier strategy, pushing the robot to explore the edges of the poorly
connected area and causing a connection loss (4 out of 10; see Fig. 8).

5.3.2 Overall connection quality We used the RSS from the wireless adapter as a measure of
overall connection quality. As we are interested in the improvement in connection quality from the
starting position, we calculated the difference in the RSS from the initial RSS values and calculated
the RSS gain averaged over the entire duration of the exploration task by each participant. In this,
way we mitigated the influences of temporal variations and effects of influences due to network
traffic conditions during the day. Positive values indicate that there is an improvement in the RSS
values and negative values indicates the opposite.

We found significant difference in RSS gain between VDOA (M = 2.83 dBm, SD = 1.02 dBm)
and BAR (M = -0.54 dBm, SD = 3.45 dBm) under conditions t(18) = 2.96 and p < 0.01. These
values are for the RSS of the central receiver, which is used to transfer data to and from the robot.
The results are the same regardless of which receiver we consider, including the mean of all the
receiver RSS values.

Fig. 9 shows the boxplots of both absolute RSS values and the RSS gains for both groups. It can
be seen that in general, the VDOA group maintained higher RSS than the BAR group. Recall from
Sec. 4.5 that the users had three options at the beginning of the task: go straight (high connectivity
region - D, F, G, H), turn left (medium connectivity region - C and E), and turn right (poor connec-

12 We normalized the SAspatial score by first negating the actual score and then normalizing to the range [1,5], where higher
score represents better SA.
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Figure 9. Boxplots of the average RSS values and the average RSS gains in both
groups.

tivity region - A and B). Two symbols were placed in each of these regions, as can be seen in Fig. 8.
The VDOA users mostly preferred going straight and left than the BAR users, due to the additional
2D connectivity information. However, after exploring those regions, they proceeded to explore the
poor connectivity region with caution.

6. Discussion
In this section, we first discuss the results in relation to the claims we made in Section 4. The more
upsides and downsides we can confirm, the stronger support we have for the corresponding claim.
We then discuss the results in more detail and, finally, make some general remarks.

Regarding Claim 1, ‘VDOA leads to UGV trajectories in higher signal strength regions,’ the
upsides U11, U12, and U13 were confirmed. As there is no significant difference in the number
of collisions and the ease of finding symbols, we cannot confirm the downside D11. These results
support Claim 1.

Claim 2, ‘VDOA provides better situation awareness,’ is more complex. U21 is partially con-
firmed, with participants being equally aware of the path traversed, but VDOA users being more
confident to have explored the area. U22 is confirmed, with more symbols found by the VDOA
users. U23 is partially confirmed, with the same accuracy of mapping found symbols, but better ac-
curacy of radio source localization. D21 is not confirmed. To conclude, the results partially support
Claim 2.

In Claim 3, ‘VDOA improves user experience,’ all the upsides U31, U32, and U33 were con-
firmed. This strongly supports Claim 3.

Regarding Claim 4, ‘BAR increases focus and concentration on the actual task,’ we are unable
to confirm the upsides U41 and U42 because we did not find significant difference in the measures.
Also, the upside U43 was refuted because the BAR was neither a preferred system nor rated higher
in usability. On the other hand, we can confirm the downsides D41 and D42. Consequently, we only
have a weak support for Claim 4.

Looking at the support for all claims, and in particular the fact that all upsides and no downsides
of VDOA (Claims 1–3) were confirmed, and all downsides but no upsides of BAR (Claim 4) were
confirmed, we can conclude that VDOA is preferable to BAR in wireless teleoperation of UGVs.

Regarding the general results, as described in Section 5.1, we note that VDOA was considered
easier to use, similar in terms of mental effort required, and preferred by a majority of the opera-
tors. We believe that these advantages are due to the fact that the DoA information is added in the
periphery of the video feed in a way that can be accurately and easily processed.

Regarding the exploration results, as described in Section 5.2, we note that VDOA resulted
in more symbols found, a longer travelled distance and time, improved accuracy in locating the

66



Parasuraman et al., A New UGV Teleoperation Interface With Network Connectivity Awareness

radio source, similar accuracy in marking found symbols on a map, and a slight increase in number
of collisions. We believe that these advantages are due to the fact that DoA information is very
important when making decisions close to the connectivity threshold. Manually estimating the DoA
using the information provided in the BAR interface is possible, but probably associated with a
significant cost in terms of mental load and mission time, and impossible to do with an accuracy
similar to the one observed in Section 3.4 (< 12 degrees). The reason for users of the BAR interface
losing connection with the UGV was probably that they were not able to manually estimate the DoA
accurately enough. Without a reliable estimate, a natural reaction when running into a low RSS area
is to move back to the area just visited, but that strategy has a negative impact on the exploration
objective.

Regarding the network results reported in Section 5.1, VDOA resulted in a higher overall con-
nection quality. As noted above, having access to a DoA estimate enables the operator to choose
paths that takes both the connectivity and exploration objectives into account. Thus, the DoA infor-
mation is not guiding the robot; instead, it is enabling robot operations in low connectivity regions
and in the regions close to the connectivity threshold. The operator chooses where to go to perform
the search. With the VDOA information, the operator can predict the risk better. If entering a room
presents a high risk of losing connectivity, the operator can still enter if the potential information
gain is worth it. With BAR, the operator might lose connectivity without understanding that the risk
was there, as shown in the user study (see Fig. 8). In USAR missions, where staying connected with
the robot is critical for saving lives, this VDOA interface could play a vital role.

Finally, from a scientific point of view, we would like to note that this study provides a slight
elaboration of the identifying, measuring and analyzing SA variables relevant to the context. As
shown in this application, there can be an interaction of dynamic environmental conditions (e.g.,
network coverage) and robot capabilities (e.g., tele-operation) that affect task performance. So,
SA support should not only focus on the perception, comprehension, and prediction of events and
states that directly relate to the primary task (e.g., obstacles when navigating) but also focus on
the availability and dependencies of the required resources for the task execution. Furthermore,
the peripheral color bar in the display provides a general UI pattern for the corresponding SA-
support, hardly interfering with the primary task and easily extendable to other forms of scalar field
measurements, such as temperature, gas density, or sound volume.

7. Conclusions
In this paper, we proposed a way of estimating DoA of the radio signal and a way of including
this information in a UGV teleoperation interface. We also investigated the quality of the estimates
and conducted a user study showing that the new interface resulted in improved performance in an
exploration scenario.

In the technical tests, we showed that the DoA estimates had a mean error of less than 12 degrees
and were useful for predicting changes in RSS values over a typical mission trajectory.

In the user study, the benefits of the new interface, which incorporates directional wireless con-
nectivity information in the free look control interface, were compared to the standard “signal bar”
representation of the wireless connection used in modern UGV user interfaces for teleoperation.

We conducted a between-subjects user evaluation with 24 participants and were able to analyze
20 of them with 10 in each group (VDOA and BAR) and found that the new interface (VDOA) par-
tially improves users’ situation awareness and significantly reduces connection loss with the robot.
This is especially useful in robot-aided USAR situations where connection loss has a huge impact
on mission performance.

A possible extension of this research is to integrate the proposed interface in an augmented reality
display system (Krückel, Nolden, Ferrein, & Scholl, 2015) to represent the wireless connectivity in
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a 3D fashion as some participants suggested in their feedback. Additionally, the directional antennas
used in this study can also be exploited for communication redundancy, offering advantages such as
increased coverage, stable connections, and coverage in elevated regions (Hada & Takizawa, 2011).
Finally, we believe that the VDOA interface can be easily adapted to both teleoperated maritime and
unmanned aerial vehicles.
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Active Exploration Using Gaussian Random Fields
and Gaussian Process Implicit Surfaces

Sergio Caccamo, Yasemin Bekiroglu, Carl Henrik Ek, Danica Kragic

Abstract— In this work we study the problem of exploring
surfaces and building compact 3D representations of the en-
vironment surrounding a robot through active perception. We
propose an online probabilistic framework that merges visual
and tactile measurements using Gaussian Random Field and
Gaussian Process Implicit Surfaces. The system investigates
incomplete point clouds in order to find a small set of regions of
interest which are then physically explored with a robotic arm
equipped with tactile sensors. We show experimental results
obtained using a PrimeSense camera, a Kinova Jaco2 robotic
arm and Optoforce sensors on different scenarios. We then
demostrate how to use the online framework for object detection
and terrain classification.

Index Terms— Active perception, Surface reconstruction,
Gaussian process, Implicit surface, Random field, Tactile ex-
ploration.

I. INTRODUCTION

Acquiring a high quality 3D model of the environment
is critical for many autonomous robotics problems such
as grasping, segmentation, traversability or mapping. Mere
vision perception does not often exhaustively describe the
shape of the environment since volumetric data generated
from modern vision sensors are prone to errors due to limited
field of view, photometric effects, occlusions and noise.

Passive observation of a scene leads to incomplete shapes
of objects and terrains facing the camera. Heuristic or sym-
metry assumptions [1] can be used to deal with lack of data
in the observations, leading to errors in the representation.

Surface exploration through vision and haptic interactions
is the task of purposefully touch and inspect a portion of
environment so to reveal occluded information. It can be
considered as a case of either interactive or active percep-
tion depending whether the physical interaction strategically
modify the environment under analysis or not respectively.

Haptic exploration helps improving observations adding
a new layer of information into the world model. Meier et
al. [2] showed that tactile information alone can be used to
adequately describe objects properties. A robotic manipulator
equipped with tactile sensors can be used to encode proper-
ties of surfaces and objects [3] and enhance visual perception
of shapes [4]. Studies [5] show that combining tactile and
visual representations of object brings more reliable and
robust shape estimation than either the visual or tactile alone.
Even humans build their world representation using different
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Science and Communication, Royal Institute of Technology (KTH), SE-100
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Fig. 1: Experimental setup. A kinova Jaco2 arm equipped with
Optoforce sensor explores occluded areas of an environment.

sensory information and actively examine the environment to
enhance their perception [6].

In this paper we use the term VRS (visible and reachable
surface) to refer to all the surfaces contained in the portion of
space consisting in the intersection of the field of view of the
camera and the reachable space of the robot. The VRS can
contain several occluded regions and objects (i.e. occluded
surfaces, see Fig. 1).
Examples of VRS are:

- The surface of a table and objects placed in front of a
robot.

- The portion of map in front of an arm equipped Un-
manned Ground Vehicle (UGV) as shown in Fig. 2.

Inspired by the work in [4] and field applications described
in [7] we build 3D models of a VRS by merging vision and
haptic data into a probabilistic framework. We study how to



Fig. 2: Visible and reachable surface of an UGV. Objects A and
B are inside the VRS, B is partially occluded. C and D are outside
the VRS.

properly model shape of environments that contain different
occluded objects and incomplete areas taking advantage of
uncertainties in the sensory system. We also show how to
reduce the exploration time and the amount of physical
interactions needed. In summary, the contributions of this
paper can be listed as follow:

1) We propose a new probabilistic framework for surface
exploration that merges haptic and visual sensory infor-
mation for building a local 3D map of the environment.

2) We show how to exploit Gaussian Processes and
Delaunay triangulation for reducing the amount of
interactions and the computational power/time needed.

3) We demonstrate the feasibility of the approach through
hardware experiments letting a robotic arm explore
different scenarios and show how few interactions can
add useful information to a partially visible surface.

4) We show how to generically exploit the autonomous
framework for problems such as object identification
and terrain classification.

II. RELATED WORK

Gaussian processes (GP) [8] have been used for terrain
mapping and modeling [9], [10] in a wide range of appli-
cations including geophysics, aeronautics and robotics. In
those studies any given point in a 2D Euclidean space is
associated with a single elevation value, generating therefore
a 2.5D surface called digital elevation model (DEM) also
known as heightmap [11]. Another example of Gaussian
processes applied to digital terrain modeling can be seen in
[12]. Such models may fit terrain shapes but are not suitable
for more complex surfaces or in applications such as object
manipulation or segmentation.

Implicit surfaces [13] have been widely used to represent
object shapes since their first appearances in [14]. Generic
reconstruction of implicit surfaces from data points have
been presented in [15]. Machine learning techniques have
been progressively developed to represent complex surfaces
as in [16] and [17]. More recently, Gaussian Process Implicit
Surfaces (GPIS) [18] have become very popular allowing
to extend implicit surface to uncertainty, a property needed
when the model is the result of sensory data fusion [19].
Environmental observations can condition a GP so that
its posterior mean define the implicit surface defining the

terrain (including objects). Authors in [20] applied GPIS for
building 3D representation of the environment by fusing laser
and mm-wave radar data. Results in [21] show how GPIS
as object representation can even improve complex tasks as
grasping.

One disadvantage of these approaches is that during infer-
ence, Gaussian Process Regression (GPR) is computationally
demanding. The major cost takes place from the inversion
of large covariance matrices that, in the simplest imple-
mentation, have complexity O (n3). Mathematical tools as
Cholesky decomposition or sparse kernels [22] can consid-
erably reduce the computational effort.

GPIS requires a dense cubic matrix of points as test set
in order to qualitatively describe the implicit surface. When
a VRS includes several objects, the matrix containing the
training sample points (i.e. the point cloud) becomes large
and the computational time increases drastically making the
implementation of an online active perception algorithm for
surface exploration infeasible. To overcome such problem a
down-sampled subset is often heuristically selected and used
[23]. An application of sparse kernels for mapping of large
area is presented in [24] where authors propose a unified
framework for building continuous occupancy grid maps.
As already mentioned, merging haptic and visual sensory
data into the same probabilistic model using GPs can lead
to better shape representation [4] and planning [25]. An
example of tactile sensing for object tracking with visual
occlusion using particle filters is presented in [26]. Another
efficient tactile perception algorithm for object manipulation
and tracking is shown in [27].

Work in [28] and [29] showed that the morphology of
an environment is very important for an unmanned ground
vehicle (UGV) that autonomously try to traverse a partic-
ularly harsh environment. They showed also that occlusion
and reflections, e.g. caused by a pot of water or broken glass,
can lead to failure. This could be solved by asking a robotic
arm to strategically explore the environment around the
UGV. Nevertheless, the battery capacity, the computational
power on board of the robot and limited time constraints,
common during urban search and rescue missions, force the
exploration task to reduce as much as possible the required
elaboration time and the tactile interactions. On a different
scenario, an interactive humanoid robot, which explore a
table with objects for segmentation, can try to identify hidden
elements by touching occluded regions and move its head
only in case of positive tactile feedback.

To address those problems we propose a probabilistic
method that identifies and analyses occluded regions in the
working space area of a robot, where a VRS point cloud can
be much larger than a single object (e.g. cup or bottle). We
train a Gaussian Random Field (GRF) and a Gaussian Pro-
cess Implicit Surface on the initial point cloud representing
the VRS. We then infer the joint distribution of Gaussian
Random Field model on regions of interest obtained from
a 2.5D fast Delaunay triangulation. Delaunay triangulation
on a discrete Euclidean d-dimensional point set corresponds
to the dual graph of the Voronoi diagram [30] for the same



set. We use it to quickly identify and investigate large sparse
areas in the visual point cloud that could potentially carry
high uncertainty in the internal probabilistic model. We use
a robot manipulator with tactile sensors for autonomously
touching the isolated regions of the surface. We define a
new training set for the GPIS using on-surface and off-
surface tactile points obtained during each interaction by
tactile sensors placed on the fingertips of the robotic hand.
Finally we generate the new 3D shape inferring the GPIS on
a subset of the VRS selected using the predicted mean of
the GRF.

A surface exploration step in this paper denotes a single
iteration of the algorithm that includes several physical inter-
actions with the environment. During each exploration step
the GPIS model is updated many times enlarging its training
set with tactile information. We assume the environment to
remain static during the whole analysis.

III. SURFACE MODELING

In this section we briefly discuss Gaussian Processes
Regression (GPR) [8]. We describe how to exploit two
dimensional GPR (Gaussian Random Field) and three di-
mensional GPR (Gaussian Process Implicit Surfaces [18])
for modeling terrain and object shapes.

A. Gaussian Random Fields

We denote PV RS = {p1,p2 . . .pN} with pi ∈ R3 the set
of measurements of 3D points lying on the visible reachable
surface and DRF = {xi, yi}Ni=1 a bi-dimensional training
set where xi ∈ X ⊂ R2 are the xy-coordinates of the
points in PV RS and yi the z-coordinates (heights)1. We also
define a set X∗ ≡ Xrf∗ ⊂ R2 of M test points. With a
function f ∶ R2 → R we map a 2.5D surface where each
vector of xy-coordinates generates a single height. Such a
function can efficiently be modeled by a GPR which places
a multivariate Gaussian distribution over the space of f (x).
The GP can be fully described by a mean function m (x) and
a covariance function k (xi,xj). Assuming noisy observation
y = f (x) + ε with ε ∼ N (0, σ2

n) and m (x) = 0 the joint
Gaussian distribution on the test set X∗ becomes

[y
f∗
] ∼ N (0, [K + σ2

nI k∗
kT
∗

k∗∗
]) (1)

where K is the covariance matrix between the training
points [K]i,j=1...N = k (xi,xj), k∗ the covariance ma-
trix between training and test points [k∗]i=1...N,j=1...M =
k (xi,x∗j) and k∗∗ the covariance matrix between the test
points [k∗∗]i,j=1...M = k (x∗i,x∗j).

The predictive function is obtained by conditioning on the
training points

p (f∗∣X∗,X,y) = N (f∗,V [f∗]) (2)

f∗ = kT
∗
(K + σ2

nI)
−1

y (3)

1Axis are described considering the frame represented in Fig.1

V [f∗] = k∗∗ − kT
∗
(K + σ2

nI)
−1

k∗ (4)

For this study we choose to use the popular squared
exponential kernel

k (xi,xj) = σ2
eexp

⎛
⎝
−
(xi − xj)T (xi − xj)

σ2
w

⎞
⎠

(5)

Gaussian random field (GRF) is a common way to refer
to Gaussian Process Regressors that generalize over bi-
dimensional Euclidean vectors. Associating every coordinate
to a single height is a big limitation when it comes to
represent complex surfaces, e.g. mugs, inclined boxes. On the
other hand, inferring a random field will directly produce 3D
points by combining input-output into vectors of coordinates.
This explicit behavior of the joint distribution permits to
quickly obtain a DEM querying large portion of the VRS
using only few bi dimensional testing points. The variance
of the random field allows to directly highlight regions of
low density data, e.g. occluded portion of the VRS, or high
complexity portion of surface, e.g. different heights for the
same coordinate.

B. Gaussian Processes Implicit Surfaces

Gaussian Process Implicit Surface (GPIS) models a func-
tion f ∶ R3 → R with supporting points defining an implicit
surface. Whereas equations 1, 2, 3, 4 maintain the same
form, DIS = {xi, yi}Ni=1 becomes the new training set where
xi ∈X ⊆ PV RS and yi ∈ R defined as in [18]

yi

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

= −1, if xi is below surface
= 0, if xi is on the surface
= 1, if xi is above the surface

(6)

We also redefine the set X∗ ≡Xis∗ ⊂ R3 of M test points.
The implicit nature of the GPIS does not allow to directly
shape the VRS. It is needed to define a large set of test
points, e.g. a dense cubic volume centered on a region of
interest, and then find the isosurface of value 0 on the f∗
associated with the inferred points in X∗. This operation
is very computationally expensive depending on the size of
the VRS and X∗. On the other hand GPIS allows to model
complex surfaces and to use not only points belonging on
the surface to shape the GPR but also empty region points
(i.e. f(x) ≠ 0 ).

As we show on Sec. V, this property is critical in defining
the amount of interactions needed to describe the occluded
VRS. For the GPIS we choose the same rbf covariance
function as in Eq. 5.

Hyper-parameters were empirically chosen based on a set
of experiments made on a 1m3 area. Having a covariance
function that maps the uncertainty on input data similarly
for the bi-dimensional case and the three-dimensional case
is a fundamental assumption for our analysis as we show
later in section V-B.1.



Fig. 3: Probabilistic framework processes flow

IV. METHODOLOGY

In our study we represent the environment assuming a
limited number of interactions in a constrained time window
considering a VRS containing multiple objects. This applies
to all those robotics problems in which a robot needs to
explore an environment in an online process that extends
within limited amount of time (as those listed in Sec. II).
In this section we describe the system and guide the reader
through the framework process flow showed in Fig.3.

A. Strategy for modeling and inference

We initially model the VRS surface with a 2.5D function
fV RS(x) ∶ R2 → R using a bi-dimensional Gaussian Process
Regression defined in Sec. III-A. Generalization provided
by equations 3 and 4 are generally used to obtain a DEM
of the VRS and the level of confidence in the data for each
point. The choice of X∗ is therefore crucial for understanding
properties of the environment. A naive approach could create
a dense grid of bi-dimensional points on the whole surface
(so that every single hole in the map is somehow inferred by
the GPR). This creates a large set X∗ that leads to a large
covariance matrix even for the bi dimensional case. Instead
of creating the grid we query only small empty regions
analyzing the Voronoi diagram [30] of PV RS defined in III-
A. We run a fast 2.5D Delaunay triangulation2 on the set
PV RS and fill X∗ with the xy-coordinates of the barycenters
(BVRS) of all the computed Delaunay triangles (TVRS).
Elements in X∗ represent coordinates of empty spaces and
could easily be reduced in number, if needed, by putting a
constraint on the area of the triangles to be analyzed (larger
areas mean larger empty regions). We then use Eq. 4 to get
the variance on the test points, i.e. the confidence seen as
complexity of the shape or lack of information. Computing
V [frf

∗
] we can select the points in BVRS carrying highest

uncertainty (ROI selector box in Fig.3) and therefore also
the vertices of the corresponding triangles that we denote
as TINT = [b1, tr1], [b2, tr2] . . . [bL, trL] with L << N .
This step is crucial for the algorithm efficiency, allowing
to obtain several regions of interest in a fast way without

2FADE25D C++ Library

actually inferring a Gaussian Process Implicit Surface on the
whole cube containing the VRS.

Each bi is considered as a target position point for the
trajectory planner for the arm . We define the approach vector
for each target point (i.e. each interaction) by computing the
normal vector to the plane defined by the triangle vertices
constrained with direction going inside the surface (each t ∈
TINT) .

We define an implicit surface by the support points of
a function ΨV RS(x) ∶ R3 → R using a Gaussian Process
implicit surface Regression defined in Sec. III-B. We train
the model using all the 3D points in PV RS labeled as 0
with the addition of a smaller3 set of exterior points labeled
according to Eq. 6. Artificial points above and below surface
are created by increasing and decreasing the z-coordinates
of copies of uniformly randomly selected points in PV RS

respectively.

B. Surface exploration

The tactile exploration task starts by sending trajectories to
the robotic manipulator equipped with tactile sensors. From
each sensor we obtain a temporal signal as a sequence of
3D points (sensor positions w.r.t. the world frame) along
with their contact forces expressed as 3D vectors. We define
a new training set Dtactile = {xi, yi}Ni=1 containing sampled
3D sensor positions labeled as 0 if there is contact (estimated
from the module of the contact force vector) or 1 ( i.e. above
the surface) if there is no contact. In case of contact we
further add below-the-surface samples as virtually generated
3D points placed a few millimeters from the contact positions
along the direction of the contact force (see Fig.6). We train
again the GPIS model alone adding Dtactile to the initial
training set. As we show in the experiment section on-surface
points (contact points) and off-surface points are equally
important when defining a surface shape. When the arm
approaches the surface we start adding above-surface points
to the GPIS model that will ”push down” the uncertainty
and redefine the implicit surface with a ”clay-like” behavior.
Inside an exploration step the framework updates the internal
GPIS many times and queries only the GRF. This is done

3We used 1/5N points above and 1/5N points below the surface.



so that an external concurrent process can require the last
world representation available at any time and interrupt the
exploration step if needed (e.g. an external process queries a
small portion of space using the GPIS and identifies that
the analyzed occlusion contains an object so no further
interactions are required). When all the trajectories have been
used the exploration step is completed. The inferred mean
of the Gaussian random field fV RS∗ along with its variance
can help reducing the dimension of the test set of the GPIS
in case a full 3D model of the VRS is needed. Alg. 1 shows
one way to do it. It creates a test set as a grid of 2D points
on the space covered by the VRS and then computes the
mean function along with the variance from the GRF. It then
generates 3D points for the GPIS test set using the means
as xy-coordinates and the variances as confidence intervals
where to span the z-coordinates. Such simple approach can
help generating a test set with dimensionality considerably
smaller than a dense cube of 3D points. The new VRS
obtained inferring the GPIS on the new test set can be used
to close the modeling loop and trigger a new iteration of the
algorithm for better shape accuracy.

Algorithm 1 Generate a test set for a GPIS from an inferred
GRF

1: procedure GENERATESUBSET
2: X∗ ← 2Dgrid(size)
3: frf

∗
← gpmean(X∗) ▷ from the GRF

4: Vrf
∗
← gpvar(X∗) ▷ return the diagonal

5: for all x in X∗ do
6: y ← frf(x) − (m ∗ Vrf

∗
(x) + τv) ▷ lower

height, m and τv constants
7: while y < frf(x) + (m ∗ Vrf

∗
(x) + τv) do

8: Xis∗ ← addNewPointToSet(x, y)
9: y ← y +∆y ▷ ∆y incremental constant

10: end while
11: end for
12: return Xis∗

13: end procedure

V. EXPERIMENTAL EVALUATION

In the following we describe the experimental setup
showed in Fig. 1 and the experimental scenarios.

A. Experimental setup

The point cloud is obtained from a PrimeSense 3D camera
placed 60 cm above a table oriented to form a 35 ○ angle
with the table plane. The table surface can be configured
to contain holes, reflective surfaces or soft surfaces in order
to recreate different scenarios. The tactile sensory system is
composed of a Kinova Jaco24 robotic arm (6 dof) with a 3
fingered Kinova KG-3 gripper equipped with 3D OptoForce
force sensors5. The tactile sensors can detect slipping and

4Kinova website: http://www.kinovarobotics.com/
5Optoforce website: http://optoforce.com/

Fig. 6: Top view of a finger with positions of on and off surface
points after contact.

shear forces with high frequency. We use the sensor out-
put to obtain 6D force-position signals which is used for
generating the tactile training dataset. Proprioceptive data
are less affected by noise with respect to vision sensor
data. We generate contact and non-contact points after each
physical interaction using the sensor orientation w.r.t. the
world frame and the output contact force. We generate
above-the-surface 3D points as square grids of 16 points
placed along the downsampled fingertip trajectories (i.e.
sensor position) oriented accordingly. The size of each grid is
8mm×8mm as the spherical sensor dimension and consistent
with the VRS point cloud density. We use the contact force
direction to orient the on-surface points grid to be orthogonal
to the surface normal at the contact position. Below-the-
surface points are virtually generated only in case of contact,
translating a copy of the grid of on-surface points along the
surface normal (see Fig. 6).

The arm follows the approach vector on each target
triangle until contact, until the arm reaches its work space
limit (i.e. VRS border) or until it diverges too much from
the target (e.g. terrain holes).

Hybrid position-force control [31] is used in proximity
of the target point to allow small displacement along the
plane orthogonal to the approach vector while imposing a
minimum contact force along the approach.

B. Scenarios

1) Reflective surfaces: Reflective surfaces as metal plates
or water pots generate ambiguity in the point cloud rep-
resentation of the environment due to photometric effects
as shown in the initial VRS in Fig. 4. In the first scenario
we use the presented active perception algorithm to identify
and model the difference between the two incomplete point
cloud regions in an online, fully autonomous fashion. We
repeated the experiment using 3 different reflective shapes
and holes (reflective shapes RS 1,2 and 3 in Fig. 4) on
a single exploration step. The first row of Fig. 4 shows
the selected regions of interest on the point cloud with the
corresponding Delaunay triangles laying on the areas of high
uncertainty (estimated from the GRF imposing a minimum
triangle area) and approach vectors. Each triangle selection
triggers a physical interaction (visible in the second row of



Fig. 4: Exp. setup 1: Different reflective objects are placed next to holes of similar shape which generates ambiguity on the
VRS point cloud. The algorithm identifies regions of high uncertainty and starts poking the surface on different locations.
After 4 interaction, the 3D model allows to clearly identify the two elements. Blue color in the first row indicates high
variance in the GRF model queried in proximity of the select Delaunay triangles. Red color on the third row indicates high
uncertainty in the GPIS model.

Fig. 5: Exp. setup 2: An object generates an occluded area on the VRS (first row). The algorithm analyses three different
situations where the occluded area is a flat terrain (second row), hides a different object (third row) or has complex shapes
(fourth row). After 4 interaction, the 3D model allows to describe the occluded area. Colormaps for points (first row) and
shapes are chosen as described in Fig.4. In the last scenario the model identifies the empty area inside the box but creates
an artifact (two missing faces) due to a lack in lateral interactions.



each column). After each action we train the GPIS with
the new tactile training previously mentioned. The last row
shows the isosurface of value 0 representing the implicit
surface modeled by the GPIS after each interaction. We invite
the reader to note how the last two interactions allow to shape
the hole but do not reduce the representation uncertainty in
that region. This is because we fed the model with above-
the-surface points (i.e. non contact points since the arm could
not reach the bottom of the hole) that only helped identify
areas where the implicit surface could not be.

After the exploration step we used a simple threshold-
based binary terrain classifier to automatically label the holes
in the analyzed areas. Example of more advanced terrain
classification can be seen in [32] and [33]. Results using 3
different reflective surfaces and hole shapes are shown on
Table I on a 0.7m×0.6m×0.6m VRS.

Scen. Shape in the Shape in the n○ Th Classifier
first region second region interact. [hole/flat/object]

1 RS1 H1 8 (?,?)→(flat,hole)
2 RS2 H2 4 (?,?)→(flat,hole)
3 RS3 H3 6 (?,?)→(flat,hole)
4 RS1 RS2 6 (?,?)→(flat,flat)
5 H1 H2 7 (?,?)→(hole,hole)

TABLE I: Different combinations of reflective surface (RS)
and hole (H) shapes placed in two different regions. A simple
threshold classifier Th labels the presence of holes using two
average heights centered on the query regions as shown in
Fig.4.

The exploration steps, including elaboration time6, plan-
ning and physical interactions lasted between 3-5 minutes
for the above mentioned scenarios. The dimension of PV RS

varied between N = 5000 and N = 21000 points depend-
ing on the dimension of the occlusions and manipulabity
constraint. BVRS contained between 12 and 21 baricenter
points. Dimension of TINT (L, resulting after reduction
based on GRF variance) was between 4 and 8 (n○ interact.).

2) Occluded areas: In the second experiment (Fig. 5)
we demostrate how the algorithm can reconstruct occluded
areas and how it can extract environmental properties which
are not visible in a simple DEM. Similarly to the previous
scenarios we analyse (now independently) elements placed
inside the VRS that have the same point cloud representation
as shown in Fig. 5. The first element is a full cubic box
that generates a large occluded area on the initial VRS
point cloud. The second element is an empty cubic box
that hide its open face from the camera. The empty area
inside the cube cannot be represented by a DEM (GRF)
that would only consider the height of the upper side on
the box. The third object is the same full cubic box that
hides a third different object (a soft ball) placed a few
centimeter behind it. By limiting the area of the Delaunay
triangles we force the algorithm to only have 2 interactions
on the exploration step for each scenario. The first row of
Fig. 5 shows the the point cloud representation of the full

6Using PCL, Eigen, ROS, Kinova SDK

box on the VRS together with its uncertainty distribution
generated by the GRF and the process of action selection
with the selected Delaunay triangles. Second row shows the
evolution of the internal representation (computed offline)
during each interactions. It is possible to notice how the
implicit surface changes while the arm approach the target.
Second row shows the evolution of the GPIS model for the
second scenario. The occluded object becomes visible only
during the second interactions after a physical contact. Last
row shows that the GPIS can generalize information more
complex than the ones embedded on a DEM. The empty
cube shaped is revealed by the first interaction that do not
add any on-surface point. The box is in fact carved by the off-
surface points. The two triangles carrying higher uncertainty
selected during the exploration step do not generate any
lateral interaction with the box. This results in an artifact
in the internal representation (last row of Fig.5) where the
two lateral faces of the box disappear. Such situation can
be avoided increasing the number of interactions for each
exploration step. Similarly to the previous experiment we use
a simple threshold classifier on the occluded area to identify
the presence of objects as shown in Table II.

Scen. Scenario description n○ Th Classifier
interact. [object/flat/hole]

1 Full box 4 (obj,?)→(obj,flat)
2 Box with occluded object 4 (obj,?)→(obj,obj)
3 Empty box 4 (obj,?)→(obj,flat)

TABLE II: Detection of occluded objects. A simple threshold
classifier Th labels the presence of objects using two average
heights centered on the box and on the occluded area behind
the box respectively.

VI. CONCLUSIONS

We presented an efficient probabilistic framework for
building a 3D model of a surface containing different oc-
cluded areas, objects and reflective surfaces 7. The algorithm
uses Delaunay triangulation and Gaussian Random Fields to
quickly identify areas poorly described by the visual sensory
system avoiding the computational cost of Gaussian Implicit
Surfaces. The system generates subsequent target positions
and orientations for a trajectory planner that brings a robotic
arm equipped with tactile force sensor to touch the uncertain
regions of the local map. On-surface and off-surface points
generated during each physical interaction of the arm are
used to update a Gaussian process implicit surface that keeps
an internal complex representation of the environment. We
did real experiments to show how very few interactions can
unveil fundamental information hidden in the environment.
We also showed how off-surface points alone (that are
generated in case of non contact trajectories) can help to
model simple terrain shapes. The algorithm can be used in
an online process as opposed to other methods [4] and can
be iterated to increase the quality of the 3D model. A limi-
tation of the framework appears when the terrain complexity

7Video of an experiment available at: https://youtu.be/0-UlFRQT0JI



increases or when the covariance functions used for the
GPIS and the GRF differ considerably. In such cases tactile
interactions (that are planned using the GRF model) cannot
bring enough information to the GPIS, resulting in wrong
surface representations. A second weakness arises when the
arm modifies too much the surface under analysis during the
physical interactions and the internal representation of the
environment diverges from the real world. In future work
we plan to study these problems by segmenting objects
in the environment and incorporating relative translations
into the model. Variance values inside the triangles can
help to generate sliding-on-surface acquisitions to obtain
more tactile data from each interaction and embed additional
surface properties. We also plan to test the algorithm on the
robot shown in Fig. 2 and on a PR2.
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Active Perception and Modeling of Deformable Surfaces
using Gaussian Processes and Position-based Dynamics

Sergio Caccamo, Püren Güler, Hedvig Kjellström, Danica Kragic

Abstract— Exploring and modeling heterogeneous elastic sur-
faces requires multiple interactions with the environment and
a complex selection of physical material parameters. The most
common approaches model deformable properties from sets
of offline observations using computationally expensive force-
based simulators. In this work we present an online probabilis-
tic framework for autonomous estimation of a deformability
distribution map of heterogeneous elastic surfaces from few
physical interactions. The method takes advantage of Gaussian
Processes for constructing a model of the environment geometry
surrounding a robot. A fast Position-based Dynamics simulator
uses focused environmental observations in order to model
the elastic behavior of portions of the environment. Gaussian
Process Regression maps the local deformability on the whole
environment in order to generate a deformability distribution
map. We show experimental results using a PrimeSense camera,
a Kinova Jaco2 robotic arm and an Optoforce sensor on
different deformable surfaces.

Index Terms— Active perception, Deformability modeling,
Position-based dynamics, Gaussian process, Tactile exploration.

I. INTRODUCTION

The knowledge of deformability properties of an object
or part of an environment can improve robot navigation [1]
or object manipulation [2]. A robot can, for example, avoid
unstable terrains while driving, place non-rigid objects on
stable positions after manipulation or apply proper forces
during grasping. Visual sensors alone are not enough to
extract the level of deformability. Active perception through
integration with haptic exploration helps in estimating de-
formable properties by purposely interacting with and ob-
serving the environment. Most of the existing methods focus
on estimating the deformability of single objects using com-
putationally expensive force based simulators [1] and assume
that the deformability is homogeneous. Some works consider
heterogeneous deformability properties, i.e. deformability is
different along the object, using a large number of interac-
tions in a complex multi-camera setup [3].

We present an active perception framework for extraction
of heterogeneous deformability properties of the environ-
ment, see Fig. 1. The system combines visual and haptic
measurements with active exploration and builds deformabil-
ity distribution maps. A fast Position-based dynamics (PBD)
simulator is used to estimate the deformability of a portion
of surface after a physical interaction.

The authors are with the Computer Vision and Active Perception Lab.,
Centre for Autonomous Systems, School of Computer Science and Com-
munication, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
Sweden. e-mail: {caccamo∣puren∣hedvig∣dani}@kth.se

Fig. 1: Illustrative representation of the experimental setup. A
Kinova Jaco2 arm equipped with Optoforce sensor interacts with
a deformable surface observed by a PrimeSense camera. A Gaus-
sian Process models the deformability distribution (β-field) of the
surface from observation and maps it onto the geometric map.

We demonstrate the feasibility of our approach through
a serie of experiments performed on scenarios representing
terrains containing surfaces having different deformabilities.

A. System outline

The developed framework follows the process outlined in
Fig. 2. Observations of the environment (initial and final
Point Cloud - PC), extracted before and after a physical
interactions are used to estimate the local deformability
parameters (β) using a Position-based simulator. The prob-
abilistic model (GPR β-field) gradually generalizes over the
local deformability parameters to build a deformability map
of the whole environment. Touch strategy and number of
physical interactions are assessed using the joint distributions
of the Gaussian Process models.



Fig. 2: The developed framework proces flow. After a pre-filtering stage, a Gaussian Process Regression (GPR world) is
trained and it describes geometry of the environment. A second GPR (GPR β-field) is used to map deformability parameters
(β values) onto the world model and determine whether and where to focus the next physical interaction. In each interaction,
a new β value is locally estimated using a PBD simulator and the GPR β-field is updated. GPR-touch is used to obtain
compact 3D representations of the environment when it is subject to deformation.

II. RELATED WORK

Gaussian Process Regression (GPR) [4] have been widely
used for modeling geometric surface properties [5] on a
broad range of applications such as robotics [6], aeronautics
or geophysics [7]. In robotics, merging visual and haptic
sensor data into the same Gaussian Process probabilistic
model leads to a better environmental shape representation
[8] or improve planning [6]. Environmental observation can
condition a GPR so that its posterior mean define the terrain
property [9] of interest. Authors in [10], [8] show how to
exploit the mean and variance of the joint distribution of a
Gaussian Process for enhancing active perception algorithms
in modeling geometric properties of objects.

Unlike the previous works, we use Gaussian Process
Regression for mapping and modeling the deformability
distribution of a surface in an active perception framework.

The problem of modeling the deformation of non-rigid
objects have been widely studied in computer graphics [11]
and computer vision communities [12]. The most commonly
used approaches for modeling deformations are mesh-based
models such as finite element method (FEM) and mass-
spring model. FEM aims to approximate the true physic
behavior of deformable objects by dividing them into smaller
and simpler parts called finite elements. This numerical tech-
nique is computationally expensive and has high complexity.
Mass-spring is computationally more efficient than FEM
but difficult to tune in order to get the desirable behavior.
In recent years, position-based dynamics (PBD) [13] have
gained attention in the computer graphics community due
to their speed and stability. PBD based methods converge
to the problem solution by solving geometric constraints
considering directly the object position and shape. They are
computationally efficient, stable and are highly controllable.
These are all important assets in the design of a robust and
fast active perception framework. Meshless shape matching
(MSM) [14] is a key algorithm among the field of PBD
that simulates rigid and deformable objects [15]–[17]. In this
study, we propose to estimate the parameter that define the

elastic deformability of the object or part of the environment
(β) from the observed real-world behavior using MSM.

Estimating parameters of a deformable model is a widely
studied approach to realistically simulate the behaviors of
objects [3], [18], [1], [19]. Frank et al. [1] learn the de-
formability model of an object by minimizing observed de-
formations and the FEM model prediction. Also, Boonvisut
et al. [19] use a non-linear FEM-based method to estimate
the mechanical parameters of soft tissues. However, these
approaches assume homogeneous material properties. In [3],
authors model heterogeneous soft tissues but they rely on
a complex experimental setup consisting of several external
cameras.

Unlike the previous approaches, we estimate the deforma-
bility of heterogeneous surfaces using MSM and Gaussian
Process in a simpler, generic robotic experimental setup, i.e.
a robotic arm and a depth camera sensor, see Fig. 1. It is
showed in [20] that by matching real-world observation and
MSM simulation, the deformability of objects can be esti-
mated in a controlled 2D experimental setup. Here instead,
we map the deformability of a surface with heterogeneous
material properties by minimizing the error between the
model prediction and observed deformations in 3D space.

III. METHODOLOGY

In this section, we describe Gaussian Processes for re-
gression (GPR) [4] for 2.5 dimensional datasets1 (Gaussian
Random Field). We discuss how to exploit GPR to generate
deformability distribution maps and geometric descriptions
and show how to estimate the deformability parameters of
an object through observation and simulation. This section
ends with a description of the developed algorithms.

A. Gaussian Random Fields

A Gaussian Process Regression shaped over a bi-
dimensional Euclidean set is commonly referred as Gaussian
random field. We start defining the set PV = {p1,p2 . . .pN},

1In a 2.5D dataset each xz coordinate has a single height y.



with pi ∈ R3, of measurements of 3D points generated by
the visual sensor system. We define also DRF = {xi, yi}Ni=1
a training set where xi ∈ X ⊂ R2 are the xy-coordinates
of the points in PV and yi the z-coordinates (heights)2.
Similarly a set X∗ ≡ Xrf∗ ⊂ R2 identifies a set of M test
points. A terrain surface can be described with a function
f ∶ R2 → R where each vector of xy-coordinates generates
a single height. This simplistic expression allows to effi-
ciently describe 2.5D terrains but does not allow to model
convex shapes which require multiple heights for a single
xy-coordinate.

Such a function can efficiently be modeled by a GPR
which places a multivariate Gaussian distribution over the
space of f (x). The GPR is shaped by a mean function m (x)
and a covariance function k (xi,xj). The joint Gaussian dis-
tribution, assuming noisy observation y = f (x) + ε with ε ∼
N (0, σ2

n) and m (x) = 0 on the test set X∗ assume the
following form

[y
f∗
] ∼ N (0, [K + σ

2
nI k∗

kT
∗

k∗∗
]) (1)

where K is the covariance matrix between the training points
[K]i,j=1...N = k (xi,xj), k∗ the covariance matrix between
training and test points [k∗]i=1...N,j=1...M = k (xi,x∗j) and
k∗∗ the covariance matrix between the only test points
[k∗∗]i,j=1...M = k (x∗i,x∗j).

The predictive function is obtained conditioning the model
on the training set [4] :

p (f∗∣X∗,X,y) = N (f∗,V [f∗]) (2)

f∗ = kT
∗
(K + σ2

nI)−1 y (3)

V [f∗] = k∗∗ − kT
∗
(K + σ2

nI)−1 k∗ (4)

We used the popular squared exponential kernel

k (xi,xj) = σ2
eexp

⎛
⎝
−(xi − xj)T (xi − xj)

σ2
w

⎞
⎠

(5)

which hyper-parameters σe, σw were empirically estimated
based on a set of experiments made on a 1 m3 area.

The mean of the joint distribution of a Gaussian random
field allows to explicitly obtain the heightmap [21] of a
terrain surface by simply using a grid of bi-dimensional
testing points. The variance of the random field highlights
regions of low density or noisy data, e.g. occluded portion
of the map. In this paper, we use GPR for modeling both
the geometric shape of the whole surface under analysis and
its deformability properties that we denote β-field. For the
latter, yi of the training set DRF contains the deformability
parameter (β) of the surface estimated using MSM after a
physical interaction on a selected target position.

Fig. 3: Initial and final reconstructed point cloud used by the
Position Based Dynamics algorithm. The Optoforce sensors ensure
a constant normal force while collecting the second point cloud.
The Gaussian Process Regressions allow to collect grid data points
at uniform xy-coordinates while filtering noise.

Fig. 4: For the sake of exposition, let’s assume we want
to maintain rigidity. (1) The initial shape of the object is
represented with the point positions p0

i . (2) The points are
displaced because of external forces and the intermediate
deformed shape p∗i occurs. The intermediate deformed shape
does not embodies the knowledge of the object shape. (3)
MSM determines the goal position gi by calculating the
optimal rotation and translation components that preserves
the initial shape. Later, the intermediate deformed points p∗i
are pulled towards the goal positions gi.

B. Simulating deformation

The system uses MSM to simulate deformations. The
simulation starts by storing the initial shape of the de-
formable object, p0

i ∈ R3 where i = 1,2,3, ...,K with K
the number of points. The basic idea of MSM is shown in
Fig. 4. In each time step, external forces such as gravity
or collisions, move the points to unconstrained intermediate
deformed positions p∗i ∈ R3. The unconstrained points are
pulled to goal positions gi ∈ R3 which are determined
by computing the optimal linear transformation between
the initial shape p0 ∈ R3×K and intermediate deformed
configuration p∗ ∈ R3×K . We then extract the rotational
R ∈ R3x3 and translational components t ∈ R3 of this linear
transformation. The rotation and translation are the basis for
the rigid transformation that moves the particles towards their
goal position which respects the initial shape constraints.

To obtain rotational and translational components, a rota-
tion matrix R and translation vectors t0 and t are determined
by minimizing

2Axis are described considering the reference frame represented in Fig.1



∑
i

mi(R(p0
i − t0) + t − p∗i )2 , (6)

where mi are the weights of the individual particles. The
optimal translation vectors are the centre of mass of the initial
shape and the deformed shape:

t0 = 1

mc

K

∑
i

mip
0
i , t =

1

mc

K

∑
i

mip
∗

i ,mc =
K

∑
i

mi . (7)

Finding the optimal rotation requires more complex steps
than finding optimal translation vectors. In [13], authors relax
the problem of finding the optimal rotation matrix R to
finding the optimal linear transformation A ∈ R3×3 between
the initial configuration p0 and the intermediate deformed
configuration p∗:

A = (∑
i

mirisi
⊺)(∑

i

misisi
⊺)

−1

= ArAs , (8)

where ri = pi
∗ − t and si = p0

i − t0 are the point locations
relative to the center of mass. The matrix As is symmetric
and contains only scaling information. Hence the rotational
part can be obtained by decomposing Ar into the rotation
matrix R and symmetric matrix S using polar decomposition
Ar = RS as in [13].

We determine the goal position in Fig. 4 as:

gi = Rsi + t . (9)

The steps described in Eq. (6-9) come from the well
known Kabsch algorithm [22] and they only allow rigid
transformation from the initial shape. To simulate defor-
mation, [13] introduces linear deformation, e.g. shear and
stretching by combining R and A as follows:

gi = ((1 − β)R + βA)si + t , (10)

where β controls the degree of deformation, ranging from 0
to 1. If β approaches 1, the range of deformation increases,
whereas if β is close to 0, the object behaves like a rigid
body.
β is our parameter of interest for defining an object’s

deformability. Our goal is to estimate it by matching the
simulated deformation and the observed deformation of the
object.

Using linear transformation, only shear and stretch can be
represented. To extend the range of deformation such as twist
and bending modes, quadratic optimal transformation matrix
Ā ∈ R3×9 is calculated as follows and used instead of A in
Eq. 10:

Ā = (∑
i

miris̄
⊺

i )(∑
i

mis̄is̄
⊺

i ) = ĀrĀs (11)

where s̄i = [sx, sy, sz, s2x, s2y, s2z, sxsy, sysz, szsx]⊺ ∈ R9.
For further expanding the range of deformation, the set

of points are divided into overlapping clusters as seen in
Fig. 5 and linear optimal translation Aj of each cluster j is
calculated separately. The size of the cluster was empirically

Fig. 5: Example point regions configuration with overlapping
clusters with size 3x3.

chosen as described in Sec. IV-C. At each time step, the
final position is determined by blending the goal positions
of corresponding clusters:

gi =
1

Mi
∑
j∈Ri

gji , (12)

where Mi is the number of clusters that particle i belongs
to, Ri is the set of clusters particle i belongs to, and gji is
the goal position which is associated with cluster j ∈Ri.

C. Estimating deformability parameter

We model the shape of the virtual object as a surface fixed
to the ground from edges. The initial shape of the object p0

is estimated before each physical interaction from the mean
of the joint distribution of the GPR as shown in the left side
of Fig. 3. To simulate the effects of a physical interaction,
we select the point pf closest to the manipulated region and
fix its position in accordance with the disturbance as shown
in the right side of Fig. 3. The simulator generates a goal
configuration gβ for a specific β.

To estimate the deformability parameter β that best de-
scribes the locally deformed surface, we minimize an error
function that measures the distance between the observed
deformed shape X̄ and the simulated deformed shape gβ .
X̄ consists of the test set X∗ and heightmap f̄∗ modelled
by GPR as described in Sec. III-A. The error function is
calculated as follows:

E(β) = 1

K

K

∑
i=1

min
x̄j∈X̄

(∥gβi − x̄j∥) (13)

where x̄j and gβi are the jth and ith points from X̄ and gβ

respectively. To find the minimum, the simulation runs for
a number of β values uniformly sampled from the interval
[0,1). The β that gives the lowest residual in Eq. (13) is
selected as representing the deformability of the surface.

D. The algorithm process flow

The active exploration task starts with a full observation
of the entire surface under analysis. The point cloud gen-
erated from this initial observation is cropped and filtered
using a statistical outliers removal filter [23]. A Gaussian
random field (GPR world, in Fig. 2) is trained on the 3D
points of the filtered point cloud as described in Sec. III-
A. Such GPR builds an internal geometric representation of
the environment allowing to obtain compact representations



Fig. 6: Reconstruction of different deformations of different foams obtained applying the same force on the same contact
point. H is the hardness of the surface defined as in Sec. IV-B.

of selected sub-regions (ROI). This is done by considering
the mean of the joint distribution of the GPR world model
inferred on a dense (0.5 cm) grid of 3D points centered on
a ROI.

A second Gaussian Process (GPR β-field) is then initial-
ized on the xy-coordinates of the whole geometric map. The
block ROI selector of Fig. 2 analyzes the variance of the
joint distribution of the GPR β-field model using a dense
(0.5 cm) grid of two dimensional points (xy-coordinates)
looking for regions of highest uncertainty - meaning that
the β distribution is poorly modeled because of missing
information or high noise. A randomly selected point3 is a
candidate target for the active exploration task.

In the successive step, the arm is moved toward the
selected region. The approach vector has direction orthogonal
to the surface under analysis on the target point location. We
use hybrid position-force control [24] in proximity of the
target point to impose a constant force on the direction of
the approach vector while allowing displacements along the
orthogonal directions.

When the Optoforce sensor detects a certain normal force
the arm stops and the environment is observed again. From
this second observation the system generates a new point
cloud that contains the local environmental deformation.
We use a convex hull filter to remove all the 3D points
representing the robot hand and stick. The dimension and
position of the convex hull is estimated from proprioceptive
data using the robot model. The final point cloud contains
occluded regions (incomplete point cloud) because of the
hand and stick presence. In order to generate a compact
representation of the deformation we train a third GPR
(GPR-touch in Fig. 2) on a squared cropped ROI of the
final point cloud that contains the deformation along with
10 tactile points. The tactile points are virtually generated

3Selected among the regions carrying higher uncertainty.

considering the position and shape of the spherical surface
of the Optoforce sensor along with the contact force direction
as shown in Fig. 3. From the mean of the joint distribution
of GPR-touch we create deformation shapes as shown in
Fig. 6. Using the method described in Sec. III-C we use
the two point clouds in order to get a local β value. The
GPR β-field is finally trained on the locations subjected to
deformation using the estimated β value as described in Sec.
III-A. The exploration step is repeated until the ROI detector
block does not find a new candidate point for the next
physical interaction (meaning that the variance distribution
of the β-field is low on the whole map). The threshold value
for the variance was empirically estimated through several
experiments. Its value determines the numbers of interactions
needed and, as we will show in Sec. IV-C, the accuracy of
the built β-field map.

IV. EXPERIMENTAL EVALUATION

A. Hardware setup

The hardware setup (see Fig. 1) used in the experiments
consists of a PrimeSense RGB-D camera, a Kinova Jaco24

robotic arm equipped with a 3 fingered Kinova KG-3 gripper
and a 3D OptoForce force sensor5. The camera is placed
80 cm above the table. The relative orientation between the
camera and the table plane is 45 ○. We use a rigid 10 cm
stick, mounted on the Kinova hand, for the interaction.

Sets of homogeneous and heterogeneous elastic foams of
different shapes are placed on the table and explored by the
arm. The OptoForce sensor, that can detect slipping and shear
forces with high frequency, is placed on the tip of the stick.
The haptic sensor output consists of a 9D force-position
vector generated at 1 kHz. When the desired force is reached,
contact force direction together with stick orientation and

4Kinova website: http://www.kinovarobotics.com/
5Optoforce website: http://optoforce.com/



Fig. 7: Experiments setup. The first column shows an illustrative representation of the foams size, hardness and position
for each experiment (rows). The second column shows the estimated deformability distribution (β-field). The third column
shows the variance of the β-field along with the contact positions.



sensor position (proprioceptive data) are used to generate
tactile 3D points.

All the software components (nodes) run under the robot
operative system (ROS). Visual data are analyzed using the
Point Cloud Library (PCL).

B. Experimental scenarios

To validate our approach, we tested the framework on six
different scenarios described in Table I. All the analyzed
surfaces covered an area of 60×40 cm. The filtered point
clouds covering the analyzed regions counted ∼12,000 points
in average. The foams had different shapes and hardness
but equal density. In the first two scenarios, homogeneous
foams were physically explored by the arm. In the last
four experiments, several foams having different sizes and
hardness were attached together and used to assess the
heterogeneous deformability properties.

The algorithm starts the active exploration task by interact-
ing with a predefined initial xy-coordinate. The successive
target points were randomly selected among those sub re-
gions of the β-field having a variance higher than a given
threshold.

(a)

(b)

Fig. 8: (a) The optimal β as a function of deformability. The
estimated deformability increases with decreasing firmness of the
surface. (b) The points that represent the shape of the object are
divided into overlapping clusters. The cluster size that gives the
least error for optimal β estimation is selected.

C. Results

Fig. 8(a) shows the deformability values β, estimated fol-
lowing the approach described in Sec. III-C, as a function of
decreasing hardness. This figure illustrates how the estimated
deformability for each foam is in accordance with the real
deformation characteristics. In Fig. 8(b), we also show the

Scenario description n○ Th var(β) β-regions
(hardness) interact.
Homogeneous [60] 3 0.06 1
Homogeneous [110] 3 0.06 1
Heterogeneous [60/150] 4 0.06 2
Heterogeneous [110/150] 4 0.06 2
Heterogeneous [150/rigid] 4 0.06 2
Heterogeneous [60/110/rigid] 4 0.06 3

TABLE I: Different scenarios setup used during the experi-
ments. The hardness of the foams (H), defined in terms of the
force (N) required to compress the foam to 40%, is provided
by the foam manufacturer. Th represents the threshold value
for the variance on the β-field.

evolution of the error as a function of cluster size. The
figure indicates that 3×3 cluster size models the observed
deformation with the best accuracy. This happens because
using small cluster size increases the range of deformation
that can be modeled by MSM and therefore the accuracy of
the estimation.

Fig. 6 shows the mean of the joint distribution of the geo-
metrical random field after contacts with different foams. It
can be seen that the Gaussian random field creates a compact
representation of the deformation shape that otherwise would
be partially occluded by the stick and affected by noise.

Fig. 7 illustrates the interaction steps for the presented
scenario and the corresponding evolution of the β-fields.
The first column (ground truth) shows a representation of
the setup with the position of the foams along with their
hardness and relative dimension. The second column shows
the corresponding estimated β-fields. A contour function
identifies the best isopleth with the corresponding subdi-
visions of the β-fields into regions. It is possible to no-
tice how the algorithm correctly identifies regions having
different deformability and models the whole deformation
map consistently with the ground truth. The last column
indicates the variance distribution of the β-field along with
the target points selected during the active exploration task.
The first target point was pre-assigned and it is indicated
with a circle whereas triangles indicate successive contacts.
We invite the reader to note how the subdivision of the β-
field into regions of the last experiment (last row of Fig. 7)
slightly differs from its ground truth. This shows a sensibility
of the proposed framework to the selected variance threshold.
An increase in the variance threshold (which was empirically
chosen during our experiments) helps limiting the number of
interactions needed (less target points found) but at the same
time decreases the accuracy of the β-field (regions having
low variance are considered as explored). All the experiments
lasted in average ∼1.5 min including arm motion, planning
and β-field calculation.

V. CONCLUSIONS

We have presented a novel active perception framework
for modeling heterogeneous deformable surfaces6. The main

6A video of an experiment is available at: https://youtu.be/**hiddenlink**



contribution of our work is the ability to model the de-
formability distribution (β-field) of an environment from
few physical interactions. The novelty of the approach is
in the use of real-world observations in a PBD simulator for
estimating the deformability parameters. PBD based methods
are computationally efficient which is an important aspect
for online active perception tasks. Our data-driven system
relies on multisensory observations and selects regions to be
interactively explored for assessing the deformability. The
presented framework is particularly suitable for applications
that require the robot to promptly investigate the environment
minimizing the required environmental interactions.

We demonstrate the feasibility of our method through sev-
eral real world experiments, using a simple setup consisting
of a robotic arm, an RGB-D camera and a force sensor.
We show how the obtained β-fields of the analyzed surfaces
matched the ground truth.

There are several aspects of our method that deserve
further attention. We have only modeled elastic, isotropic
behaviors of heterogeneous surfaces. We want to increase
the potentiality of our framework by capturing plastic and
anisotropic behaviors. Another limitation is that the estimated
deformability is expressed as a virtual (β value) of the
deformation rather than a real physical measurement. Such
values can change considerably if the simulator settings (e.g.
cluster size) change. This can affect the accuracy of modeling
surface deformability. Hence the variableness of PBD sim-
ulation should be investigated further as a future research.
Finally, analysis of environmental visual appearance such
as color and texture, can help the probabilistic framework
to identify regions that are likely to have uniform material
properties.
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Abstract— Global registration of heterogeneous ground and
aerial mapping data is a challenging task. This is especially
difficult in disaster response scenarios when we have no prior
information on the environment and cannot assume the regular
order of man-made environments or meaningful semantic cues.
In this work we extensively evaluate different approaches to
globally register UGV generated 3D point-cloud data from
LiDAR sensors with UAV generated point-cloud maps from
vision sensors. The approaches are realizations of different
selections for: a) local features: key-points or segments; b)
descriptors: FPFH, SHOT, or ESF; and c) transformation
estimations: RANSAC or FGR. Additionally, we compare the
results against standard approaches like applying ICP after
a good prior transformation has been given. The evaluation
criteria include the distance which a UGV needs to travel to
successfully localize, the registration error, and the computa-
tional cost. In this context, we report our findings on effectively
performing the task on two new Search and Rescue datasets.
Our results have the potential to help the community take
informed decisions when registering point-cloud maps from
ground robots to those from aerial robots.

I. INTRODUCTION

Multi-robot applications with heterogeneous robotic teams
are an increasing trend due to numerous advantages. An
Unmanned Ground Vehicle (UGV) can often carry high
payloads and operate for extended periods of time, while
an Unmanned Aerial Vehicle (UAV) offers swift deployment
and the opportunity to rapidly survey large areas. This is
especially beneficial in Search and Rescue (SaR) scenarios,
see Fig. 1 as an example. Here, an initial overview can
be made using UAVs before deploying UGVs for closer
exploration in areas of interest. However, when it comes to
efficiently combining the strengths of such robotic teams,
we face numerous challenges. Additionally to the large
difference in point of view, the sensor modalities used for
mapping and localization are often drastically different for
UAVs and UGVs. While UAVs typically use cameras as the
prime sensor, UGVs often rely on LiDAR. This poses a major
challenge in efficiently exploiting the UAV data on a UGV as
registration between different sensor modalities is difficult to
perform. Furthermore, using advanced functionalities such as
traversability analysis and path planning for UGVs on UAV
generated maps requires tight alignment between the data
of different modalities, active localization and suitable map
representations.

One critical step in using maps across several robots is the
identification of the alignment between their maps. Several
techniques are possible with increasing generality [1]. Firstly

Fig. 1: Global localization of a 3D UGV sub-map (red point-cloud) in a
3D UAV reference map (coloured point-cloud). Green lines indicate the
resulting matches associated to points in the two point-clouds. The data
stems from the Montelibretti outdoor dataset and drawn from the complex
experimental set-up.

it is possible to impose a common origin of different robots’
maps, e.g., by using common starting locations as done
by Michael et al. [2]. Another option is to use global
positioning sensors that allow for a good initial guess on
the alignment of coordinate frames. In the case that several
robots operate concurrently, it is also possible to find an
alignment by a relative localization of the robots against
each other [3]. However, the most challenging task is to
register maps without any prior information regarding their
mutual alignment. Furthermore, for the SaR application as in
the “Long-Term Human-Robot Teaming for Robots Assisted
Disaster Response” (TRADR) project, the scenarios are
completely unpredictable which rules out the possibility of
using supervised learning into the pipeline [4].

While our previous work on online multi-robot SLAM for
3D LiDARs [5]1 demonstrates a reliable registration among
point-cloud maps taken from multiple ground robots, there
is still the issue of dealing with differences in modality and
in point of view between UAVs and UGVs.

The above mentioned challenges motivate us to evaluate
several techniques to globally localize a UGV using its Li-
DAR sensor in a point-cloud map generated using the Multi-
View Reconstruction Environment (MVE) [6] from images
recorded by a UAV. The global registration (or localization)
pipeline schematized in Fig. 2 consists of feature extraction,
feature description and matching, and a 3D transformation
estimation. We provide an evaluation and an analysis of the

1Within this paper, this system will be referred to as LaserSLAM.



implementation and performance of different choices for the
modules in this registration pipeline. These choices are:

• Local feature extraction: key-points or segments.
• Feature descriptors: Fast Point Feature Histogram

(FPFH), Unique Signatures of Histograms for Local
Surface Description (SHOT) or Ensemble of Shape
Functions (ESF).

• Transformation estimation: RANSAC based or Fast
Global Registration (FGR).

The evaluation is conducted on two real world datasets of
an indoor and an outdoor SaR scenario. This paper presents
the following contributions:

• Extensive evaluation of global registration realizations
for registering UGV and UAV point-clouds from LiDAR
and camera data respectively.

• Two new datasets for multi-modal SLAM in SaR sce-
narios.

II. RELATED WORK

The field of 2D metrical map-merging based on over-
lapping map segments is well studied in literature [7–9].
However, the task is increasingly difficult when moving to
3D environments [1], especially when dealing with hetero-
geneous robotic teams, where 3D data is generated from
different sensors and with different noise characteristics [10].
Michael et al. [2] demonstrate a system for collaborative
UAV-UGV mapping. The authors propose a system where
a UGV equipped with a LiDAR sensor performs 2.5D
mapping, using the flat ground assumption and consecu-
tively merging scans using Iterative Closest Point (ICP). In
dedicated locations a UAV equipped with a 2D LiDAR is
launched from the UGV and maps the environment using a
pose-graph SLAM algorithm. Maps generated from the UAV
are then fused online with the UGV map using ICP initialized
at the UAV starting location.

Forster et al. [11] go a step further in fusing UAV-UGV
map data from different sensors, i.e., RGB-D maps from the
UGV and dense monocular reconstruction from the UAV.
The registration between the maps is performed using a 2D
local height map fitting in x and y coordinates with an initial
guess within a 3m search radius. The orientation is a priori
recovered from the magnetic north direction as measured by
the Inertial Measurement Unit (IMU)s. In a related setting
Hinzmann et al. [12] evaluate different variants of ICP
for registering dense 3D LiDAR point-clouds and sparse
3D vision point-clouds from Structure from Motion (SfM)
recorded with different UAVs into a common point-cloud
map using an initial GPS prior for the map alignment.

Instead of using the generated 3D data for localizing
between RGB and 3D LiDAR point-cloud data, Wolcott and
Eustice [13] propose to generate 2D views from the LiDAR
point-clouds based on the surface reflectivity. However, this
work focuses only on localization and it is demonstrated only
on maps recorded from similar points of view.

In our previous work [14] we presented a global registra-
tion scheme between sparse 3D LiDAR maps from UGVs

and vision keypoint maps from UAVs, exploiting the rough
geometric structure of the environment. Here, registration is
performed by clustering of geometric keypoint descriptors
matches between map segments under the assumption of a
known z-direction as determined by an IMU.

Zeng et al. [4] present geometric descriptor matching
based on learning. However, this approach is infeasible in
unknown SaR scenarios, as the descriptors do not generalize
well to unknown environments.

Dubé et al. [15] demonstrate better global localization
performance in 3D LiDAR point-clouds by using segments
as features instead of key-points. This approach has been
demonstrated with multiple UGVs with the same robot-
sensor set-up, but it is still to be studied how the approach
performs under large changes in point of view.

Assuming good initialization of the global registration,
Zhou et al. [16] perform a robust optimization. The work
claims faster and more robust performance than ICP.

In summary, the community addresses the problem of
heterogeneous localization. However, there is a research gap
in globally localizing from one sensor modality to the other
in full 3D without strong assumptions on view-point, terrain
or initial guess.

III. AERIAL-GROUND ROBOT MAPPING SYSTEM

In this section, we present our SLAM system. It extends
our LaserSLAM system [5] with the component of global
map alignment and localization in point-cloud maps from
different sources, as well as online extension of these maps.
Fig. 2 illustrates the architecture of the proposed system.
While the major LaserSLAM system is running on the UGV,
it also allows to load, globally align, and use point-cloud
maps from other sources. As example, maps generated via
MVE from UAVs or point-cloud maps resulting from bundle
adjustment on data collected by another LiDAR equipped
robot can all be leveraged.

A. Mapping algorithms

In the proposed system, we use a dual map representation
for the different tasks of the robots, i.e., point-cloud maps
and OctoMaps [17]. While the individual robots maintain
point-clouds and surface meshes, these are integrated in
a global OctoMap representation serving as the interface
to other modules of the SaR system, e.g., traversability
analysis as shown in [18]. Another advantage of the unified
OctoMap representation is a persistent representation which
also incorporates dynamic changes detection.

On the UAV’s monocular image data we perform an SfM
and Multi-View-Stereo-based scene reconstruction using the
MVE [6]. The MVE produces a dense surface mesh of
the scene by extensive matching and is therefore an offline
method that is computed off-board the UAV. Although,
efficient online mapping methods exist, we decide to use a
method that produces high quality maps, that can be further
used in the TRADR system, e.g., on the UGV for path
planning or for situation awareness of first responders.
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Fig. 2: Mapping System overview. The inputs to the system are the local UGV map and the global UAV reference map. If a global registration is triggered,
the key-points are computed on both maps. Consecutively, the system performs descriptor extraction and matching. The initial global transformation is
then refined by a step of ICP between the global and the local clouds, resulting in a fused map that is used for further functionalities of the system, such
as path planning.

On the UGVs we use a variant of the LaserSLAM system
which estimates in real-time the robot trajectory alongside
with the 3D point-cloud map of the environment. Laser-
SLAM is based on the iSAM2 [19] pose-graph optimiza-
tion approach and implements different types of sequential
and place recognition constraints. In this work, odometry
constraints are obtained by fusing wheel encoders and IMU
data using an extended Kalman filter while scan-matching
constraints are obtained based on ICP between successive
scans.

After the creation of the UAV map, we facilitate a global
registration scheme to localize the UGV in the UAV map as
described in Sec. IV.

For UGV-only mapping, the LaserSLAM framework en-
ables multiple robots to create consistent 3D point-cloud
maps. However, a different regime must be followed for
generating and extending a consistent 3D map by fusing in
the UAV dense 3D maps. Since the UAV maps are the result
of an offline batch optimization process, the maps are already
loop closed and represent a consistent initial basis for the
global map. Furthermore, we treat the UAV maps as static,
i.e., the map is taken as is. LaserSLAM is therefore extended
to include a mode that allows the robot to use a given base
map. This base map is then treated as the fully optimized
map and extended with updates from the UGV LiDAR. It
is important to note that the point-cloud map is only the
internal representation for the robot to perform SLAM. All
map updates as well as dynamic changes are maintained in
the OctoMap representation that is derived from the point-
cloud updates and serves as a unified representation for all
processes using the mapping data.

B. Map usage

Thanks to the unified OctoMap interface, the merged map
data can directly be used on other modules of the TRADR
system. Notably, it can directly be used for traversability
analysis and subsequent metrical path planning. The system
therewith enables the UGVs to also use UAV generated maps
for path planning. A UGV-loaded UAV map of one testing

Fig. 3: Resulting UGV traversability estimation on the outdoor Montelibretti
dataset. Traversable areas are marked in green, while non traversable areas
are indicated with red. The parametrization is identical to the parametrization
for LiDAR traversability analysis.

site (see Fig. 1) is depicted in Fig. 3 indicating traversable
areas in green and non-traversable areas in red.

The OctoMap serves as interface for further modules of
the system, such as novelty detection which is a separate
contribution and out of the scope of this work.

IV. GLOBAL REGISTRATION

This section describes the pipeline that we use to globally
register the UGV with respect to the UAV point-cloud map.
The evaluation of different choices within this pipeline is
the focus of our paper. The global registration consist of
four modules: feature extraction, description, matching and,
estimation of the SE(3) transformation.

A. Feature extraction

This module defines which components in the point-cloud
map are going to be used for the registration. Key-point are
samples from the full point-cloud that have some level of
invariance to the point of view. Here, we use the Intrinsic
Shape Signatures (ISS) detector [20]. The next option, is to
add more information by clustering the point-cloud, resulting
in segments. These segments are taken as the local features
with the potential of being more descriptive than just 3D
points [15]. Here, we follow a Euclidean based clustering



Realization Feature Descriptor Trans. Estimation
FPFH Key-point FPFH RANSAC-based
FPFH FGR Key-point FPFH FGR
FPFH seg Segments FPFH RANSAC-based
SHOT Key-point SHOT RANSAC-based
SHOT FGR Key-point SHOT FGR
SHOT seg Segments SHOT RANSAC-based
ESF seg [15] Segments ESF RANSAC-based

TABLE I: Global registration realization by different choices in the sub-
modules.

as the segmentation algorithm. We do not explore global
features as they are highly point of view dependent.

B. Descriptors

This module takes each feature and computes a descriptor
with the aim of being descriptive enough such that it is
reproducible on different maps of the same location. The
descriptor is based on the key-point, and its neighborhood,
or on the subset of points that belong to a segment. Here,
we explore three descriptors:

• Fast Point Feature Histogram (FPFH) [21].
• Unique Signatures of Histograms for Local Surface

Description (SHOT) [22].
• Ensemble of Shape Functions (ESF) [23].

C. Description Matching

The matching module is in charge of solving the data
association problem between features from both maps by
comparing their descriptors. In our implementation we use
the nearest neighbor search in the space of the corresponding
descriptor.

D. Transformation Estimation

Once a set of 3D point pairs is declared, this module
computes the transformation such that the 3D points from
one map are moved to the location of their correspondences
in the reference map. In absence of outliers, the problem
could be solved by minimizing a least square error function.
Unfortunately, the presence of outliers is unavoidable and
this module must deal with them. Here we explore two
alternative methods. The first one is a RANSAC-based
approach which is already available in PCL. The second one
is based on the recent proposed FGR [16]. FGR uses the
scaled Geman-McClure estimator as robust cost function into
the optimization objective to neutralize the possible outlier
matches.

E. Realizations

We explore different global registration alternatives by
choosing different methods in each module. The realizations
are as shown in Table I.

As global registration strategies, the evaluation focuses on
11 different configurations. Those that are shown in Table I
plus their combinations when removing the ground plane
prior to key-point detection, denoted by gr at the end. Ground
removal is done by RANSAC based plane fitting.

F. Performance metrics

For the evaluation metrics, we use transformation errors
∆T on the alignment between the UGV and UAV maps that
are represented as

∆T =

[
∆R ∆t
0 1

]
(1)

with rotation matrix ∆R and translation vector ∆t =
(∆x,∆y,∆z)T. The translational error et is computed as
follows:

et = ‖∆t‖ =
√

∆x2 + ∆y2 + ∆z2 (2)

The rotational error er equates to:

er = arccos
trace(∆R− I)

2
(3)

It is important to note that the two map types are not perfectly
aligned in all locations due to the multi-modal nature of the
data and we can therefore only evaluate errors down to a
positional resolution of 0.2m and angular resolution of 2◦

respectively. Furthermore, we register the data using ICP in
the basic experiment, to give an indication on the achievable
alignment, as ICP always converged to a good solution in
our experiments given a good initial guess. Motivated by the
results of Hinzmann et al. [12], we consider registrations
as successful when ICP is able to perform the final local
alignment. Therefore, the thresholds for translational and
rotational errors are set to et = 3m and er = 5◦ above
the resulting ICP solution of the basic experiment to count
successful registrations.

V. EXPERIMENTS

We evaluate our approach on two challenging SaR datasets
recorded within the TRADR project which we make avail-
able with this publication2. The evaluation focuses on the
global registration of the multi-modal point-cloud data.

A. Datasets

The first of these datasets was generated in an outdoor
firemen training location in Montelibretti, Italy. The scenario
simulates a car accident around a tunnel. It consists of six
UGV runs in partly overlapping locations of the disaster
area and one large UAV-generated map covering the whole
site of approximately 80m × 80m that was scaled using
GPS information. The travelled trajectories of the robots are
2 × 30m, 2 × 60m, and 2 × 110m of consecutive missions
following the same paths twice. For the evaluation we use
one UGV run of each size. Here, the UGV mapping data
is fully covered in the UAV map, except for an indoor
exploration of the tunnel which was not accessible to the
UAV. The scenario and the trajectories are depicted in
Fig. 4a.

The second dataset was recorded at a decommissioned
power plant in Dortmund, Germany, consisting of several
UGV runs and several large UAV-generated maps covering

2The datasets are available under http://robotics.ethz.ch/ asl-datasets/



(a) Montelibretti outdoor dataset.

(b) Dortmund indoor dataset.

Fig. 4: Top-down views of two SaR datasets considered in our experiments.
The robot trajectories are indicated in green, red, and blue and overlaid on
the colored UAV point-clouds.

different parts of the power plant, including the entire ma-
chine hall which was also visited by one UGV and has a size
of 100m× 20m. The UGV run is fully covered in the UAV
map and has a travelled distance of approximately 80m, as
illustrated in Fig. 4b. Since no GPS signals are available in
the interior of the building, the UAV maps were scaled using
the buildings’ windows as reference to the outside maps and
scaled accordingly.

B. Experimental setup

We evaluate several global registration strategies on in-
creasingly challenging experimental set-ups. All set-ups con-
sider the iteratively growing UGV map produced by laser-
SLAM as local map. For the basic set-up, the global map
is a cropped version of the UAV map, that approximately
covers the space of the local map at any iteration. The more
challenging intermediate set-up uses the cropped UAV map
as seen at the last iteration of the UGV mapping as global
map. Finally, the complex set-up considers the full UAV map
for global localization.

As global registration strategies, the evaluation focuses on
the 11 configurations presented in Sec. IV-E.

C. Registration performance

This section evaluates the global registration performance
of the different algorithms considered, using the metrics
presented in Sec. IV-F.

1) Parametrization: We choose the parametrization of the
FPFH and SHOT descriptors to yield good performance
across all data used, i.e., a histogram and search radius
of 2.0m for FPFH and SHOT respectively. Our parameter
choice is further motivated by extensive evaluation and shows
plateauing performance in a large region around the chosen
size, indicating robust performance. The matcher is based
on performing fast nearest neighbor search in a FLANN tree
[24], while the geometric verification is based on RANSAC
and clustering. Furthermore, FGR is parametrized for the
best possible performance we could find.

D. Results

Fig. 1 and Fig. 5 illustrate qualitative global registration
between UGV sub-maps and global UAV maps on the tested
datasets. In Fig. 6 and Table II the quantitative performance
of the evaluated approaches is depicted as averaged over
multiple runs with different initializations. While Fig. 6
shows translational and rotational error of the individual
approaches over all datasets, Table II reports the minimal
amount of cumulated UGV scans, i.e., the minimal travelled
distance for reliable global registration. Here, we define
reliable global registration, if from the associated UGV sub-
map, the errors do not exceed the error thresholds et and er
for 90% of the cases. Note, that we indicate combinations
that failed to produce result within this margin as N/A.

In this experimental set-up the descriptor matching ap-
proach as described in Section IV performs best throughout
all experiments. FPFH yields satisfying performance in the
basic experiments. However, its performance drastically de-
grades in the more complex cases.

SHOT on the other hand shows reliable performance
throughout all experiments, with the required overlap in-
creasing with the complexity of our test-cases. Here, the
ground removal does not provide a significant performance
boost, especially since the ground plane extraction is unreli-
able on the large UAV map as we do not have incremental
pose-updates from the robot on segments of the map. How-
ever, ground removal does not degrade the performance as
it does for FPFH, expressing robust performance of SHOT
over varying conditions.

While the RANSAC-based geometric verification can re-
ject a large amount of mismatched descriptors and does not
rely on the point of initialization, FGR is less robust to
poor initialization as done for the intermediate and complex
experiments. For the reduced search space in the basic and
intermediate experiments, FGR is able to achieve reasonable
registration performance and therefore shows high potential
to be used for such reduced search problems, when carefully
modelling its robust cost function.

While the segmentation approach shows very good perfor-
mance for reproducible segmentations, e.g., single-modality
localization [15], we found that the considered parametriza-
tions of Euclidean segmentation in combination with the
considered descriptors did not generalize well between the
modalities and could not deliver interesting results in the
experiments. For the sake of clarity of the plots, we therefore



Configuration Mb Mi Mc Db Di Dc

FPFH 1 45 60 2 N/A N/A
FPFH gr N/A N/A N/A N/A N/A N/A
FPFH FGR 1 50 54 3 N/A N/A
FPFH FGR gr 60 60 43 3 N/A N/A
SHOT 1 10 36 1 1 3
SHOT gr 1 1 36 1 1 7
SHOT FGR 1 35 35 1 12 N/A
SHOT FGR gr 1 29 28 1 12 N/A
FPFH seg N/A N/A N/A N/A N/A N/A
SHOT seg N/A N/A N/A N/A N/A N/A
ESF seg N/A N/A N/A N/A N/A N/A

TABLE II: Minimal number of LiDAR scans for successful global registra-
tion experiments. Here, Mb, Mi, Mc, denote the basic, intermediate, and
complex experiment on the Montelibretti dataset, while Db, Di, and Dc

denote the different experimental set-ups on the Dortmund data. The UGV
travels on average 0.8m between two scans.

Fig. 5: Resulting global localization between 3D UGV sub-map (red point-
cloud) and global 3D UAV map (coloured point-cloud). Green lines indicate
the resulting descriptor matches associated to points in the two point-clouds.
The data stems from the Dortmund indoor dataset and drawn from the
complex experimental set-up.

only show their performance in the basic experiments in
Fig. 6. Since the remainder of the matching algorithm is
identical to the well performing descriptor matching, we
believe that given a reliable segmentation, the approach
has the potential to yield very good performance for the
global registration case. However, a purely geometric ground
removal and segmentation on the full UAV point-cloud that
is comparable to the segmentation on the UGV map is a hard
problem, especially for cluttered SaR scenarios.

1) Timings: Additionally to the evaluation of residuals,
computation times are an important factor in the choice
of algorithms in robotics. Table III lists the computational
times of the four main components of the global registration
algorithms when executed on an Intel i7-4600U CPU @
2.10GHz. The computation times are reported per UGV
LiDAR scan which has an acquisition time of 3s on the
considered platform.

Although our focus was not on maximizing computational
efficiency, all approaches can be performed in this time
window and therewith in real-time. We are confident that they
can be further improved to also yield faster processing times.
With key-point detection times increasing with the amount
of points in the point-cloud, the segmentation approach is the
fastest in the first step. Descriptor extraction, is fastest for
SHOT descriptors, also scaling with the amount of points.
However, the largest contribution to the computational time
has the descriptor matching which is longest for SHOT

and low for FPFH. For the segmentation, we report the
timings for the high-dimensional ESF features and achieve
low timings, due to the compact representation of segments.
Finally, RANSAC-based geometric consistency is slower
than the optimization-based FGR.

E. Discussion

The global registration of 3D UAV and UGV point-
cloud data is a difficult problem. Based on our evaluation,
the most general solution that we devise is a key-point
descriptor matching algorithm using SHOT descriptors. In
our evaluation, FPFH descriptors performed well, with large
overlap between the maps, but failed for the more complex
experiments, and showed to be sensitive to ground removal.

The segmentation showed to not deliver satisfying results,
as it requires repeatable ground removal and segmentation,
which could not be achieved in the considered configura-
tions and scenarios. Key-point detection on the other hand
performed well.

SHOT descriptor matching is computationally more ex-
pensive than FPFH due to high descriptor dimensionality, but
showed best performance throughout. The processing time
can be speeded up by removing the ground in environments
that allow for reliable ground removal.

Finally FGR can yield additional speed up of the transfor-
mation estimation. Yet, when using FGR, the cost function
must be carefully considered as the technique is prone
to converge to local minima. While the RANSAC-based
transformation estimation takes generally longer than FGR
the robustness to local minima is greatly increased. Also, the
additional computational time for RANSAC was negligible
in our experiments.

VI. CONCLUSION

This paper presented global registration algorithms for
UGV and UAV point-clouds generated from heterogeneous
sensors, i.e., LiDAR sensors for UGVs and cameras for
UAVs, and drastically different view-points. The registration
algorithm is based on geometrical descriptor matching. The
approach was integrated with a full SaR robotic mapping sys-
tem, bridging the gap between effective exploitation of UAV
mapping data on UGVs. We evaluated several different 3D
descriptor-based registration techniques and identify the best
performing approach for the problem of global point-cloud
registration from heterogeneous sensors in SaR scenarios.

Future avenues of research could include point-cloud reg-
istration by using further informative cues than the geometri-
cal information alone for data registration between the sensor
modalities. This could benefit runtime and compactness of
point-cloud description of the proposed algorithm.
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(b) Montelibretti intermediate.
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(e) Montelibretti intermediate.
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(f) Montelibretti complex.
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(g) Knepper basic.
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(h) Knepper intermediate.
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(i) Knepper complex.
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(j) Knepper basic.
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(k) Knepper intermediate.
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(l) Knepper complex.

Fig. 6: Translational and rotational error of plots for the Montelibretti (outdoor) and Dortmund (indoor) experiments on global registration. All errors are
plotted over the number of iterations, i.e., the growing size of the UGV map. Here, we indicate experimental configurations as follows: SHOT, FPFH and
ESF denote the used descriptors, an additional FGR denotes if we used the fast global optimization instead of the RANSAC-based outlier filtering, and
we add gr for cases in which also ground removal was performed before descriptor extraction. The ICP solution is illustrated for the basic experiments.
Plots a- c illustrate the translational errors for the Montelibretti experiment for the basic, indermediate, and complex set-up, while plots g- i show the
translational errors for the respective experiments on the Dortmund data. Figures d- f illustrate the rotational errors for the Montelibretti experiment and
Figures j- l the respective rotational errors on the Dortmund data.



Module FPFH FPFH
gr

FPFH
FGR

FPFH
FGR gr SHOT SHOT

gr
SHOT
FGR

SHOT
FGR gr Seg

Key-point /
Segmentation

35.97
±13.17

22.92
±13.30

39.01
±16.04

24.57
±14.90

33.1
±12.16

18.97
±11.07

35.76
±13.30

23.06
±14.87

9.32
±5

Description 228.87
±61.99

122.59
±39.27

242.52
±64.34

136.63
±43.91

17.21
±8.82

12.30
±8.60

17.35
±8.51

13.52
±9.52

105.91
±50.72

Matching 293.32
±8.32

86.04
±27.41

291.76
±6.49

88.33
±25.25

2897.94
±44.01

1992.17
±40.36

2937.60
±65.13

2099.55
±42.31

429.11
±51.15

Geometric
consistency /
Optimization

15.91
±11.54

22.72
±17.28

2.38
±1.09

2.05
±1.05

7.55
±6.11

8.24
±6.79

2.23
±0.99

1.82
±0.94

0.80
±1.60

Total 574.07 254.27 575.67 251.58 2926.01 2031.68 2992.94 2137.95 545.14

TABLE III: Mean computation times and standard deviations of the individual approaches in the complex Montelibretti experiment per LiDAR scan in
ms as computed on a single core of an Intel i7-4600U CPU @ 2.10GHz.
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X-View: Graph-Based Semantic Multi-View
Localization

Abel Gawel∗, Carlo Del Don∗, Roland Siegwart, Juan Nieto and Cesar Cadena

Abstract—Global registration of multi-view robot data is
a challenging task. Appearance-based global localization ap-
proaches often fail under drastic view-point changes, as represen-
tations have limited view-point invariance. This work is based on
the idea that human-made environments contain rich semantics
which can be used to disambiguate global localization. Here,
we present X-View, a Multi-View Semantic Global Localization
system. X-View leverages semantic graph descriptor matching for
global localization, enabling localization under drastically differ-
ent view-points. While the approach is general in terms of the
semantic input data, we present and evaluate an implementation
on visual data. We demonstrate the system in experiments on
the publicly available SYNTHIA dataset, on a realistic urban
dataset recorded with a simulator, and on real-world StreetView
data. Our findings show that X-View is able to globally localize
aerial-to-ground, and ground-to-ground robot data of drastically
different view-points. Our approach achieves an accuracy of up
to 85% on global localizations in the multi-view case, while the
benchmarked baseline appearance-based methods reach up to
75%.

Index Terms—Localization, Semantic Scene Understanding,
Mapping

I. INTRODUCTION

GLOBAL localization between heterogeneous robots is
a difficult problem for classic place-recognition ap-

proaches. Visual appearance-based approaches such as [1, 2]
are currently among the most effective methods for re-
localization. However, they tend to significantly degrade with
appearance changes due to different time, weather, season,
and also view-point [3, 4]. In addition, when using different
sensor modalities, the key-point extraction becomes an issue
as they are generated from different physical and geometrical
properties, for instance intensity gradients in images vs. high-
curvature regions in point clouds.

Relying on geometrical information, directly from the
measurements or from a reconstruction algorithm, on the
other hand shows stronger robustness on view-point changes,
seasonal changes, and different sensor modalities. However,
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Figure 1: X-View globally localizes data of drastically different view-points
using graph representations of semantic information. Here, samples of the
experimental data is shown, i.e., semantically segmented images from the
publicly available SYNTHIA and the Airsim datasets. The localization target
graph is built from data of one view-point (right images), while the query
graph is built from sequences of another view-point (left images). X-View
efficiently localizes the query graph in the target graph.

geometrical approaches typically do not scale well to very
large environments, and it remains questionable if very strong
view-point changes can be compensated while maintaining
only a limited overlap between the localization query and
database [5, 6].

Another avenue to address appearance and view-point
changes are Convolutional Neural Network (CNN) architec-
tures for place recognition [4, 7]. While these methods show
strong performance under appearance changes, their perfor-
mance is still to be investigated under extreme view-point
variations.

Recently, topological approaches to global localization re-
gained interest as a way to efficiently encode relations between
multiple local visual features [8, 9]. On the other hand,
the computer vision community has made great progress in
semantic segmentation and classification, resulting in capable
tools for extracting semantics from visual and depth data [10–
12].

Based on the hypothesis that semantics can help to mitigate
the effects of appearance changes, we present X-View, a novel
approach for global localization based on building graphs of
semantics. X-View introduces graph descriptors that efficiently
represent unique topologies of semantic objects. These can
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be matched in much lower computational effort, therefore not
suffering under the need for exhaustive sub-graph matching
[13].

By using semantics as an abstraction between robot view-
points, we achieve invariances to strong view-point changes,
outperforming CNN-based techniques on RGB data. Further-
more, with semantics understanding of the scene, unwanted
elements, such as moving objects can naturally be excluded
from the localization. We evaluate our global localization
algorithm on publicly available datasets of real and simulated
urban outdoor environments, and report our findings on local-
izing under strong view-point changes. Specifically, this paper
presents the following contributions:

• A novel graph representation for semantic topologies.
• Introduction of a graph descriptor based on random walks

that can be efficiently matched with established matching
methods.

• A full pipeline to process semantically segmented images
into global localizations.

• Open source implementation of the X-View algorithm1.
• Experimental evaluation on publicly available datasets.

The remainder of this paper is structured as follows: Sec. II
reviews the related work on global localization, followed by
the presentation of the X-View system in Sec. III. We present
our experimental evaluation in Sec. IV and conclude our
findings in Sec. V.

II. RELATED WORK

In this section we review the current state-of-the-art in
multi-robot global localization in relation to our proposed
system.

A common approach to global localization is visual feature
matching. A large amount of approaches have been proposed
in the last decade, giving reliable performance under percep-
tually similar conditions [1–3]. Several extensions have been
proposed to overcome perceptually difficult situations, such as
seasonal changes [14, 15], daytime changes [4, 16], or varying
view-points using CNN landmarks [7, 17]. However, drastic
view-point invariance, e.g., between views of aerial and ground
robots continues to be a challenging problem for appearance-
based techniques.

In our previous work, we demonstrated effective 3D het-
erogeneous map merging approaches between different view-
points from camera and LiDAR data, based on overlapping
3D structural descriptors [5, 6]. However, 3D reconstructions
are still strongly view-point dependent. While these techniques
do not rely on specific semantic information of the scenes, the
scaling to large environments has not yet been investigated,
and computational time is outside real-time performance with
large maps.

Other approaches to global localization are based on topo-
logical mapping [18, 19]. Here, maps are represented as graphs
G = (V ,E) of unique vertices V and edges E encoding
relationships between vertices. While these works focus on
graph merging by exhaustive vertex matching on small graphs,

1https://github.com/ethz-asl/x-view

they do not consider graph extraction from sensory data or am-
biguous vertices. Furthermore, the computationally expensive
matching does not scale to larger graph comparisons.

With the recent advances in learning-based semantic extrac-
tion methods, using semantics for localization is a promising
avenue [20–22]. In [21, 22] the authors focus on the data as-
sociation problem for semantic localization using Expectation
Maximization (EM) and the formulation of the pose estimation
problem for semantic constraints as an error minimization. The
semantic extraction is based on a standard object detector from
visual key-points.

Stumm et al. [8] propose to use graph kernels for place
recognition on visual key-point descriptors. Graph kernels
are used to project image-wise covisibility graphs into a
feature space. The authors show that graph descriptions can
help localization performance as to efficiently cluster multiple
descriptors meaningfully. However, the use of large densely
connected graphs sets limitations to the choice of graph
representation. Motivated, by these findings, we propose to
use graph descriptors on sparse semantic graphs for global
localization.

III. X-VIEW

In this section, we present our Graph-Based Multi-View Se-
mantic Global Localization system, coined X-View. It leverages
graph extraction from semantic input data and graph matching
using graph descriptors. Fig. 2 illustrates the architecture of the
proposed global localization algorithm, focusing on the graph
representation and matching of query semantic input data to
a global graph. The localization target map is represented as
the global graph. X-View is designed to operate on any given
odometry estimation system and semantic input cue. However,
for the sake of clarity, we present our system as implemented
for semantically segmented images, but it is not limited to it.

A. System input

We use semantically segmented images containing pixel-
wise semantic classification as input to the localization algo-
rithm. These segmentations can be achieved using a semantic
segmentation method, such as [11, 12]. Also instance-wise
segmentation, i.e., unique identifiers for separating overlapping
objects of same class in the image space can be considered
for improved segmentation, but is not strictly necessary for
the approach to work. Furthermore, we assume the estimate
of an external odometry system. Finally, we also consider a
database semantic graph Gdb, as it could have been built and
described on a previous run of our graph building algorithm
as presented in the next sub-sections.

B. Graph extraction and assembly

In this step, we convert a sequence of semantic images Iq
into a query graph Gq . We extract blobs of connected regions,
i.e., regions of the same class label lj in each image. Since
semantically segmented images often show noisy partitioning
of the observed scene (holes, disconnected edges and invalid
labels on edges), we smooth them by dilating and eroding the
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Figure 2: X-View global localization system overview. The inputs to the system are semantically segmented frames (e.g., from RGB images) and the global
graph Gdb. First, a local graph is extracted from the new segmentation. Then, the sub-graph Gq is assembled and random walk descriptors are computed
on each node of Gq . The system matches the sub-graph random walk descriptors to Gdb, e.g., recorded from a different view-point. Finally, the matches
are transferred to the localization back-end module to estimate the relative localization between Gq and Gdb. Consecutively, the relative localization can be
used for various purposes such as loop closure, fusing Gq into Gdb or for visualization.

boundaries of each blob. We furthermore reject blobs smaller
than a minimum pixel count to be included in the graph, to
mitigate the effect of minor segments. This process removes
unwanted noise in the semantically segmented images. The
magnitude of this operation is 4 pixels, and has a minor
effect on the segmentation result. However, it ensures clean
boundaries between semantic segments. Furthermore, the cen-
ter location pj of the blobs are extracted and stored alongside
the blob labels as vertices vj = {lj ,pj}. In the case that also
instance-wise segmentation is available, it can be considered
in the blob extraction step, otherwise the extraction operates
only on a class basis.

The undirected edges ej between vertices are formed when
fulfilling a proximity requirement, which can be either in
image- or 3D-space. In the case of image-space, we assume
images to be in a temporal sequence to grow graphs over
several frames of input data. However, this is not required in
the 3D case.

Using a depth channel or the depth estimation from, e.g.,
optical flow, the neighborhood can be formed in 3D-space,
using the 3D locations of the image blobs to compute a
Euclidean distance. The process is illustrated for image data in
Fig. 3 (top). Then, several image-wise graphs are merged into
Gq by connecting vertices of consecutive images using their
Euclidean distance, see Fig. 3. To prevent duplicate vertices
of the same semantic instance, close instances in Gq are
merged into a single vertex, at the location of the vertices’
first observation. The strategy of merging vertices into their
first observation location is further motivated by the structure
of continuous semantic entities, such as streets. This strategy
leads to evenly spaced creation of continuous entities’ vertices
in Gq .

C. Descriptors

X-View is based on the idea that semantic graphs hold high
descriptive power, and that localizing a sub-graph in a database
graph can yield good localization results. However, since sub-
graph matching is an NP-complete problem [13], a different
regime is required to perform the graph registration under
real-time constraints, i.e., in the order of seconds for typical
robotic applications. In this work, we extract random walk
descriptors for every node of the graph [23], and match them in
a subsequent step. This has the advantage that the descriptors

Figure 3: Extraction of semantic graphs from one image (top) and a sequence
of images (bottom). Vertices are merged and connected from sequences of
input data. Note that we omitted some vertices and edges in the sample graphs
on the right side for visualization purposes and reduced the graph to a planar
visualization, whereas the semantic graphs in our system are connected in
3D-space. The ellipses around each vertex were added for visualization and
represent a scaled fitted ellipse on a semantic instance of the segmentation
image.

can be extracted and matched in constant or linear time, given
a static or growing database-graph, respectively.

Each vertex descriptor is an n × m matrix consisting of
n random walks of depth m. Each of the random walks
originates at the base vertex vj and stores the class labels of
the visited vertices. Walk strategies, such as preventing from
immediate returns to the vertex that was visited in the last step,
and exclusion of duplicate random walks can be applied to
facilitate expressiveness of the random walk descriptors. The
process of random walk descriptor extraction is illustrated in
Fig. 4.

D. Descriptor Matching

After both Gq and Gdb are created, we find associations
between vertices in the query graph and the ones in the
database graph by computing a similarity score between the
corresponding graph descriptors. The similarity measure is
computed by matching each row of the semantic descriptor
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Figure 4: Schematic representation of the random walk extraction. (Left) From
a seed vertex, cyan star, the random walker explores its neighborhood. This
results in the descriptor of n random walks of depth m (here, m = 4).
The highlighted path corresponds to the last line of the descriptor on the
right. (Right) Each line of the descriptor starts with the seed vertex label and
continues with the class labels of the visited vertices.

of the query vertex to the descriptor of the database vertex.
The number of identical random walks on the two descriptors
reflects the similarity score s, which is normalized between 0
and 1. In a second step, the k matches with highest similarity
score are selected for estimating the location of the query
graph inside the database map.

E. Localization Back-End

The matching between query graph and global graph, the
robot-to-vertex observations, and the robot odometry measure-
ments result in constraints θi ⊆ Θ(pi, ci) on the vertex
positions pi and robot poses ci with θi = eTi Ωiei, the
measurement errors ei, and associated information matrix Ωi.
Specifically these three types of constraints are denoted as
ΘM(pi),ΘV(pi, ci), and ΘO(ci) respectively. The match-
ing constraints ΘM(pi) stem from the semantic descriptor
matching of the previous step, while the robot odometry
constraints ΘO(ci) are created using the robots estimated
odometry between consecutive robot poses associated to the
localization graph. The robot-to-vertex constraints encode the
transformation between each robot-to-vertex observation. Us-
ing these constraints, we compute a Maximum a Posteriori
(MAP) estimate of the robot pose ci by minimizing a negative
log-posterior E =

∑
θi, i.e.,

c∗i = argmin
ci

∑
Θ(pi, ci) (1)

with Θ(pi, ci) = {ΘM (pi),ΘV (pi, ci),ΘV (pi)} This op-
timization is carried out by a non-linear Gauss-Newton opti-
mizer. Optionally, the algorithm also allows to reject matching
constraints in a sample consensus manner, using RANSAC on
all constraints between Gq and Gdb, excluding the specific
constraints from the optimization objective. We initialize the
robot position at the mean location of all matching vertices’
locations from Gdb.

IV. EXPERIMENTS

We evaluate our approach on two different synthetic outdoor
datasets with forward to rear view, and forward to aerial view,
and one real world outdoor dataset with forward to rear view.
In this section, we present the experimental set-up, the results,
and a discussion.

SYNTHIA AdapNet Airsim StreetView

Figure 5: Sample images from the datasets used in the experiments: (top)
RGB image, (middle) Depth image, (bottom) Semantic segmentation. (left)
SYNTHIA with perfect semantic segmentation, (middle left) SYNTHIA with
AdapNet semantic segmentation, (middle right) Airsim with perfect semantic
segmentation, (right) StreetView with SegNet semantic segmentation.

A. Datasets

The first of the used datasets is the public SYNTHIA
dataset [24]. It consists of several sequences of simulated
sensor data from a car travelling in different dynamic en-
vironments and under varying conditions, e.g., weather and
daytime. The sensor data provides RGB, depth and pixel-wise
semantic classification for 8 cameras, with always 2 cameras
facing forward, left, backwards and right respectively. The
segmentation provides 13 different semantic classes which
are labelled class-wise. Additionally, dynamic objects, such
as pedestrians and cars are also labelled instance-wise. We
use sequence 4, which features a town-like environment. The
total travelled distance is 970m.

In the absence of suitable public aerial-ground semantic
localization datasets, we use the photo-realistic Airsim frame-
work [25] to generate a simulated rural environment2. This
environment is explored with a top-down viewing Unmanned
Aerial Vehicle (UAV) and a car traversing the streets with
forward-facing sensors. Both views provide RGB, depth and
pixel-wise semantic classification data in 13 different classes
with instance-wise labelling. Furthermore, both trajectories are
overlapping with only an offset in z-direction and have a
length of 500m each. Please note that we used a pre-built
environment, i.e., the objects in the environment have not
specifically been placed for enhanced performance.

Finally, we evaluate the system on a dataset gathered from
Google StreetView imagery. The RGB and depth data of
a straight 750m stretch of Weinbergstrasse in Zurich are
extracted via the Google Maps API3. Analogously to the
SYNTHIA dataset, we use forward and backward facing camera
views.

While the travelled distance between two image locations in
the Airsim dataset is always 1m, it varies between 0m to 1m
in the SYNTHIA dataset, and is approximately 10m between
two frames in the StreetView dataset. Sample images of all
datasets are depicted in Fig. 5.

Our approach relies on semantic representations of scenes.
While we do not propose contributions on semantic extraction
from raw sensor data, recent advances on semantic segmen-
tation show ever increasing accuracies on visual and depth

2http://robotics.ethz.ch/~asl-datasets/x-view/
3https://goo.gl/iBniJ9
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data [10–12, 26]. We therefore evaluate the performance
on SYNTHIA both using semantic segmentation with Adap-
Net [11], and the ground truth as provided by the dataset. On
the Airsim data, we only use the segmentation from the dataset,
and on the StreetView dataset, we use semantic segmentation
with SegNet [12].

B. Experimental Setup

We evaluate the core components of X-View in different
experimental settings. In all experiments, we evaluate X-
View on overlapping trajectories and the provided depth and
segmentation images of the data. First, we focus our evaluation
of the different graph settings on the SYNTHIA dataset. We
then perform a comparative analysis on SYNTHIA, Airsim, and
StreetView.

In SYNTHIA, we use the left forward camera for building
a database map and then use the left backward camera for
localization. Furthermore, we use 8 semantic classes of SYN-
THIA: building, street, sidewalk, fence, vegetation, pole, car,
and sign, and reject the remaining four classes: sky, pedestrian,
cyclist, lanemarking. The AdapNet semantic segmentation
model is trained on other sequences of the SYNTHIA dataset
with different seasons and weather conditions.

Analogously, we use the forward-view of the car in the
Airsim dataset to build the database map and then localize
the UAV based on a downward-looking camera. Here we use
6 classes (street, building, car, fence, hedge, tree) and reject
the remaining from insertion into the graph (powerline, pool,
sign, wall, bench, rock), as these are usually only visible by
one of the robots, or their scale is too small to be reliably
detected from the aerial robot.

Finally, in the StreetView data, we use the forward view to
build the database and localize using the rear facing view. Out
of the 12 classes that we extract using the pre-trained SegNet
model4, we use five, i.e., (road, sidewalk, vegetation, fence,
car), and reject the remaining as these are either dynamic
(pedestrian, cyclist), unreliably segmented (pole, road sign,
road marking), or omni-present in the dataset (building, sky).

We build the graphs from consecutive frames in all experi-
ments, and use the 3D information to connect and merge ver-
tices and edges, as described in III-B. The difference between
graph construction in image- and 3D-space is evaluated in a
separate experiment. No assumptions are made on the prior
alignment between the data. The ground-truth alignment is
solely used for performance evaluation.

C. Localization performance

We generate the PR of the localization based on two thresh-
olds. The localization threshold tL is applied on the distance
between the estimated robot position c∗i and the ground truth
position cgt. It is set as true, if the distance between c∗i and
cgt is smaller than tL, i.e., ‖c∗i − cgt‖ ≤ tL, and to false for
‖c∗i − cgt‖ > tL. The margin tL on the locations is required,
sinceGq andGdb do not create vertices in the exact same spot.
The same node can be off by up to twice the distance that we

4goo.gl/EyReyn

use for merging vertices in a graph. Here, we use tL = 20m
for SYNTHIA and StreetView, and tL = 30m for Airsim. For
the PR curves, we vary the consistency threshold tc that is
applied on the RANSAC-based rejection, i.e., the acceptable
deviation from the consensus transformation between query
and database graph vertices. The localization estimation yields
a positive vote for an estimated consensus value s of s ≤ tc
and a negative vote otherwise.

Firstly, we evaluate the effect of different options on the
description and matching using the random walk descriptors
(i.e., random walk parameters, graph coarseness, number of
query frames, dynamics classes, graph edge construction tech-
nique, and seasonal changes) as described in Sec. III-B - III-D.
To illustrate the contrast to appearance-based methods, we
also present results on two visual place recognition techniques
based on BoW, as implemented by Gálvez-López and Tardos
[2], and NetVLAD [4] on the datasets’ RGB data. To generate
the PR of the reference techniques, we vary a threshold on
the inverse similarity score for BoW, and a threshold on the
matching residuals of NetVLAD.

Furthermore, we show the performance of the full global
localization algorithm on the operating point taken from the
PR curves. Our performance metric is defined as the per-
centage of correct localizations over the Euclidean distance
between c∗i and cgt. As for BoW and NetVLAD, we take
localization as the best matching image. The localization error
is then computed as the Euclidean distance between associated
positions of the matched image and the ground truth image.
To improve performance of the appearance-based methods, we
select the operating points with high performances, i.e., high
precisions in the PR curves.

D. Results
While we illustrate the effects of different attributes of X-

View in Fig. 6 as evaluated on SYNTHIA, we then also show
a comparison on all datasets in Fig. 7.

Fig. 6a depicts the effect of varying the random walk
descriptors on the graph. Here, a descriptor size with number
of random walks n = 200 and walk depth m between 3− 5,
depending on the size of Gq perform best. Both decreasing
n or increasing m leads to a decrease in performance. These
findings are expected, considering query graph sizes ranging
between 20 − 40 vertices. Under these conditions, the graph
can be well explored with the above settings. Descriptors with
larger walk depth m significantly diverge between Gq and
Gdb, as the random walk reaches the size limits of Gq and
continues exploring already visited vertices, while it is possible
to continue exploring Gdb to greater depth.

Secondly, Fig. 6b presents PR-curves for different sizes of
Gq , i.e., different numbers of frames used for the construction
of Gq . An increase in the query graph size leads to a consider-
able increase of the localization performance. Also this effect
is expected asGq contains more vertices, forming more unique
descriptors. However, it is also desirable to keep the size ofGq

limited, as a growing query graph size requires larger overlap
between Gq and Gdb. Furthermore, the computational time
for descriptor calculation and matching grows with increased
query graph size.
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(a) Descriptor parameters.
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(b) Query length.
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(c) Graph coarseness.
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(d) Construction type.
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(e) Number of Semantic classes.
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(f) Seasonal changes on same view.

Figure 6: PR curves for localization of the rear view semantic images against a database graph built from the forward view on the SYNTHIA dataset (except
(f)). For all plots we accept a localization if it falls within a distance of 20m from the ground-truth robot position. This threshold corresponds to the value
up to which query graph vertices of the same semantic instance can be off from their corresponding location in the database graph, caused by the graph
construction technique. (a) illustrates the effect of different descriptor settings on the localization performance. (b) shows the effect of increasing the amount
of frames used for query graph construction, while (c) depicts the effect of using coarser graphs, i.e., a large distance in which we merge vertices of same
class label. In (d) we compare the extraction methods in image-, and 3D-space and in (e) the effect of including all semantic objects against including a
subset of semantic classes. Lastly, in (f), we evaluate the localization performance on a configuration with the right frontal camera as query and the left frontal
camera for the database, under the effect of seasonal changes. In contrast to the other plots where we use the ground truth, we use semantic segmentation
with AdapNet on the data. The appearance-based techniques used are visual BoW [2] and NetVLAD [4].
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(a) Perfect Semantic Segmentation.
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(b) CNN-based Semantic Segmentation.
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(c) Perfect Semantic Segmentation.
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(d) CNN-based Semantic Segmentation.

Figure 7: Localization performance of X-View on the SYNTHIA, Airsim, and the StreetView data compared to the appearance-based methods [2, 4]. The operation
points are chosen according to the respective PR curves in (a) and (b), indicated as dots. (c) illustrates the performance on perfectly semantically segmented
data on SYNTHIA, and Airsim. (d) shows the system’s performance on the SYNTHIA, and StreetView datasets using CNN-based semantic segmentation.

Thirdly, Fig. 6c shows the impact of increased graph
coarseness, i.e., larger distances of merging vertices. Here, the
coarseness cannot be arbitrarily scaled to low or high values,
as it leads to either over- or under-segmented graphs. Our
best performing results were obtained with a vertex merging
distance of 10m for the SYNTHIA dataset, and 15m for Airsim
and StreetView datasets, respectively.

Fourthly, Fig. 6d illustrates the effect of graph extraction in

either image- or 3D-space. The extraction in 3D-space, taking
advantage of the depth information as described in Sec. III-B
shows superior performance. However, X-View still performs
well when localizing a graph built in one space against a graph
built in the other.

Fifthly, Fig. 6e explores the inclusion of different object
classes. The configurations are: Only static object classes,
static object classes plus dynamic object classes, and all object
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Module SYNTHIA Airsim

Blob extraction 2.73± 0.65 1.76± 0.26

Construction of Gq 337.39± 92.81 257.40± 28.30

Random Walks Generation 1.38± 0.82 1.07± 0.56

Matching Gq to Gdb 7.30± 4.51 4.33± 1.25

Localization Back-End 22.50± 9.71 5.15± 0.63

Total 371.3± 108.5 269.71± 31.0

Table I: Timing results in ms, reporting the means and standard deviations
per frame on the best performing configurations on SYNTHIA and Airsim. The
timings were computed on a single core of an Intel Xeon E3-1226 CPU @
3.30GHz.

classes. Here, the results are not conclusive on the SYNTHIA
dataset and more evaluations will be needed in the future.

Lastly, Fig. 6f shows X-View’s performance under seasonal
change. We compare the performance of localizing the query
graph built from the right forward facing camera of one season
in the database graph built from the left forward facing camera
of another season. Here, we consider the summer and fall
sequences of SYNTHIA. The BoW-based techniques perform
well in this scenario if the seasonal conditions are equal.
However, its performance drastically drops for inter-season
localization, while X-View, and NetVLAD suffer much less
under the seasonal change.

The evaluation using PR-curves, and success rates over the
localization error is depicted in Fig. 7. X-View has higher
success rate in multi-view experiments than the appearance-
based techniques on both synthetic datasets at our achievable
accuracy of 20m for SYNTHIA and 30m on Airsim and
using perfect semantic segmentation inputs as depicted in
Fig. 7c. These accuracies are considered successful as node
locations betweenGq andGdb can differ by twice the merging
distance with our current graph merging strategy. On the
considered operation point of the PR curve, X-View achieves
a localization accuracy of 85% within 30m on Airsim, and
85% on SYNTHIA within 20m.

Furthermore, X-View expresses comparable or better per-
formance for multi-view localization than the appearance-
based techniques using CNN-based semantic segmentation on
the SYNTHIA, and StreetView datasets respectively. Here we
consider successful localizations within 20m for both datasets.
The achieved accuracies on the chosen operation points are
70% on SYNTHIA, and 65% on StreetView.

Finally, we also report timings of the individual components
of our system in Table I. Here, the construction of Gq has by
far the largest contribution, due to iteratively matching and
merging frames into Gq . As the graphs in SYNTHIA consider
more classes and smaller merging distances, these generally
contain more vertices and therefore longer computational
times.

E. Discussion

Global registration of multi-view data is a difficult problem
where traditional appearance based techniques fail. Semantic
graph representations can provide significantly better local-
ization performance under these difficult perceptual condi-
tions. We furthermore give insights how different parameters,

choices, and inputs’ qualities affect the system’s performance.
Our results obtained with X-View show a better localization
performance than appearance-based methods, such as BoW
and NetVLAD.

During our experiments, we observed that some of the
parameters are dependent on each other. Intuitively, the coarse-
ness of the graph has an effect on the random walk descriptors
as a coarser graph contains fewer vertices and therefore
deeper random walks show decreasing performance as Gq

can be explored with short random walks. On the other hand,
an increasing amount of frames used for localization has
the reverse effect on the descriptor depth as Gq potentially
contains more vertices, and deeper random walks do not show
a performance drop as they do for smaller query graphs.

Also the success rate curves indicate that X-View out-
performs the appearance based methods particularly in the
presence of strong view-point changes. While the appearance-
based methods fail to produce interesting results for the Airsim
dataset, they have a moderate to good amount of successful
localizations on SYNTHIA and StreetView. On the other hand,
X-View has generally higher localization performance and
does not show a strong drop in performance among datasets.
While computational efficiency has not been the main focus
of our research, the achieved timings are close to the typical
requirements for robotic applications.

Finally, we performed experiments both using ground truth
semantic segmentation inputs, and CNN-based semantic seg-
mentation. The performance with semantic segmentation using
AdapNet [11] shows to be close to the achievable perfor-
mance with ground truth segmentation on SYNTHIA. Using the
SegNet [12] semantic segmentation on real image data from
StreetView demonstrates the effectiveness of our algorithm’s
full pipeline on real data, resulting in better performance than
the best reference algorithm. Despite the high performance,
our system still receives a moderate amount of false localiza-
tions, which is due to similar sub-graphs at different locations,
and we hope to mitigate this effect by including it into a full
SLAM system in the future.

Furthermore, 3D locations of the vertices are presently posi-
tioned at the blob centers of their first observation. We expect
a more precise positioning technique to further disambiguate
the associations between graphs.

V. CONCLUSIONS
In this paper we presented X-View, a multi-view global

localization algorithm leveraging semantic graph descriptor
matching. The approach was evaluated on one real-world
and two simulated urban outdoor datasets with drastically
different view-points. Our results show the potential of using
graph representations of semantics for large-scale robotic
global localization tasks. Alongside further advantages, such as
compact representation and real-time-capability, the presented
method is a step towards view-point invariant localization.

Our current research includes the investigation of more
sophisticated graph construction methods, the integration of
X-View with a full SLAM system to generate loop closures,
and learning-based class selection for discriminative represen-
tations.
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Abstract— Autonomous delivery of goods using a Micro Air
Vehicle (MAV) is a difficult problem, as it poses high demand on
the MAV’s control, perception and manipulation capabilities.
This problem is especially challenging if the exact shape,
location and configuration of the objects are unknown.

In this paper, we report our findings during the development
and evaluation of a fully integrated system that is energy
efficient and enables MAVs to pick up and deliver objects with
partly ferrous surface of varying shapes and weights. This is
achieved by using a novel combination of an electro-permanent
magnetic gripper with a passively compliant structure and inte-
gration with detection, control and servo positioning algorithms.
The system’s ability to grasp stationary and moving objects
was tested, as well as its ability to cope with different shapes
of the object and external disturbances. We show that such
a system can be successfully deployed in scenarios where an
object with partly ferrous parts needs to be gripped and placed
in a predetermined location.

I. INTRODUCTION

Fast and customized delivery of goods is a major trend in
transportation industry. MAVs are expected to be an impor-
tant component in the future of autonomous delivery and are
a means of transportation at the edge of consumer market
entry [1]. Most solutions for handling goods with MAVs
rely on mechanical gripping devices, as these can be realized
lightweight and energy-efficient for high payloads [2], [3].
However, mechanical grippers usually require highly precise
positioning of the gripper with respect to the object to yield
a safe form closure or friction fit. High positioning accuracy
cannot always be achieved with the MAV control alone,
due to environmental disturbances, making either human
intervention necessary, or requiring sophisticated additional
actuators. Furthermore, the gripper design depends on the
geometry of the objects to grip [4] making it necessary to use
standard transportation containers or facilitate a variety of
different mechanical grippers to enable MAVs to reliably grip
differently shaped objects. Ferrous objects are interesting
because they can be attracted by magnets. For gripping, these
material properties can be exploited. In this case positioning
accuracy can be considerably lower as a natural attraction
force is generated between the magnetic gripper and ferrous
material. However, using electro-magnets requires a constant
power-supply to generate the magnetic field. On the other
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Fig. 1: Sequence of the autonomous aerial delivery approach:
(a) The MAV detects object on moving platform and initiates
servo positioning. (b) An Object is picked using a passively
compliant electro-permanent magnetic gripper. (c) The MAV
returns to operation height with an object attached and
travels to the delivery zone. (d) The Object is dropped into
the delivery container by deactivating the electro-permanent
magnet after a short hover over the target location.

hand permanent magnets do not consume power, but they are
problematic for releasing attracted objects. A new class of
electro-permanent magnets overcomes both these limitations
by providing a switchable permanent magnet [5].

A second important challenge for aerial gripping is the cor-
rect positioning of the MAV towards an object of previously
unknown shape and location, and deciding on a successful
control for picking such objects. Here, servo-positioning
techniques can enable a MAV to pick an object by providing
relative localization to the object and a controller combined
with an approaching strategy to yield robust object picking.

We present a novel system that is using electro-permanent
magnets and is able to robustly and energy-efficiently pick
and deliver stationary or moving objects with a partly ferrous
surface of different shapes using a MAV. The current gripper
design allows attachment to concave and convex objects with
radius > 90mm.

This work is furthermore motivated by our participation in
the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) in which MAVs are tasked to autonomously
search a field for objects, pick them up and deliver them
to a designated drop zone.



Our main contributions are:
• A low complexity and energy efficient electro-

permanent gripper design that allows robust gripping
with positional offset and different object shapes.

• A real-time visual servoing of the MAV position to-
wards the object.

• An evaluation of the fully integrated system on different
types of objects and in different conditions.

II. RELATED WORK

We focus our review of related work on recent advances in
aerial gripping and servo positioning techniques for reliably
detecting and approaching objects using a MAV.

A. Aerial Gripping

In [6] the authors propose an integrated object detection
and gripping system for MAVs using IR diodes for detection
and a mechanical gripper for gripping stationary objects. In
contrast, our system aims to detect objects using a standard
RGB camera and also grip moving objects with an partly
ferrous surface.

Transportation of objects using MAVs was reported in [7],
[8], [9]. However, the authors mainly focus on the control
of MAVs transporting objects. In contrast to our work they
do not implement a grip and release mechanism which is an
important aspect for fully autonomous delivery.

An aerial manipulation task using a quadrotor with a two
degrees of freedom (DOF) robotic arm was presented in [10].
The kinematic and dynamic models of the combined system
were developed and an adaptive controller was designed in
order to perform a pick and place task. Such system offers
high manipulability, however, the shape of the objects to
be picked is limited since the robotic arm is only able to
pick thin objects in specific configurations, i.e., thin surfaces
pointing upwards. Furthermore, this work assumes that the
position of the object to be picked is known in advance.

A self-sealing suction technology for grasping was tested
in [11]. A system capable of grasping multiple objects
with various textures, curved and inclined surfaces, was
demonstrated. Despite being able to achieve high holding
forces, the gripping system requires a heavy compressor and
an activation threshold force to pick up the objects. Also, all
the tests were performed using a motion capture system with
known object positions.

Another type of mechanical gripper was shown in [12].
The gripper uses servo motors to actuate the pins that
penetrate the object and create a strong and secure connec-
tion. Similar design was also presented in [13]. The main
limitation of such gripper is its restriction to pick only objects
with penetrable surface. Furthermore, if the surface is not
elastically deformable, the gripper might cause irreversible
damage to the object.

In [14], a bio-inspired mechanical gripper was designed
in order to allow quadcopters to carry objects with large flat
or gently curved surfaces. In addition to being small and
light, the gripper consists of groups of tiles coated with a
controllable adhesive that allows for very easy attachment

TABLE I: Properties of the magnetic material.

Material Remanence Intrinsic coercivity

Grade 5 Alnico 1.25T 48 kAm−1

Grade N45 Neodymium 1.36T 836 kAm−1

and detachment of the object. Nevertheless, the gripper is
limited to smooth surfaces, requires tendon mechanism for
attachment, and has a limited payload.

OpenGrab EPM1 is a gripper developed using the principle
of electro-permanent magnets [5]. It is a low-weight, energy
efficient and high-payload solution developed for robotic ap-
plications and because of its advantages, we have decided to
use the same principle for our own gripper. Since OpenGrab
EMP is only able to pick flat surfaces, we have developed a
more sophisticated design which allows our gripper to pick
objects with curved surfaces, while maintaining an equal load
distribution on all contacts between object and gripper.

B. Visual Servoing

Visual Servoing (VS) is a well established technique where
information extracted from images is used to control the
robot motion [15], [16], [6]. There are many approaches to
deal with VS, however some of the most popular include:

1) Image Based Visual Servoing: In this approach, the
control law is based entirely on the error in the image plane,
no object pose estimation is performed. In [17] the authors
employ this method to perform pole inspection with MAVs,
while in [18] it is used to bring a MAV to a perching position,
hanging from a pole.

2) Pose Based Visual Servoing: In this approach, the
object pose is estimated from the image stream, then the
robot is commanded to move towards the object to perform
grasping or an inspection task for instance [19].

Our approach differs from the previous work in the sense
that we apply servo positioning for gripping both static and
moving objects.

III. ELECTRO-PERMANENT MAGNETIC GRIPPER

The proposed gripper features two main physical com-
ponents, i.e., an electro-permanent magnet with electronics
board and a passively compliant mechanical structure.

A. Electro-permanent magnet

The concept of an electro-permanent magnet is based on
the physical properties of two different permanent magnets
[5]. We consider Alnico and Neodymium magnets. The
key properties are their remanence, which is the remaining
magnetization after the removal of an external magnetic field
and intrinsic coercivity, a measure for the necessary magnetic
field to magnetize or demagnetize the material, see Table I.

In an electro-permanent magnet, both magnets are assem-
bled in parallel while a coil is winded around the magnet
with low intrinsic coercivity, here Alnico. Both magnets are
connected to an iron carrier material, as illustrated in Fig. 2a.

1http://nicadrone.com/
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Fig. 2: (a) The figure illustrates the electro-permanent
magnet principle. (b) Application of the electro-permanent
magnetic principle in two circles as implemented for the
design.

Sending a current pulse to the coil generates a magnetic field
inside the coil which can switch the magnetic polarization
of the Alnico, depending on the direction of the applied
magnetic field. The Neodymium magnet stays magnetized
in one direction throughout. If both magnets are magnetized
in the same direction, the assembly acts as a permanent
magnet to the outside, and if they are magnetized in opposite
directions the magnetic field is circulating in the assembly
and therefore does not act as a magnet to the outside.

B. Mechanical structure

The design of the mechanical structure aims to fulfill three
main objectives, i.e., passive adaptivity to different surface
geometries, integration of the electro-permanent magnets
and functional connectivity to the MAV. We decided to
implement 2 cycles of magnetic circuit on the gripper in
order to realize a four-point contact to objects, ensuring
secure hold. This is illustrated in Fig. 2b. For gripping
objects of different shapes the functional parts are mounted
on a carrier structure that allows for relative motion between
the magnetic legs. The full design is illustrated in Fig. 3a.
Equal force distribution between the legs is achieved by
implementing a parallelogram-shaped support structure, as
illustrated in Fig. 3b. A suspension with degrees of freedom
in pitch and roll enables the gripper to account for attitude
changes of the MAV, see Fig. 3c. To enable the gripper
to extend below the MAV’s feet, a retraction mechanism
actuated by a servo motor is attached to the upper gripper
suspension, see Fig. 3d.

The current design is calculated to a holding force of
approximately 34 N which is tailored to the payload limit
and the dynamics of the MAV considered. Furthermore, the
attraction force can easily be scaled up with a moderate
increase in energy consumption and weight of the electro-
permanent magnetic components by increasing the diameter
of the magnets. The manufactured gripper supplies a holding
force of 30 N as further described in Section V-A but still
within reasonable limits of the considered MAV.

(a) (b)

(c) (d)

Fig. 3: (a) Full assembly of the gripper on a convex
surface, carrying two circles of electro-permanent magnets
as depicted in Fig. 2b (b) Parallelogram structure of end
effectors for equal force distribution among all four contacts
points between gripper and object. (c) Upper suspension to
provide degrees of freedom in pitch and roll. (d) Retracting
mechanism for pulling up the gripper.

IV. VISUAL SERVO POSITIONING

The visual servo positioning module deals with the chal-
lenge of autonomously approaching and gripping a detected
object. In a first step the MAV visually detects an object and
localizes the relative pose of its Center of Gravity (CoG)
to the object’s CoG. Then a controller is activated to yield a
desired x, y position. In the following step the MAV executes
a strategy for approaching the object in z−direction, i.e., the
direction of the gravity vector. Finally the MAV returns to its
operation height and travels to a drop zone, where it releases
the object. The drop zone is in a known location.

A. Relative localization

In our approach we use a simple frame-to-frame detector
to estimate the object’s CoG. Then, we estimate the relative
transformation WTm,o between the MAV and the object’s
CoG in a global reference frame W . For the relative local-
ization step, the object is approximated to have a flat surface
for this calculation and the CoG to lie in the top plane of
the object. The subscripts m and o denote the MAV location
and the object location respectively.

The MAV uses its relative height estimate above the
object h and attitude estimate WRm. The location of the
object is then estimated by first calculating the relative
rotation WRc,oi between camera center c and object CoG
in the normalized image plane oi via the rotation CRc,oi in
camera frame C. This rotation is transformed into the world
coordinate frame using the MAV’s attitude estimate and the
rotation between MAV base frame and camera center MRc

in the MAV frame M , yielding the relative rotation WRc,oi

in the global coordinate frame W .



WRc,oi = WRmMRcCRc,oi (1)

Using the translations between camera and object CoG in
image coordinates, expressed in camera and world frame,
Ctc,oi and W tc,oi respectively, we calculate the translational
component of the offset Ctoi.

Ctoi = − h(
0 0 1

)
W tc,oi

Ctc,oi (2)

Finally we calculate the relative translation W tm,o be-
tween the MAV and CoG of the object in the global
coordinate frame.

W tm,o = WRm(M tm,c + MRcCtoi) (3)

Here M tm,c denotes the calibrated translation between
MAV base frame and camera center.

The relative transform WTm,o between MAV and object
is then

WTm,o =

(
WRm,o W tm,o

0 1

)
(4)

One of the advantages provided by the design of our grip-
per is that we can simplify the calculation for planar objects
as non-planar surface shapes will be passively handled by
the mechanical structure of the gripper.

B. Approaching / Servoing

The x, y-offset and the z-offset are handled separately. The
x, y-offsets are handled by a PID-controller. Based on the
error between the object’s CoG detected in the image frame
and the gripper position, a ∆x,∆y command is generated
and added to the current MAV pose. The control input is
saturated and an anti-windup scheme is implemented. The
newly generated MAV pose is then tracked by a trajectory
tracking Model Predictive Controller (MPC) [20]. In the case
of several objects being present in the MAV’s current field
of view, the strategy is to first target the object closer in the
Euclidean x, y-distance.

As we assume objects to be on the ground, we define a set
approach strategy to yield robust system performance, this is
illustrated in Fig. 4. The approach-strategy is triggered when
the MAV stays within a radius ε in x, y around a point at
height h above the CoG of the object. If the MAV manages
to stay within this radius for a set time twait > tthresh, it
then descends to a lower height hhover above the object. The
servo positioning checks whether the MAV is still within a
sphere ε above the object’s CoG and then initiates the final
approach towards the object, which is a guided sequence of
descending to the object before ascending to the operation
height h. If the object is moving during the first descend, the
MAV uses the previous velocity in x, y for its final descend
making it possible to approach linearly moving objects. The
MAV’s trajectory controller accepts waypoints published by
the servoing regime, as illustrated in Fig. 4.

If the MAV loses sight of the object in the approach
sequence, it returns to height h and re-localizes the object in

Fig. 4: State machine of the MAV for object picking and
delivery. The MAV is positioned with an object in its field
of view. Then the servoing strategy is performed, resulting in
the delivery of the object to the drop zone, if all conditions
are met.

a wider field of view. Please note that a global search strategy
is out of the scope of this paper. Presently, we also do not
perform object tracking, but perform object detection over 3
frames. Therefore, if a different object is perceived closer to
the MAV the algorithm will switch targets and approach the
closest object.

C. Delivery

After successful gripping, the MAV flies to the drop zone
of known location and releases the object.

An important aspect for robust aerial gripping and trans-
portation is sensing successful gripping of the object. Given
that a model-based external disturbances observer based on
Extended Kalman Filter (EKF) is employed by the trajectory
tracking controller [20] to compensate for external forces, we
decided to employ it to detect successful grasping as well.
A successful grasping is detected if the following equation
holds:

F̂z ≥ Fth (5)

where F̂z is the z component of the estimated external force
expressed in world frame and Fth is a user defined threshold.

In case the object is lost during transport, the MAV returns
to the location in which it detected the loss, re-detects the
object and performs the servo-positioning from the start. The
exact behavior is also shown in Fig. 4. The controller treats
additional effects, e.g., drag forces by gripped objects or



TABLE II: Air gaps in magnetic flux simulation.

Loaction Gap width

Between magnet and horizontal iron part 50µm
Between leg and horizontal iron part 25µm
Between leg and object surface 100µm

(a) (b)

Fig. 5: Simulation of the magnetic flux for the electro-
permanent magnet, (a) in the off state forming a closed
magnetic circuit inside the material and (b) in the on state
inducing a magnetic field outside the gripper material. The
magnetic flux density ranges from 0 T (blue) over 1 T (green)
to 2 T (red).

additional weights as external disturbances and compensates
the effects.

V. EVALUATION

The evaluation of our system is three-fold. We test the
magnetic behavior of the gripper in simulation and real world
experiments, perform a functional evaluation of the gripping
with offsets and test the full system under varying conditions,
i.e., external disturbances, differently shaped objects and
moving objects.

A. Magnetic gripper behavior

Simulation of the magnetic flux is shown in Fig. 5 for the
gripper in the on and off state. With this configuration each
of the 2 magnetic cycles of the gripper generates a force of
17 N per magnetic cycle while assuming air gaps between
the functional part as depicted in Table II.

The physical gripper is illustrated in Fig. 6. Tests with the
full assembly show that the gripper produces an attraction
force of approximately 30 N, with all legs connected, which
is lower than the simulated value. We believe this is due to
imperfect manufacturing of the gripper, resulting in slightly
different air gaps in the assembly. Nevertheless, the force
is still well within acceptable bounds. The attraction force
is halved if only one of the magnetic cycles is closed. The
functional parts of one of the magnetic cycles is illustrated
in Fig. 6b. In order to switch between the gripper’s on and
off state, using the MAV’s onboard 15 V batteries, a short
2.5 ms current pulse of 80 A is sent each time, resulting in
consumption of 0.8 mWh per switch. The final assembly
weighs 210 g including all functional components. However,
the materials and the design of the support structure are
not optimized yet, especially since we facilitate 3D printed

(a)

(b)

Fig. 6: (a) Full assembly of the gripper on differently shaped
surfaces. (b) One of in total four Alnico / Neodymium
assemblies in final gripper prototype.

plastic which requires considerably thicker parts to provide
the required stiffness compared to light-weight composite
materials. Furthermore, a circuit board for fast prototyping
was used for the electronic parts, adding 120 g to the weight
of the gripper assembly, although developing a Printed Cir-
cuit Board (PCB) would significantly decrease this weight.

B. Offset gripping

We evaluated the gripper assembly in an isolated ex-
periment, using different square metal objects to evaluate
its offset gripping behavior. The testing procedure defines
a gripping procedure in an offset position in x, y to the
objects’s CoG followed by a vertical acceleration of 0.8g.
The test objects vary in weight and shape, i.e., we test the
system on one heavy flat square metal plate and a lighter
square metal plate with a bend of 30◦ in the middle. The
tests were conducted by linearly increasing the offset of the
grip position until the border of the object was reached. The
results are illustrated in Table III.

Although the objects can be lifted statically regardless of



TABLE III: Results of offset gripping tests.

Object Gripping max. values

Dimensions Weight Bend Offset Pitch angle

165× 165× 2mm 520 g 30◦ 81mm 55◦

150× 150× 4mm 870 g 0◦ 30mm 27◦

the offset position, the vertical acceleration causes both tested
objects to show a cutoff offset, i.e., the object is always
lost in the lifting when this offset is exceeded. The major
causes for losing contact with the object during the dynamic
lifting is lateral slipping for the large, but lighter part and loss
of contact with the innermost magnetic leg for the smaller,
but heavier part. The failure mechanisms can be explained
mechanically as follows. The large part starts slipping as the
large offset gripping position causes the gripper suspension
to have considerable offset rotation in pitch. This causes a
lateral force on the magnetic legs that exceeds the friction
induced by the magnetic attraction force at the contacts
between the legs and the object, causing slippage. The small
part fails, because the force is shifted onto the innermost
leg due to the leverage effect, causing the combined force
of gravity and acceleration to exceed the magnetic attraction
force.

However, the MAV controller can reliably provide posi-
tional accuracy in x, y which is within the safe bounds of
the evaluated gripper’s behavior and can therefore provide
safe means of gripping in the integrated system’s context.
Furthermore, we implemented a gripping detection in the
integrated system, causing the MAV to re-attempt in case
of unsuccessful gripping. Finally, we note that the tested
accelerations in this experiment are higher than the ones in
the integrated system.

C. Object detection

For the object detection in the integrated evaluation, we
use a simple frame-to-frame recognition scheme using a
down-facing camera that is rigidly attached to the base of
the MAV. Objects are assumed to be arbitrarily shaped and
of red, blue or black color. We aim to detect the CoG of
the objects. Therefore, the images are undistorted, down-
sampled to 1

8 resolution and converted to HSV color space.
The detector performs morphological opening to remove
small foreground detections, and morphological closing to
fill small holes in the foreground. Then it detects contours
on the binary images, which are filtered by a threshold to
reject very small (contour including < 0.4% of the image
plane) and very large objects (contour including > 90% of
the image plane). The remaining contours are detected as
objects and their CoG calculated by using their 0th and 1st
moments. The thresholding is performed on all three axes of
the HSV color space to distinguish between red, blue and
black objects.

D. Integrated System Evaluation

A MAV equipped with a down-facing Pointgrey
Chameleon3 3.2 MP camera with a fisheye lens running at

TABLE IV: Results of integrated system (IS) tests.

Experiment type Success rate Experiments Pick up tries

IS 95.65% 23 25
IS + wind 100% 5 8
IS + dynamic objects 78.57% 14 27

20 Hz and the presented gripper were evaluated in an indoor
motion capture room, as illustrated in Fig. 1 and shown in
the video supplement2. In a first experiment a bend ferrous
object is placed in a random location across the room in
one of two configurations, i.e., either with the bend facing
upwards or downwards, providing a convex or concave object
to pick. Then the MAV is brought manually to a hover in a
random location with the object in its field of view. The MAV
is then tasked to autonomously execute the object detection,
servo positioning, gripping and transportation to a known
drop-off location for releasing the object. This experiment is
repeated 23 times using the bend metal object in different
configurations. We also perform 5 trials while applying
varying strengths of wind to the platform of up to 15 m/s.
Furthermore, another experiment is executed 14 times with
the object placed on a moving platform that moves linearly
in an arbitrary direction with a set velocity of 0.1 m/s which
was not communicated to the MAV. We use the AscTec Neo
MAV for these experiments and a motion capture system
for tracking the MAV. However, the MAV is not limited
to operate with a tracking system, and alternatively a state
estimation on board the MAV can be used [21]. The results
of these tests are presented in Table IV. Here we report the
success rates along with the number of experiments and the
number of pick up trials, i.e., the number of total pick up
repetitions if the part is detected to not be picked and a re-
picking is triggered. The procedure is illustrated in Fig. 1
for the dynamic experiments. The static experiments were
performed in a similar setup with the object being placed on
the ground.

E. Findings

Throughout all static experiments we recorded only one
failure in the delivery action due to releasing the object
next to the drop zone and therefore missing the drop zone
container. Since the object landed too close to the container
the MAV was not able to pick it up again because of the
confined space and risk of crashing with the container. As
expected, the picking quality decreased in the case of external
disturbances since positioning accuracy achievable by the
MAV decreases. Furthermore, in some cases, we noticed that
reflections on the object can cause the detector to estimate
a CoG that is off-centered, thus decreasing positioning ac-
curacy, i.e., two repeated tries. In such cases, the MAV was
not able to properly grip the object in the first approach,
however, it was still able to detect this, recover, and retry the
procedure. The controller was also able to handle objects of
different weights without readjustment of its parameters.

2https://goo.gl/no0Bcz



In the dynamic case, when the object is placed on a
moving platform we recorded decreased success rate for
picking. We counted failure cases if the object was not
accurately picked by the MAV causing it to slip and fall to
the ground. Although the object could be recovered from the
ground as static object, we cancelled the experiment in these
cases and recorded failure. We noted that, since we perform
frame-wise detection, we do not have an accurate velocity
estimate of the moving platform which could be improved
by implementing an object tracking over time.

VI. CONCLUSIONS & FUTURE WORK
In this paper, we have presented a full system for energy-

efficient, autonomous picking and delivery of ferrous objects
with MAVs. The integrated system is based on gripping
technology with electro-permanent magnets.

We have evaluated the core innovations of our pipeline
separately and the integrated system as a whole. Our results
show that even under varying conditions the MAV is able to
pick and deliver the objects in the static case and most of the
times in the dynamic case as well. In contrast to state-of-the-
art approaches which rely either on known object locations,
known object shapes or high position accuracy of the MAV,
our approach can handle all of these unknowns in an inte-
grated manner while achieving very high delivery success
rates. Furthermore, the proposed gripper design for MAVs
combining passive compliance with electro-permanent mag-
nets, to our best knowledge, has not been shown before.

For future work, we plan to further optimize our gripper
design towards weight and compliance and integrate the
camera in a next version of the gripper as its field of view
is partly occluded in the current setup. We furthermore
plan to implement object tracking and feed-forward control
to increase the system performance for picking of moving
objects. Another interesting avenue is a combination of our
system with global search strategies and multiple MAVs.
Finally, it would be beneficial to sense successful gripping
with a dedicated sensor as our present approach relies on a
minimum weight threshold (Eq. 5).
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