
DR 1.4: Sensing, mapping and low-level memory
IV – Long term persistence
Tomáš Svoboda∗, Renaud Dubé†, Abel Gawel†, Hartmut Surmann‡, Kalle
Knipp‡, Cesar Cadena†, . . . , and the TRADR consortium
∗CTU in Prague, Czech Republic
†ETH, Zürich, Switzerland
‡Fraunhofer IAIS, Sankt Augustin, Germany
〈svobodat@fel.cvut.cz〉
Project, project Id: EU FP7 TRADR / ICT-60963
Project start date: Nov 1 2013 (50 months)
Due date of deliverable: Month 50
Actual submission date:
Lead partner: CTU
Revision: draft
Dissemination level: PU

We report progress achieved in Year 4 of the TRADR project in WP1: Per-
sistent models for perception. It describes the essential robot (UGV) percep-
tion functionalities and and new algorithms for realtime 3D mapping with
loop closure and merging UGV and UAV maps.

1



DR 1.4: Sensing, mapping and low-level memory IV T. Svoboda et al.

1 Tasks, objectives, results 5
1.1 Planned work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Addressing reviewers’ comments . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Actual work performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Task T1.7 (Scene part and object recognition IV – Long-term per-
sistence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Task T1.8 (Robot centric metrical maps and models storage IV –
Long-term persistence, central yet distributed mission memory) . . . 12

1.4 Relation to the state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Annexes 31
2.1 Pecka-TIE2017, “Controlling Robot Morphology from Incomplete Measure-

ments” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Pecka-IROS-2017, “Fast simulation of vehicles with non-deformable tracks” 31
2.3 Zimmermann-ICCV-2017, “Learning for Active 3D Mapping” . . . . . . . . 32
2.4 Azayev-MScThesis-2018, “Deep Learning for Autonomous Control of Robot’s

Flippers in Simulation” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Petricek-PhDThesis-2017, “Coupled Learning and Planning for Active 3D

Mapping” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Hollmannova-TR-CTU-2018, “RealSense and Elevation Mapping for Ter-

rain Mapping on TRADR Robot” . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Dubé-IROS-2017, “An Online Multi-Robot SLAM System for 3D LiDARs” . 35
2.8 Dubé-RAL-2018, “Incremental Segment-Based Localization in 3D Point

Clouds” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.9 Dubé-2018, “SegMap: 3D Segment Mapping using Data-Driven Descriptors” 36
2.10 Surmann-2017, “3D mapping for multi hybrid robot cooperation” . . . . . . 37

A Fast simulation of vehicles with non-deformable tracks 39

B Learning for Active 3D Mapping 45

C 3D mapping for multi hybrid cooperation 54

D An Online Multi-Robot SLAM System for 3D LiDARs 62

E Incremental Segment-Based Localization in 3D Point Clouds 70

EU FP7 TRADR (ICT-60963) 2



DR 1.4: Sensing, mapping and low-level memory IV T. Svoboda et al.

Executive Summary

The key objective of WP1 is to provide sensory data from all involved robots
registered in space and time, to keep creating and updating robot centric
representations, and ground them into the world coordinate frame. The
obtained representations are furnished to other WPs, which maintain higher
level situation awareness.

Role of robot perception and metrical mapping in
TRADR

In this report, robot perception is intended to be the robot ability to ana-
lyze its neighborhood and act accordingly. Terrain recognition is essential for
robot locomotion regardless whether the robot is teleoperated or moves au-
tonomously. It is desirable the robot overcomes obstacles reasonably – fast,
safe, consuming less power and reducing cognitive load of a human operator.

The metrical mapping serves as the very basis for modeling the world. It
is also the basis for sharing information between robots and also among sev-
eral sorties and even missions. Real-time multi-robot 3D mapping essentially
speeds up reconnaissance hence, situation awareness.

Persistence

Persistence in WP1 is addressed mainly by re-using the data in creating an
enviroment model. The 3D metric map serves as the main basis for multi-
modal (data), multi-source (robots), multi-level (abstraction, decisions) reg-
istration. In WP1, we are working on robust methods for merging partial 3D
maps. The merging challenges include weak data overlap, dynamic changes
in scenes, large displacement of local coordinate systems. The newly de-
veloped compact map representation which is learned from the data allows
for database-like map handling - fast querying and matching. The terrain
perception and robot control algorithms use machine learning techniques in
a quest of gaining experience from operator-robot interactions.

Contribution to the TRADR scenarios and proto-
types

The new 3D multi-robot mapping algoritm and map representaiton are im-
portant step towards multi-robot collaboration (WP4) and models for acting
(WP2). New work on reducing drift of dead reckoning by a terrain classi-
cation helps in sensory deprived environments. The new robot model con-
tributes to simulations needed to the models for acting (WP2), multi-robot
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collaboration (WP4) and also support the human-robot teaming (WP5).
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1 Tasks, objectives, results

1.1 Planned work

In Year4, WP1 planned to investigate “Sensing, mapping and low-level mem-
ory IV – Long term persitence” (Milestone MS1.4). The work was divided
into two tasks:

• Scene part and object reconition (T1.7)

• Robot centric metrical maps and models storage – Long-term persis-
tence, central yet distributed mission memory (T1.8)

1.2 Addressing reviewers’ comments

TheWP1 was evaluated as outstanding and we were encouraged to continue.

1.3 Actual work performed

1.3.1 Task T1.7 (Scene part and object recognition IV – Long-
term persistence)

Terrain classification for reducing drift in dead reckoning

To improve localization of the UGV, we’ve focused on the basic odometric
system of the robot. Its accuracy suffers while traversing vertical obsta-
cles and that makes loop closures and map merging more difficult. We’ve
proposed additional models for tracked odometry that improve localization
in such conditions. The proposed method has been experimentally verified
during the whole year indoors and outdoors, including data from T-EVAL.
The experimental dataset is released1 for the robotic community and the
results are about to be submitted to a IEEE journal. Since the results were
obtained in the end of the project, there is no time to fully integrate it with-
out compromising the rest of the system. However, the results should be
easily transferable to other tracked vehicles and thus contributing outside
the TRADR project.

Adaptive traversal

The simulation model of the TRADR robot was improved and offered to
the open-source community of the Gazebo simulator2, so that everyone can
profit from the work done. We also compared this model with other methods
of simulation of tracked vehicles to be sure we are using the most suitable

1http://ptak.felk.cvut.cz/tradr/visuals/bagfile_crawler/
2https://bitbucket.org/osrf/gazebo/pull-requests/2652/

added-support-for-tracked-vehicles/diff
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Figure 1: Block diagram of the proposed track odometry system. Standard
6-DOF odometry with input from proprioceptive sensors computes interme-
diate velocity, position and robot attitude. These values are corrected based
on classifier decision to either keep the standard output or to switch to one
of the proposed obstacle traversing modes.
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Figure 2: Kinematic model for obstacle climbing. From top left to bottom
right: model parameters, climbing with flippers retracted (second and third
figure), climbing using flippers. The violet x symbol denotes motion of the
origin of the robot frame.

simulation model. The adaptive traversal ability of the robot was also im-
proved by utilizing convolutional neural networks and a different training
paradigm (and utilizing the improved simulation model). As an alternative
path towards fully autonomous flipper and robot control, we investigated
an end-to-end learing approach (see Annex 2.4). Results in simulations and
early real robot experiments are promissing. A new RealSense RGB-D cam-
era should bring faster flipper response (see Annex 2.6).

We also improved the user interface used for flipper control and teleoper-
ation based on the comments of the end-users. Feedback from teleoperation
is now collected and recorded to further improve the AT algorithm from
mission data.

We created the user-facing documentation for adaptive traversal, flip-
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per control and pan-tilt cameras control. Formerly, the adaptive traversal
algorithm was mutually exclusive with mapping of the environment. We re-
moved this limitation. Work was also done on integrating AT with the path
planner, but some work reamins to be done in this domain.

We released an open-source component for easy integration of the Ten-
sorflow framework with robots running the ROS middleware3.

A dataset for visual scene classification and segmentation

A huge dataset were collected during the TRADR project. We selected 750
bag-files from the test missions and extracted 39.000 images from the robot
omnicamera (image was captured every 2 meters of robot traverse) and we
published this dataset on the web 4. We manually annotated subset of 8000
images. Each image annotation contains image class information (20 classes)
in the Pascal-VOC format. We also manually segmented 320 images in Kitti
dataset format (20 classes) and developed tools for annotation and viewing
of the dataset. All these files are accessible on the public website. The
dataset was adopted for testing of the neural nets suitable for recognition of
objects in robot visual space. We tested 3 state of the art networks for image
classification, namely TransferNet [30], Yolo [62] and Mask-RCNN [28]. We
trained Transfernet on 60.000 images from MS-Coco (pixel-wise annotation)
and 7.000 images from our dataset (image-class annotation). As TransferNet
allows transfer learning (transfer semantic segmentation from from MsCoco
to novel classes in our dataset) we chose 20 classes that are desirable in
rescue robotics (vehicles, wiring, fuse boxes, barrels, ruins etc.). During
the test stage we faced very low accuracy (5%) so we switched to the Yolo.
The algorithm was able to detect bounding boxes of the objects, but it
was restricted to the pretrained set of classes that has small overlap with
rescue robotics (vehicles, persons). The Mask-RCNN allows to segment each
instance of the object class in the scene. Unfortunately, the Mask-RCNN
is trained on MS-Coco dataset, that contains only few useful classes for the
rescue robotics.

Active 3D mapping

This is a kind of work for future, while addressing upcoming a new type
of depth sensors – Solid state lidars. We proposed an active 3D mapping
method for depth sensors, which allow individual control of depth-measuring
rays (see Annex 2.3). The method simultaneously (i) learns to reconstruct a
dense 3D occupancy map from sparse depth measurements, and (ii) optimizes
the reactive control of depth-measuring rays. The scheme is depicted on
Figure 3. To make the first step towards the online control optimization,

3https://github.com/tradr-project/tensorflow_ros
4http://ptak.felk.cvut.cz/tradr/visuals/tradr-seg-dataset/
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Figure 3: Iteratively learned deep convolutional network reconstructs local
dense occupancy map from sparse depth measurements. The local map is
registered to a global occupancy map, which in turn serves as an input for the
optimization of depth-measuring rays along the expected vehicle trajectory.
The dense occupancy maps are visualized as isosurfaces.

we propose a fast prioritized greedy algorithm, which needs to update its
cost function in only a small fraction of possible rays. We also derived the
approximation ratio of the greedy algorithm. An experimental evaluation on
the subset of the KITTI dataset demonstrates significant improvement in the
3D map accuracy when learning-to-reconstruct from sparse measurements is
coupled with the optimization of depth measuring rays. Evaluation code was
released5. We also interfaced the simulating solid state lidar from Kitti data
as a Lidar-gym environment6 – compatible with the known AI-gym.

3D SLAM and Environment Reconstruction

Over the course of the project, the TRADR consortium progressively devel-
oped its SLAM framework for 3D LiDARs. To this date, each Unmanned
Ground Vehicle (UGV) of the TRADR system uses this framework for reg-
istering LiDAR scans using Iterative Closest Point (ICP) and for creating a

5https://github.com/salanvoj/active-3d-mapping
6https://gitlab.fel.cvut.cz/rozsyzde/lidar-gym
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3D point clouds of the environment. In the previous year, we introduced a
novel place recognition technique for 3D point clouds [12]. State-of-the-art
localization performances were achieved thanks to the principle of segment
extraction and matching. As a reminder of this approach, an updated archi-
tecture is presented in Section 1.3.2.

This year, we presented the integration of the aforementioned pose-
graph Simultaneous Localization and Mapping (SLAM) and loop-closure
techniques in a complete multi-robot SLAM system (see Annex 2.7). Our
system enables to estimate in real-time the trajectories of multiple robots
and to build an unified 3D map representation. To the best of our knowl-
edge, this was the first proposed solution to the online multi-robot SLAM
problem for 3D LiDARs. We demonstrated the system’s real-time capability
by simultaneously processing data, from three UGVs, collected during the
TRADR Evaluation 2016 at the Gustav Knepper powerplant7. We also il-
lustrated how segment-based localization can effectively summarize the 3D
structure to a handful of descriptors and segment centroids. This highly
compressed data can easily be transmitted to a central computer for making
global associations, even under limited communication bandwidth.

In this last year of the TRADR project, we further contributed to Task
T1.7 by proposing a complete SLAM solution addressing important chal-
lenges related to multi-robot systems [68] and search & rescue operations:

• Large-scale and long-term missions

• Real-time performance

• Limited communication bandwidth

• Providing end-users 3D visual feedback

To this end, we built on our previous works by proposing SegMap: a novel
3D map representation solution to SLAM for multi-robot systems (see An-
nex 2.9). As illustrated in Figure 4, the core idea behind this approach is to
use a unique data-driven descriptor to simultaneously achieve all three tasks
of robot localization, 3D structure reconstruction, and semantics extraction.
This reconstruction capability is particularly interesting for navigation tasks
and for providing visual feedback to end-users such as robot operators in
search and rescue scenarios. To the best of our knowledge, this is the first
work on robot localization proposing to reuse the extracted features for re-
constructing environments in three dimensions and for extracting semantic
information.

In essence, a Convolutional Neural Network (CNN) is used to compress
the 3D segments extracted in the vicinity of the robot into a descriptor of
dimension 64x1. This descriptor can directly be used for localization through

7A video of this experiment is available at https://youtu.be/JJhEkIA1xSE.

EU FP7 TRADR (ICT-60963) 9
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Figure 4: The data-driven SegMap descriptor can be used to localize, recon-
struct the 3D structure, and extract semantic information.

efficient k-Nearest Neighbors (k-NN) descriptor retrieval in low dimensional
space. The same descriptor can be fed to a second CNN for reconstructing
the segment and to a fully connected network that can extract semantic in-
formation. When performing retrieval for localization, this descriptor offers
increase of area under the ROC curve of 28.3% over current state of the art
using eigenvalue-based features [12, 80]. The use of these compact segment-
based features facilitates low computational, memory and bandwidth re-
quirements, and therefore makes the approach appropriate for real-time use
in both multi-robot and long-term applications.

We evaluated this approach on two multi-robot datasets collected at the
Gustav Knepper powerplant and the Phoenix-West foundry (Figure 5). In
both experiments, multiple inter-robot associations were made in real-time
and on a single computer. As depicted in Figure 6, these global associations
allows us to join the robot trajectories and to reconstruct the 3D structure of
the disaster environments. Note that these point clouds are reconstructions
which can be generated from the descriptors of the final compressed maps
which weigh only 173kB and 123kB, respectively for the powerplant and
the foundry. Moreover, a bandwidth of only 10kB/s would be sufficient
to communicate the segment descriptors and centroids, a reduction of 20x
over transmitting the segment point clouds. In future work, it would be
interesting to compare this learning-based reconstruction capability to other
3D point cloud compression techniques [78, 31, 47].

The capacity of the network to extract semantic information is evaluated
in a separate experiment with data collected in urban-driving environments.
We demonstrated an accuracy of 85% at determining whether segments rep-
resent vehicles, buildings, or others. In the context of TRADR, it would be
interesting to extend this work to distinguish between static and dynamic
objects which are present in disaster environments. In this case, our localiza-
tion module could rely on segments extracted from walls and stairs, adding
robustness against dynamic changes.

EU FP7 TRADR (ICT-60963) 10
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Figure 5: Pictures of buildings where the multi-robot missions took place:
the Gustav Knepper powerplant (left) and the Phoenix-West foundry (right).

Figure 6: This figure illustrates a reconstruction of the buildings of the
Gustav Knepper powerplant (top) and Phoenix-West foundry (bottom). The
point clouds are colored by height and the estimated robot trajectories are
depicted with colored lines.

EU FP7 TRADR (ICT-60963) 11
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1.3.2 Task T1.8 (Robot centric metrical maps and models storage
IV – Long-term persistence, central yet distributed mission
memory)

Control of an UAV in GPS-denied environments

This section describes the development of a state controller to move an UAV
– in this case the Ascending Neo – automatically to a specific position. The
controller is planned to be used indoors, so a high accuracy is needed. It is
possible to specify the translation x, y, and z and also the rotation around
the z-axis. A destination can be set if a map of the environment already
exists. Then the UAV automatically navigates to this position. An overview
on state-of-the-art techniques for modelling and controlling a UAV is given
in section 1.4 of this document.

Figure 7: Test environment constructed in gazebo RotorS Simulator (Top).
2D map of the environment with path to the defined goal displayed in Rviz
(Bottom)

The gazebo rotorS Simulator is used to execute an additional test of the
state-controller. With this simulator it is possible to move an UAV in a three-
dimensional space. A test environment is already set up in the simulator.
This environment displays a corridor (see figure 7 - top). The visualization
tool rviz of ROS is used to specify a destination point for the UAV. An
appropriate path is computed if a map of the environment is available (see
figure 7 - bottom). Now in the gazebo rotorS Simulator the UAV moves to
the caclulated waypoints to reach the defined destination.

Consistent mapping of UAV und UGV pointclouds

We designed (see Annex 2.10)8 a novel approach to build consistent 3D maps
by merging UAV and UGV data. The UAV monocular camera data are used
to generate 3D point clouds that are fused with the 3D point clouds gener-
ated by a rolling 2D laser scanner mounted on the UGV. The registration
method is based on the matching of corresponding planar segments that are

8https://www.youtube.com/watch?v=o969dUl2NOc
https://www.youtube.com/watch?v=xAVR5aFv8VY
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Fig. 8. Merged point cloud of the former site of the blast furnace Phoenix-West in Dortmund. The green trajectory was determined with MVE and the
red trajectory with GPS. Both trajectories overlap to a large amount, which shows a good estimation of the trajectory. The point clouds were generated
with MVE at a resolution of 640 ⇥ 480 pixels.

Fig. 9. Registered point clouds of the globally optimized localization. Points of the laser point clouds were dyed with the color information of the global
point cloud. Within the factory no color information could be extracted. The estimated trajectory is shown in green.
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Figure 8: Registered point clouds of the globally optimized localization.
Points of the laser point clouds were dyed with the color information of
the global point cloud. Within the factory no color information could be
extracted. The estimated trajectory is shown in green.

extracted from the point clouds. Based on the registration, we proposed a
global optimization for localization. Apart from the structural information
of the point clouds, it is important to mention that no further information
is required for the localization. An example of merged maps is depicted on
Figure 8.

Along these lines, we furthermore worked on an alternative approach of
localizing the UGV LiDAR maps in 3D reconstructions generated by the
UAV and report our results in WP 2. Here, we explored a different local-
ization paradigm and go beyond the assumption of planar surfaces by using
volumetric structural features of the environment.

Efficient Localization in 3D Point Clouds

The capabilities of the SegMap approach presented in Section 1.3.1 would
not be possible without an efficient localization method. This year, we con-
tributed to Task T1.8 by specifically addressing the real-time performance
requirement of our localization module. In our previous work, we noted
that normal estimation, segmentation, and geometric verification were of-
ten the most computationally expensive modules of our segment-based tech-
nique [12]. With this in mind, we proposed an efficient method for local-
ization in 3D point clouds which is based on incremental solutions to the
aforementioned modules (See Appendix 2.8). The efficiency of the method
makes it suitable for applications where real–time localization is required
and enables its usage on cheaper, low–energy systems.

The architecture of this incremental localization method is depicted in
Figure 9. For the modules of normals estimation, segmentation and recog-
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Figure 9: Architecture of our incremental segment matching pipeline and its
interface with our pose-graph SLAM framework for 3D LiDARs.

nition, we reuse the processed information by retaining data structures that
are likely to save computations in later localization attempts. We first de-
veloped a Dynamic Voxel Grid (DVG) which accumulates and filters a con-
tinuous stream of 3D point cloud and provides information about newly oc-
cupied voxels. This key information is leveraged for estimating normals by
re-computing only those affected by newly occupied voxels and by caching in-
formation to incrementally compute covariance matrices. Incremental region
growing segmentation is then performed by using only the newly occupied
voxels as seeds and by merging with previously clustered points. An exam-
ple of three segments being incrementally grown is depicted in Figure 10.
This strategy enables us to robustly track segments between successive ob-
servations which offers multiple benefits to the overall framework. Amongst
others, it allows us to perform efficient geometric verification by caching
geometric consistencies.

We evaluated this method in a robot localization example in the Gustav
Knepper powerplant. Overall, we note a speedup of x12.4 over the batch
version of SegMatch. The expensive modules of normal estimation and seg-
mentation benefited of speedups of x16.4 and x12.3 respectively. Due to the
small dimension of the mapped building, both the batch and incremental
geometric verification steps can be executed under 1ms. Note that, when
considering larger environments, we observed a speedup of x14.2 for the in-
cremental geometric verification algorithm. We also presented an experiment
where data from five Velodyne HDL-64E sensors are processed in real-time
on a single computer, in order to succesfully identify sufficient global associ-
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Figure 10: An illustration of three segments being incrementally grown over
successive observations (from left to right).

ations for building an unified map9.
Finally, our incremental segment-based localization algorithm is open-

source available, along with our multi-robot SLAM back-end10. We provided
multiple easy-to-run demonstrations, one of which uses data collected at the
Phoenix-West Foundry during the TRADR Evaluation in 2015. Since we
open-sourced our SegMatch library in November 2016, we received significant
attention from the research community, with over 100 people following our
github repository. In the last year, we supported multiple researchers, via
email exchanges, github issues, and discussions at conferences, in applying
our method to their own data. Some people even contributed back to the
github repository by sharing impressive results which they achieved with
the segment-based method. Needless to say, we are pleased to see that the
science and systems developed during the TRADR project have a tangible
and positive impact on the research community.

1.4 Relation to the state-of-the-art

Terrain classification for reducing drift in dead reckoning when
climbing up and down

In previous years, we proposed several approaches to adapting robot mor-
phology to terrain[89, 57, 24]; a computationally fast and plausible simu-
lation of a tracked vehicle is presented in [57]. We also proposed method
for localization in 6-DOF by fusing tracked odometry and complementary-
filtering-based attitude estimation [63, 70, 37].

Our robotic platform uses flippers as well allowing it to climb stairs and
overcome vertical obstacles. There are many more possible designs that allow
obstacle traversal or step climbing; authors of [51] combine walking for hard
soils and tracked motion for weak soils, in [27], wheel-track robot prototype

9A video demonstration is available at https://youtu.be/cHfs3HLzc2Y.
10The implementation is available at https://github.com/ethz-asl/segmatch.
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is proposed and the work of [55] describes a novel robot body configuration
allowing transformation between a "claw" mode intended for climbing stairs
and a "wheel" mode for flat terrain.

In [41], authors analyze capability of a tracked robot to climb stairs.
They compare different configurations of tracks and analyze climbing mo-
tion dynamics. Effect of changing payload mass held by tracked robot with
flippers is investigated in [40].

Authors of [38] demonstrate that slippage of tracks can be estimated by
an extended Kalman filter by observing trajectory data of a tracked vehicle.
Alternative approach to track odometry via identification of instantaneous
centers of rotation is proposed by [43]. Simplified slippage model which also
benefits from angular rate sensor is presented in [14, 50]; the latter also ex-
tends the odometry to 6-DOF. An approach of utilizing external position
reference to identify kinematic model parameters is presented in [58]. All
these works deal with the problem of track slippage while turning and with
the associated uncertainty in velocity measurements. The extension we pro-
pose can be combined with their results by identifying moments of vertical
motion and temporarily switching to our model during those instances.

Learning for active 3D mapping

High performance of image-based models is demonstrated in [72], where a
CNN pooling results from multiple rendered views outperforms commonly
used 3D shape descriptors in object recognition task. Qi et al. [60] com-
pare several volumetric and multi-view network architectures and propose
an anisotropic probing kernel to close the performance gap between the two
approaches. Our network architecture uses a similar design principle.

Choy et al. [8] proposed a unified approach for single and multi-view 3D
object reconstruction which employs a recurrent neural architecture. De-
spite providing competitive results in the object reconstruction domain, the
architecture is not suitable for dealing with high-dimensional outputs due to
its high memory requirements and would need significant modifications to
train with full-resolution maps which we use. We provide a comparison of
this method to ours.

Model-fitting methods such as [69, 73, 65] rely on a manually-annotated
dataset of models and assume that objects can be decomposed into a pre-
defined set of parts. Besides that these methods are suited mostly for man-
made objects of rigid structure, fitting of the models and their parts to the
input points is computationally very expensive; e.g., minutes per input for
[69, 73]. Decomposition of the scene into plane primitives as in [46] does not
scale well with scene size (quadratically due to candidate pairs) and could
not most likely deal with the level of sparsity we encounter.

Geometrical and physical reasoning comprising stability of objects in
the scene is used by Zheng et al. [87] to improve object segmentation and
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3D volumetric recovery. Their assumption of objects being aligned with
coordinate axes which seems unrealistic in practice. Moreover, it is not clear
how to incorporate learned shape priors for complex real-world objects which
were shown to be beneficial for many tasks (e.g., in [54]). Firman et al. [20]
use a structured-output regression forest to complete unobserved geometry
of tabletop-sized objects. A generative model proposed by Wu et al. [84],
termed Deep Belief Network, learns joint probability distribution p(x, y) of
complex 3D shapes x across various object categories y.

End-to-end learning of stochastic motion control policies for active object
and scene categorization is proposed by Jayaraman and Grauman [33]. Their
CNN policy successively proposes views to be captured with RGB camera
to minimize categorization error, and they use a look-ahead error as an
unsupervised regularizer on the classification objective. Andreopoulos et
al. [1] solve the problem of an active search for an object in a 3D environment.
While they minimize the classification error of a single yet unknown voxel
containing the searched object, we minimize the expected reconstruction
error of all voxels. Also, their action space is significantly smaller than
ours because they consider only local viewpoint changes at the next position
while the SSL planning chooses from tens of thousands of rays over a longer
horizon.

Modelling and position controlling of an UAV

Each multicopter has already a control algorithm to ensure stable flight
conditions. However, often this kind of control is not usable for navigating to
a specific position. To really control the translation of an UAV, it is necessary
to develop an individual controller. For designing a suitable controller, it is
useful to establish a mathematical model of the system first. In [77], [42],
and [4] the design process for a mathematical model of a quadrocopter is
presented. This kind of models are adjustable for other types of multicopters
like Hexacopter [2] or Octocopter. To navigate to a specific position with an
UAV, different kinds of control algorithms can be used like PID- or state-
controller. Some different kinds of controllers a presented in [67].

Mapping of UAV and UGV point clouds

A basic prerequisite for many tasks, such as navigation, mapping or coop-
eration of UAV and UGV, is the robot localization. When working with
three-dimensional point clouds, the registration is significantly affected by
the success of an exact localization [29]. Due to the aim of this work, to
localize the UAV and UGV together in a global map, a registration method
has to be found that can handle point clouds from different sources. In
this context, it is important that the methods for registration as well as the
generation of vision-based point clouds can be combined.
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Vision-based SLAM

In order to perform visual odometry, only keypoints are selected, which make
a robust correspondence search possible. While some methods compute com-
plex features ([34, 11]), new developments increasingly use image points di-
rectly ([53, 15, 21]). Direct approaches have the advantage that they are
not reduced to certain feature points but can exploit all image points to
determine the odometry and depth values and thus provide more dense re-
constructions of the environment. Depending on how many image points are
utilized, the approaches can be divided into dense and semi-dense methods.

An example of a semi-dense approach is the SVO algorithm, which is
presented in the work of [21]. The method uses point features, but these are
not explicitly extracted. Rather they are an implicit result of a direct mo-
tion estimation. The initialization of the pose is achieved by minimizing the
photometric error. LSD-SLAM [16] provides another direct approach. Based
on the odometry method of [15], the algorithm generates globally consistent
maps of the environment by means of graph optimization in large-area en-
vironments. Similar to the SVO algorithm, a probabilistic representation
of the depth map is also used here to model inaccuracies. [48] also uses a
probabilistic approach, but the method is based on a feature-based monocu-
lar SLAM system ([49]). Furthermore, in contrast to SVO and LSD-SLAM,
the depth values of a reference image are not filtered over many individual
images, but only key images are used for the reconstruction.

[71] presents one of the first real-time methods and provides dense recon-
structions with a monocular camera. The tracking of the camera is based
on the approach of [34]. The reconstruction is carried out using several key
images. By expanding to several images, regions that would be hidden in
two images or would be outside the corresponding image can also be recon-
structed with a higher probability. DTAM ([53]) also provides dense recon-
structions in real-time. In order to estimate the depth values, the method
performs a global energy reduction over many individual images. REMODE
([59]) is a method for the reconstruction of dense point clouds, which in-
tegrates a Bayesian estimate into the optimization process. By modeling
uncertainties of measurement for each pixel, regularization can be controlled
precisely and inaccuracies in the localization can be reduced. Real-time ca-
pability is achieved through a CUDA-based implementation. For the pose
estimation, the method of [21] is used. One of the recent developments
of dense reconstructions is DPPTAM [9]. The approach reconstructs high
textured regions with a semi-dense approach and low textured regions by
approximation of surfaces. Thereby the assumption is made that homoge-
neously colored image regions form a plane, which can be determined by
superpixels ([18]).

The procedures described so far fall under the category of online pro-
cedures, i.e. they are real-time capable and can deliver first results during
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camera recording. In contrast, offline procedures require all collected record-
ings in advance and then carry out the corresponding calculations. In [23],
a pipeline for reconstruction is presented that combines all necessary pro-
cessing steps in a software framework called MVE. The framework is also
capable of reconstructing texturized surfaces. A nice collection of relvant
frameworks gives the “Awesome 3D reconstruction list”. 11

SLAM with 3D Point Clouds

In last year’s TRADR deliverable we presented the state-of-the-art tech-
niques for performing localization in 3D point clouds. This overview is
also available in Dubé et al. [12] and Cadena et al. [7]. In this section
we review previously proposed methods related to the core aspects of our
approach: multi-robot SLAM, efficient point cloud segmentation, and data-
driven methods for 3D point clouds. Note that this literature review com-
bines material from our publications listed in Annexes 2.7, 2.8, and 2.9.

Multi-robot SLAM A thorough survey on multi-robot SLAM can be
found in [68]. There is a significant amount of works proposing solutions
to the SLAM problem for multiple robots equipped with cameras or 2D
LiDAR [22, 32, 35] but much fewer works consider 3D LiDAR sensors [52,
45]. Nagatani et al. [52] propose to merge digital elevation maps obtained
from three robots where inter-robot constraints are found on the basis of
submap matching by assuming little drift and a known good estimate of
the relative transformation between the robots. The map-merging strategy
is performed offline and the experiment only consider a small environment.
Michael et al. [45] present a strategy for generating a 3D map of a building
damaged by an earthquake. The maps are locally built on each robot using
a technique which assumes the environment to be composed of walls and
horizontal ground planes. The two maps are merged afterwards, providing a
good initial guess for the relative robot transformation which is then refined
by ICP. Without place recognition, the two aforementioned solutions are not
applicable to online multi-robot SLAM and cannot correct for drift which
might occur in the single maps. Global place recognition techniques for 3D
point clouds based on global descriptors [3, 88] and keypoint descriptors
[66, 25] are presented but rarely integrated in a full online SLAM system,
let alone a multi-robot one.

Incremental point cloud segmentation Closely related to our work,
Whelan et al. [81] proposes an incremental region growing method for seg-
menting dense point cloud maps. Segmentation is done only once for each
input cloud with a merging step afterwards. Only planar segments were

11https://github.com/openMVG/awesome_3DReconstruction_list
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considered whereas our generic region growing algorithm allows for differ-
ent tuples of growing policies. Tateno et al. [74] merge RGB-D data into a
global segmentation map that is maintained by matching and propagating
segments extracted from the current depth map. Similarly, Finman et al.
[19] propose to segment the depth maps using an incremental variation of
the graph-based Felzenszwalb algorithm. A voting algorithm is proposed
for recomputing parts of the segmented map given new data. None of the
above works proposed a solution for retrieving models based on the gener-
ated segments. Contrastingly, we show through multiple experiments that
our incremental region growing algorithm can effectively be leveraged for
localization.

Data-driven methods for 3D point clouds In recent years, CNNs have
become the state-of-the-art method for generating learning-based descrip-
tors, due to their ability to find complex patterns in data [36]. When working
with 3D point clouds, methods based on CNNs achieve impressive perfor-
mances in applications such as object detection [17, 44, 64, 39, 85, 82, 61],
semantic segmentation [64, 39, 61, 75], and 3D object generation [83].

Recently, a handful of works proposing the use of CNNs for localization
in 3D point clouds have started to appear [86, 13]. First, Zeng et al. [86]
propose to extract data-driven 3D keypoint descriptors (3DMatch) which
are robust to changes in point of view. Although impressive retrieval perfor-
mances are demonstrated using an RGB–D sensor in indoor environments,
it is not clear whether this method is applicable in real-time in large-scale
outdoor environments. Elbaz et al. [13] propose to describe local subsets
of points using a deep neural network autoencoder. The authors state that
the implementation has not been optimized for real-time operation and no
timings have been provided. Contrastingly, our work presents a data-driven
segment-based localization method that can operate in real-time and that
allows map reconstruction and semantic extraction capabilities.

To achieve this reconstruction capability, the architecture of our descrip-
tor was inspired by autoencoders in which an encoder network compresses
the input to a small dimensional representation, and a decoder network at-
tempts to decompress the representation back into the original input. The
compressed representation can be used as a descriptor for performing 3D
object classification [5]. Brock et al. [5] also present successful results us-
ing variational autoencoders for reconstructing voxelized 3D data. Different
configurations of encoding and decoding networks have also been proposed
for reconstructing and completing 3D shapes and environments [26, 10, 76].

While autoencoders present an interesting opportunity of simultaneously
accomplishing both compression and feature extraction tasks, optimal per-
formance at both is not guaranteed. As we show in our work (See Annex 2.9,
encoding and feature extraction can have conflicting goals when robustness to
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changes in point of view is desired. In our work, we combine the advantages
of the encoding-decoding architecture of autoencoders with a technique pro-
posed by Parkhi et al. [56]. The authors address the face recognition problem
by first training a CNN to classify people in a training set and afterwards
use the second to last layer as a descriptor for new faces. This classification-
based method is an alternative to training networks using contrastive loss [6]
or triplet loss [79]. We use the resulting segment descriptors in the context
of SLAM to achieve better performance, as well as significantly compressed
maps that can easily be stored, shared, and reconstructed.
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2 Annexes

2.1 Pecka-TIE2017, “Controlling Robot Morphology from In-
complete Measurements”

Bibliography Pecka, Martin and Zimmermann, Karel and Reinstein, Michal
and Svoboda, Tomáš. “Controlling Robot Morphology from Incomplete Mea-
surements” In IEEE Transactions on Industrial Electronics, Special issue on:
on Motion Control for Novel Emerging Robotic Devices and Systems. Vol
64, No 2, 2017.

Abstract Mobile robots with complex morphology are essential for travers-
ing rough terrains in Urban Search & Rescue missions (USAR). Since tele-
operation of the complex morphology causes high cognitive load of the oper-
ator, the morphology is controlled autonomously. The autonomous control
measures the robot state and surrounding terrain which is usually only par-
tially observable, and thus the data are often incomplete. We marginalize
the control over the missing measurements and evaluate an explicit safety
condition. If the safety condition is violated, tactile terrain exploration by
the body-mounted robotic arm gathers the missing data.

Relation to WP Describes an approach for automatic robot control on
rough terrain. Contributes to the robot perception suite. T1.7.

Availablity Unrestricted. Included in the public version of this deliver-
able. https://arxiv.org/abs/1612.02739.

2.2 Pecka-IROS-2017, “Fast simulation of vehicles with non-
deformable tracks”

Bibliography Martin Pecka, Karel Zimmermann, and Tomas Svoboda.
“Fast simulation of vehicles with non-deformable tracks”. In Intelligent Robots
and Systems (IROS), 2017 IEEE/RSJ International Conference on

Abstract This paper presents a novel technique that allows for both com-
putationally fast and sufficiently plausible simulation of vehicles with non-
deformable tracks. The method is based on an effect we have called Contact
Surface Motion. A comparison with several other methods for simulation
of tracked vehicle dynamics is presented with the aim to evaluate methods
that are available off-the-shelf or with minimum effort in general-purpose
robotics simulators. The proposed method is implemented as a plugin for
the open-source physics-based simulator Gazebo using the Open Dynamics
Engine.
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Relation to WP Describes a novel model of a tracked robot for Gazebo
simulator. Contributes to the robot perception suite. T1.7.

Availablity Unrestricted. Included in the public version of this deliver-
able. https://arxiv.org/abs/1703.04316

2.3 Zimmermann-ICCV-2017, “Learning for Active 3D Map-
ping”

Bibliography Karel Zimmermann, Tomáš Petříček, Vojtěch Šalanský, and
Tomáš Svoboda. “Learning for Active 3D Mapping”. In Internation Confer-
ence on Computer Vision (ICCV2017)

Abstract We propose an active 3D mapping method for depth sensors,
which allow individual control of depth-measuring rays, such as the newly
emerging solid-state lidars. The method simultaneously (i) learns to recon-
struct a dense 3D occupancy map from sparse depth measurements, and
(ii) optimizes the reactive control of depth-measuring rays. To make the
first step towards the online control optimization, we propose a fast prior-
itized greedy algorithm, which needs to update its cost function in only a
small fraction of possible rays. The approximation ratio of the greedy algo-
rithm is derived. An experimental evaluation on the subset of the KITTI
dataset demonstrates significant improvement in the 3D map accuracy when
learning-to-reconstruct from sparse measurements is coupled with the opti-
mization of depth measuring rays.

Relation to WP Describes a novel metod for creating local 3D maps from
sparse 3D measurements. Contributes to the robot perception suite. T1.7.

Availability Unrestricted. Included in the public version of this deliver-
able. https://arxiv.org/abs/1708.02074

2.4 Azayev-MScThesis-2018, “Deep Learning for Autonomous
Control of Robot’s Flippers in Simulation”

Bibliography Teymur Azayev. Deep Learning for Autonomous Control of
Robot’s Flippers in Simulation. Master thesis, Czech Technical University,
January 2018. Advisor: Karel Zimmermann.

Abstract Neural networks have seen increasing use in various robotic tasks
such as locomotion largely due to advanced in Deep Learning techniques and
Reinforcement Learning algorithms. We examine several Deep Learning ap-
proaches to learning a semi-autonomous locomotion policy for a ground based
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search and rescue robot using only front facing RGBD camera and proprio-
ceptive data. A supervised learning approach is suggested and implemented
for the case where we only have a real robot and no simulated environment.
We also suggest a method to deal with potential issues of multimodal action
distributions using an alternative loss proxy based on Generative Adversarial
Networks. Reactive as well as recurrent policies implemented using RNNs
are compared. A simulator is used to train policies for the robot using Deep
Reinforcement Learning. All policies are trained end-to-end, using convolu-
tional neural networks for high dimensional image inputs. We examine the
performance of policies trained with variously shaped rewards such as low
control effort and smooth locomotion. Experiments are performed on the
real robot using a learned RNN policy in the simulator and observe that the
policy is transferable with no finetuning to the real environment, albeit, with
some performance degradation. We also suggest two potential methods of
domain transfer based on image modification using Gram matrix matching
and Generative Adversarial Networks.

Relation to WP Describes a novel metod for controling robot flippers
from 3D data directly. Contributes to the robot perception suite. T1.7.

Availablity Unrestricted. Included in the public version of this deliver-
able. https://dspace.cvut.cz/handle/10467/74103

2.5 Petricek-PhDThesis-2017, “Coupled Learning and Plan-
ning for Active 3D Mapping”

Bibliography Tomáš Petříček. Coupled Learning and Planning for Ac-
tive 3D Mapping. PhD Thesis, Czech Technical University 2017. Advisors:
Tomas Svoboda, Karel Zimmermann.

Abstract Autonomous robots, including those deployed in search and res-
cue operations or autonomous vehicles, must build and maintain accurate
representations of the surroundings to operate efficiently and safely in hu-
man environment. These representations, or maps, should encompass both
low-level information about geometry of the scene and high-level semantical
information, including recognized categories or individual objects. In the first
part we propose a method of 3D object recognition based on matching local
invariant features, which is further extended for 3D point cloud registration
task and evaluated on challenging real-world datasets. The method builds
on a multi-stage feature extraction pipeline composed of sparse keypoint
detection to reduce complexity of further stages, establishing local reference
frames as a means to achieve invariance with respect to rigid transformations
without sacrificing descriptiveness of the underlying 3D shape, and a com-
pact description of the shape based on area-weighted normal projections.
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For a moderate overlap between the laser scans, the registration method
provides a superior registration accuracy compared to state-of-the-art meth-
ods including Gen- eralized ICP, 3D Normal-Distribution Transform, Fast
Point-Feature Histograms, and 4-Points Congruent Sets. In the second part,
two tasks from the area of active 3D mapping are being solved—namely,
simultaneous exploration and segmentation with a mobile robot in a search
and rescue scenario, and active 3D mapping using a sensor with steerable
depth-measuring rays, with applications in autonomous driving. For these
tasks, we assume that the localization is provided by an external source. In
the simultaneous exploration and segmentation task, we consider a mobile
robot exploring an unknown environment along a known path, using a static
panoramic sensor providing RGB and depth measurements, and controlling
a narrow field-of-view thermal camera mounted on a pan-tilt unit. The task
is to control the sensor along the path to maximize accuracy of segmenta-
tion of the surroundings into human body and background categories. Since
demanding optimal control does not allow for online replanning, we rather
employ the optimal planner offline to provide guiding trajectories for learn-
ing a CNN-based control policy in a guided Q-learning framework. A policy
initialization is proposed which takes advantage of a special structure of the
task and allows efficient learning of the policy. In the active 3D mapping
task, our method simultaneously learns to reconstruct a dense 3D occupancy
map from sparse measurements and optimizes the reactive control of depth-
measuring rays. We propose a fast prioritized greedy algorithm to solve the
control subtask online, which needs to update the cost function in only a
small fraction of possible rays in each iteration. An approximation ratio
of the algorithm is derived. We experimentally demonstrate, using publicly
available KITTI dataset, that accuracy of the 3D improves significantly when
learning-to-reconstruct is coupled with the optimization of depth measuring
rays.

Relation to WP Contributes to the robot perception suite. T1.7.

Availablity Unrestricted. Included in the public version of this deliver-
able.
http://ptak.felk.cvut.cz/tradr/visuals/bagfile_crawler/Petricek-PhD-Thesis-2017.pdf

2.6 Hollmannova-TR-CTU-2018, “RealSense and Elevation
Mapping for Terrain Mapping on TRADR Robot”

Bibliography Dita Hollmannová. RealSense and Elevation Mapping for
Terrain Mapping on TRADR Robot. Technical Report, CTU, January 2018.
Advisor: Tomas Svoboda.

EU FP7 TRADR (ICT-60963) 34

http://ptak.felk.cvut.cz/tradr/visuals/bagfile_crawler/Petricek-PhD-Thesis-2017.pdf


DR 1.4: Sensing, mapping and low-level memory IV T. Svoboda et al.

Abstract Experimental evaluation of an elevation mapping ROS package
with the TRADR Lidar mapping suite. The main goal is to investigate the
possibility of using RealSense sensor as the main depth measuring device for
the TRADR adaptive traversal node. The RealSense is both less accurate
and precise but delivers depth measure with much higher frame rates.

Relation to WP Contributes to the robot perception suite. T1.7.

Availablity Unrestricted. Included in the public version of this deliver-
able.

2.7 Dubé-IROS-2017, “An Online Multi-Robot SLAM Sys-
tem for 3D LiDARs”

Bibliography Renaud Dubé, , Abel Gawel, Hannes Sommer, Juan Nieto,
Roland Siegwart, and Cesar Cadena. “An Online Multi-Robot SLAM Sys-
tem for 3D LiDARs”. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017, (pp. 1004-1011).

Abstract Using multiple cooperative robots is advantageous for time crit-
ical search and rescue missions as they permit rapid exploration of the en-
vironment and provide higher redundancy than using a single robot. A
considerable number of applications such as autonomous driving and disas-
ter response could benefit from merging mapping data from several agents.
Online multi-robot localization and mapping has mainly been addressed for
robots equipped with cameras or 2D LiDARs. However, in unstructured and
ill-lighted real-life scenarios, a mapping system can potentially benefit from
a rich 3D geometric solution. In this work, we present an online localiza-
tion and mapping system for multiple robots equipped with 3D LiDARs.
This system is based on incremental sparse pose-graph optimization using
sequential and place recognition constraints, the latter being identified using
a 3D segment matching approach. The result is a unified representation of
the world and relative robot trajectories. The complete system runs in real-
time and is evaluated with two experiments in different environments: one
urban and one disaster scenario. The system is available open source and
easy-to-run demonstrations are publicly available.

Relation to WP This work contribute to Tasks T1.7 and T1.8 in propos-
ing a real-time multi-robot SLAM system. We present an evaluation on data
collected during a TRADR mission at the Knepper powerplant in Dortmund.
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Availablity Unrestricted. Included in the public version of this deliver-
able12.

2.8 Dubé-RAL-2018, “Incremental Segment-Based Localiza-
tion in 3D Point Clouds”

Bibliography Renaud Dubé, , Mattia G. Gollub, Hannes Sommer, Igor
Gilitschenski, Roland Siegwart, Cesar Cadena, and Juan Nieto. “Incremen-
tal Segment-Based Localization in 3D Point Clouds”. Accepted for IEEE
Robotics and Automation Letters (RA-L), 2018.

Abstract Localization in 3D point clouds is a highly challenging task due
to the complexity associated with extracting information from 3D data. This
paper proposes an incremental approach addressing this problem efficiently.
The presented method first accumulates the measurements in a dynamic
voxel grid and selectively updates the point normals affected by the insertion.
An incremental segmentation algorithm, based on region growing, tracks the
evolution of single segments which enables an efficient recognition strategy
using partitioning and caching of geometric consistencies. We show that
the incremental method can perform global localization at 10Hz in a urban
driving environment, a speedup of x7.1 over the compared batch solution.
The efficiency of the method makes it suitable for applications where real–
time localization is required and enables its usage on cheaper, low–energy
systems. Our implementation is available open source along with instructions
for running the system13.

Relation to WP This work contribute to Task T1.8 by presenting an
efficient approach to localization in 3D point clouds. This novel incremental
solution addresses the real-time performance requirements of multi-robot and
long-term missions.

Availablity Unrestricted. Included in the public version of this deliver-
able14.

2.9 Dubé-2018, “SegMap: 3D Segment Mapping using Data-
Driven Descriptors”

Bibliography Renaud Dubé, Andrei Cramariuc, Juan Nieto, Roland Sieg-
wart, and Cesar Cadena. “SegMap: 3D Segment Mapping using Data-Driven

12The paper is available at http://ieeexplore.ieee.org/abstract/document/
8202268/

13The implementation is available at https://github.com/ethz-asl/segmatch and a
video demonstration is available at https://www.youtube.com/watch?v=cHfs3HLzc2Y.

14The paper is available at http://www.gilitschenski.org/igor/publications/
201801-ral-incremental_segmatch/ral18-incremental_segmatch.pdf
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Descriptors”. Submitted to Robotics: Science and Systems (RSS), 2018.

Abstract When performing localization and mapping, working at the level
of structure can be advantageous in terms of robustness to environmental
changes and differences in illumination. This paper presents SegMap: a map
representation solution to the localization and mapping problem based on
the extraction of segments in 3D point clouds. In addition to facilitating
the computationally intensive task of processing 3D point clouds, working
at the level of segments addresses the data compression requirements of
real-time single- and multi-robot systems. While current methods extract
descriptors for the single task of localization, SegMap leverages a data-driven
descriptor in order to extract meaningful features that can also be used
for reconstructing a dense 3D map of the environment and for extracting
semantic information. This is particularly interesting for navigation tasks
and for providing visual feedback to end-users such as robot operators, for
example in search and rescue scenarios. These capabilities are demonstrated
in multiple urban driving and search and rescue experiments. Our method
leads to an increase of area under the ROC curve of 28.3% over current
state of the art using eigenvalue-based features. We also obtain very similar
reconstruction capabilities to a model specifically trained for this task. The
SegMap implementation will be made available open-source along with easy
to run demonstrations.

Relation to WP This work contributes to Task T1.7 by presenting a
novel 3D map representation solution to SLAM for multi-robot systems.
Thanks to its data-driven descriptor this approach addresses multiple search
& rescue-related challenges: large-scale and long-term missions, real-time
performances, limitted communication bandwidth, and providing end-users
3D visual feedback.

Availablity Restricted, submitted to RSS 2018. Included in the private
version of this deliverable use consistent word for private with other deliver-
ables.

2.10 Surmann-2017, “3D mapping for multi hybrid robot co-
operation”

Bibliography Hartmut Surmann, Nils Berninger1, and Rainer Worst: 3D
Segment Mapping using Data-Driven Descriptors”. IROS 2017, 2017.

Abstract This paper presents a novel approach to build consistent 3D
maps for multi robot cooperation in USAR environments. The sensor streams
from unmanned aerial vehicles (UAVs) and ground robots (UGV) are fused
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in one consistent map. The UAV camera data are used to generate 3D point
clouds that are fused with the 3D point clouds generated by a rolling 2D laser
scanner at the UGV. The registration method is based on the matching of
corresponding planar segments that are extracted from the point clouds.
Based on the registration, an approach for a globally optimized localization
is presented. Apart from the structural information of the point clouds,
it is important to mention that no further information is required for the
localization. Two examples show the performance of the overall registration.

Relation to WP This work contributes to Task T1.8 by presenting a
novel 3D solution to SLAM for hybrid multi-robot systems and different
sensor streams from vision and Lidar.

Availablity Unrestricted. Included in the public version of this deliver-
able15.

15The paper is available at https://doi.org/10.1109/IROS.2017.8202217
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Fast Simulation of Vehicles with Non-deformable Tracks

Martin Pecka1,2, Karel Zimmermann2, and Tomáš Svoboda1,2

Abstract— This paper presents a novel technique that allows
for both computationally fast and sufficiently plausible sim-
ulation of vehicles with non-deformable tracks. The method
is based on an effect we have called Contact Surface Motion.
A comparison with several other methods for simulation of
tracked vehicle dynamics is presented with the aim to evaluate
methods that are available off-the-shelf or with minimum effort
in general-purpose robotics simulators. The proposed method
is implemented as a plugin for the open-source physics-based
simulator Gazebo using the Open Dynamics Engine.

I. INTRODUCTION
Tracked vehicles are often preferred over the wheeled ones

in tasks where traversing complicated terrain is needed, such
as in Urban Search and Rescue missions. Tracks provide
higher stability, better traction and help the vehicle traverse
holes in the underlying terrain.

It is common in robotics research that the initial devel-
opment of algorithms is first conducted in a simulator or
game engine to avoid excessive wear of the real vehicle. In
this phase, approximate simulation methods usually suffice,
differing by the level of approximation and computation
time. General-purpose simulators like Gazebo, V-REP, We-
bots, MORSE and Actin are often used for this task [1],
providing various approximate motion models implemented
in their physics engines (ODE, Bullet, Havoc).

Simulation of wheels is straightforward in these simula-
tors, thus all of them provide means to simulate wheeled
vehicles, including skid-steer motion of multi-wheel vehicles.
However, there is no straightforward approach for tracked
vehicle simulation, thus this motion model is not available
in most simulators. After an exhaustive search, only two
simulators were found providing a tracked robot in its
robot model library – the commercial simulators Webots
and V-REP. However, none of these implementations is both
plausible on difficult terrain and computationally light.

The most plausible and general simulation methods for
rubber belts are based on finite elements analysis, where the
belt is subdivided in many small elements that interact in
a defined way. We omit this class of methods in this work due
to their inherent excessive computational complexity which
makes them impractical for quick algorithm prototyping.
Further argument for omitting these methods is that none of
the most used open-source dynamics engines used in robotics
supports simulation based on finite elements.

In this paper, we present a novel technique for non-
deformable tracks simulation, which we implemented in the

1Czech Technical University in Prague, Czech Institute of Informatics
Robotics and Cybernetics

2Czech Technical University in Prague, Faculty of Electrical Engineering,
Department of Cybernetics

open-source simulator Gazebo [2]. The method provides
a fast, simple and plausible simulation of non-deformable
tracks with minimal changes to the simulator code and
no changes to its physics engine (ODE). The method was
successfully used in our prior work [3] for assessing safety
of actions a tracked vehicle can perform. We would like to
emphasize that our motivation is to have a fast and plausible
method that can be easily integrated into existing robotics
simulators and does not require implementation of state-of-
the art physics engine components (which are usually absent
in the robotics simulators).

We compare this method to other already known motion
models. Finally, we propose a set of metrics that allow to
compare the methods in terms of plausibility, computational
time, and the range of track types that can be simulated by
each of the respective techniques.

II. TYPES OF CATERPILLAR TRACKS

To clearly specify the type of vehicles this work is focused
on, a short taxonomy of track types follows.

Based on the material the track is made of, the two
basic types are metal tracks and rubber tracks. Metal tracks
are usually made of many small track plates connected
together with hinge-like joints. Rubber tracks are made of
a continuous steel-reinforced band of rubber.

Another distinctive feature of different track types is the
deformability of the outer shape of the track. The deformable
track systems need a set of inner (sometimes also outer)
wheels keeping the track approximately in the required shape
and providing suspension (see Figure 1). The track can bend

Fig. 1. Track models. Top left: A vehicle with chain-like deformable
tracks. This is the model available in model database of the V-REP simulator
(courtesy of Qi Wang). Top right: Non-deformable track model used for the
proposed method. Bottom left: Track approximated by 4 wheels. Bottom
right: Track made of 2 cm plates with grousers.

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 24–28, 2017, Vancouver, BC, Canada
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in between the wheels, hence the name deformable tracks.
Metal tracks are usually deformable, and also deformable
rubber tracks exist.

Non-deformable tracks have solid guides (infills), which
prevent the outer belt shape from bending and deforma-
tion (see Figure 1). This design is often chosen for rubber
tracks, and it is the type this comparison is focused on.

A special category—conveyor belts and escalators—may
be added to this taxonomy. In many design principles they
are similar to the tracks for vehicles, but the main difference
is they are always fixed to the environment and thus have no
dynamics as a whole.

Independently from the above categories, tracks can be
equipped with grousers. These protrusions enlarge the con-
tact surface and help to increase traction in soft materials
(depicted in Figure 1).

III. RELATED WORK

Depending on the purpose of the simulation, either very
precise and detailed, or approximate models can be used.
The former ones have been studied extensively in literature,
whereas the approximate models, due to their triviality and
inaccuracy, have not been examined profoundly despite their
frequent use in nowadays robotics.

A. Precise Models

Simulation of the deformable tracks can be completely
set up using existing robotics simulators – the track consists
of a set of solid track plates connected with hinge joints,
several wheels and, possibly, suspension of the wheels. All
these components are available in simulators like Gazebo,
Webots or V-REP. However, this type of simulations is both
computationally intensive and very unstable for the high
number of constrained dynamic elements [4]. Only the V-
REP simulator provides a reliable simulation of this type,
and many parameters have to be very finely tuned for it to
work. Sokolov et al. [5] tried to implement this method in
Gazebo, but the reported results are unsatisfactory.

When the general-purpose simulators fail, specialized sim-
ulators were developed to simulate the deformable track
dynamics. Wallin et al. [6] compared several formulations
of the mechanical joints when applied to metal tracks.
They conclude that each formulation has its advantages and
disadvantages and has to be chosen with respect to the
specific use-case.

As discussed in the introduction, considerable effort is
devoted to simulation of tracks using the Finite Elements
Analysis [7], [8]. But the precision and computational de-
mands are of higher orders than the methods we focus on.

In agriculture and military research, the track-soil interac-
tion is of high interest (mainly due to sinkage of the track
plates). Most of these works seem to only consider planar
motion of the vehicle [9], [10], [11] and mainly concentrate
on computing correct sinkage-induced behavior. Yamakawa
and Watanabe [12] provide a fully three-dimensional simula-
tion taking into account the track-soil interactions and wheel
suspension.

B. Approximate Models

Common feature of the models described in the previous
section is that they properly simulate some effects, but are
either very computationally intensive, or neglect some other
important effects (they e.g. assume motion on flat ground
with small obstacles only).

We are not aware of any approximate model for the de-
formable track type, because its behavior is highly nonlinear
and it essentially requires to model the individual parts of
the track separately. The rest of this section thus concentrates
on approximate models for non-deformable tracks.

In some environments, only flat ground is present (e.g. in
household robotics or storehouse helper robots). Then there
is effectively only a very small difference between a tracked
robot and a 4-wheel robot with skid-steer control.

In some cases, the tracks can be treated completely passive
and the robot motion can be roughly estimated by setting
zero friction to the track surface, and pushing the robot with
a virtual force instead of driving the tracks. This force can
be applied via a P(ID) controller, so that the robot achieves
the desired velocity and keeps it. However, the usual effects
of friction can not be simulated. Consequently, the robot can
not stand on a tilted plane without control force (which the
real robot can do).

When negotiation of obstacles needs to be accounted for,
the 4-wheel approximation would fail because the robot
could not support itself on obstacle edges by the middle
parts of the tracks. In this case, the problem is often solved
by putting more virtual intersecting wheels inside the track.
This approach has been tested by Sokolov et al. [13], and
is available as a predefined model in V-REP and Webots
simulators. The model still uses the skid-steer wheel con-
trol with synchronized wheel velocities on each side. On
one hand, it has problems imitating the skid-steer behavior
properly. On the other hand, the robot is able to overcome
some obstacles and can support itself by any part of the
track.But the geometry of such model does not correspond
to the real geometry, which is why these models cannot
plausibly simulate e.g. climbing up a staircase. We have
observed in Section V that this model also gets stuck in
some cases where the real robot would continue going. These
models also do not work very well with the standard friction
pyramid approximation of friction direction – it is instead
needed to use the more precise (and more computationally
expensive) friction cone model [1].

The V-REP simulator offers another method of approxi-
mate simulation, which is only suitable for conveyor belts
and other static elements. It bypasses the physics by directly
setting linear velocity of the whole conveyor belt mechanism,
letting it interact with other bodies, and resetting all forces
that acted on it afterwards. This way, the conveyor belt can
exert forces on objects colliding with it, but at the same time,
it stays on its place unaffected by any kind of dynamics
(because the forces are zeroed-out each simulation step).
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C. Skid-steer Motion

The slippage in the skid-steer behavior is an essential part
of motion of tracked vehicles. While it automatically emerges
from the precise simulation models as a result of track
tension and other forces acting on the individual parts of the
track, a kinematic model is also available for approximate or
kinematics-only simulations.

Martı́nez et al. [14] define virtual points called Instanta-
neous Centers of Rotation (ICR) which depend on the desired
turning radius and on a coefficient called steering efficiency.
The robot follows a circular path centered at the ICR and
if the steering efficiency is equal to 1, the motion is the
same as the motion of a geometrically equal differential-
drive wheeled vehicle.

Janarthanan et al. [15] extend this theory for tracked
vehicles with road wheels.

IV. MODEL BASED ON CONTACT SURFACE MOTION

Our novel method exploits the dynamic simulation formu-
lation as Linear Complementarity Problem (LCP), which is
used in ODE [16] and other robotics simulators. It does not,
however, depend on any particular LCP solver implementa-
tion.

A. LCP Formulation

The dynamic simulation problem is an application of
Newton’s second law:

F = Ma =
d(M q̇)

dt
(1)

where t is time, F is the force acting on the dynamic system,
M is the mass and inertia matrix, and q̇ is the linear and
angular velocity of the bodies (which is the derivative of the
system state q). The force F is split into external force Fe

and constraint force Fc [4], which is a set of forces generated
by joint constraints that keep joint constraints valid in the
next time step.

The constraints are written in the form

Ċ(q) = J q̇ ≥ 0 (2)

where J is the constraint Jacobian. An observation in [4]
states that the direction of the constraint force is given by J ,
so it is sufficient to search for the constraint force magnitude
λ (so that Fc = J λ).

In simulation, the derivative is discretized into short time
steps ∆t (usually 1 ms) and the state of the system is
integrated step-by-step using Euler’s integration [4]. The
state of the system in the next time step n + 1 can be
expressed as

qn+1 = qn + vn+1∆t

where the new velocity vector vn+1 (corresponding to q̇ in
the continuous setting) is obtained from Equation 1:

vn+1 = vn +M−1(Fe + Fc)∆t

= vn +M−1(Fe + Jλ)∆t

The unknown constraint force magnitude λ is the solution
of the following LCP [4]:

JM−1JTλ∆t+ J(vn +M−1Fe∆t) ≥ 0

given λ ≥ 0, J(vn +M−1Fe∆t) ≥ 0

(J(vn +M−1Fe∆t))Tλ = 0

B. Contact Constraint Equations

In each time step, when links L1 and L2 collide, a set
of contact points {Ci}Ni=0 is generated at places where the
links touch or penetrate each other. Every contact point is
assigned a contact joint, which is a temporary constraint
between L1 and L2. The set of constraints yielded by the
contact joint consists of a position constraint (repelling the
two links from each other along the contact normal), and
a velocity constraint for friction (stopping parallel motion
of the two links), which often utilizes the Coulomb friction
representation [17], [18].

Linear velocity of L1 is denoted by v1, angular velocity
by ω1, and r1i is the vector from the center of L1 to Ci;
respective definitions hold for L2. Further, ti denotes the
main tangential friction direction (which is perpendicular to
the contact normal).

The approximate velocity constraint for Coulomb friction
at contact point Ci with friction coefficient µi is [17]:

∂Ci

∂t
= (v2 + ω2 × r2i − (v1 + ω1 × r1i)) · ti = 0 (3)

−µi ≤ λi ≤ µi (4)

which can be interpreted as “stop any motion in direction ti”.
The LCP solver tries to find magnitude of the friction force
in direction −ti (which is bounded by µi) that would satisfy
this equation.

C. Contact Surface Motion Model

With the previous definitions, our novel method can be
described as a modification of Equation 3. To account for
the track velocity vt, Equation 3 is adjusted to:

∂Ci

∂t
= vt

which might be interpreted as “find a force that would keep
relative motion of L1 and L2 at velocity vt”. With this
change, the model will move just by applying the modified
friction constraints and setting vt.

Nevertheless, this model is not able to correctly simulate
grousers. If the real track has grousers, one way to add
a similar effect to the simulation is to increase the friction co-
efficient. This method proved useful in our previous work [3]
where we heavily utilized the simulator to find a control
policy suitable also for the real robot.

There are more precise models for contacts with fric-
tion [18], but the practical experiments have shown that even
the friction pyramid approximation used in ODE is sufficient
for our method to work.

This method can be also easily used for tracks of various
shapes. The only requirement is to be able to compute the
normals of contact points on the tracks.
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D. Enabling Skid-Steer Motion

The last part to be defined is the friction direction ti. If
only forward motion is required, it can be simply set to be
parallel to the tracks. However, this setting causes problems
when the robot is to turn around using skid-steering motion
(since the friction forces are not consistent with the turning
maneuver).

Here we connect the dynamic simulation with the kine-
matic model of tracked vehicle motion by Martı́nez et al.
introduced in Section III-C. The whole vehicle is said to be
following a circular path centered at ICR (or driving straight
if ICR is in infinity). Thus, we know the desired trajectory
of all contact points on the track, and we set each direction
ti to be tangent to this trajectory, see Figure 2.

This model has been successfully used in our previous
work [3]. Implementation of the proposed method (and some
other) has been offered to the Gazebo community [2].

V. COMPARISON OF MODELS

In this section, a comparison of methods of modeling non-
deformable tracks is presented.

A. Tested Models

The tested models are described in the following sections
(and depicted in Figure 1). Each model is shortly introduced,
and an abbreviation for it is defined, which is used through-
out the rest of the text and figures. All the tested models
differ only in representation of the main tracks – all other
properties, such as mass, inertia, shape etc. were the same
for all models.

With each of the models, identification of the most realistic
set of parameters was done. The optimized parameters were
always linear and angular gain – ratios that convert control
inputs from simulator to velocity commands for the models.
Other parameters were added only for the models they make
sense with, and consist of steering efficiency and friction
coefficients in the first and second friction direction.

First, we tried to manually find a suitable set of parameters
and estimated the ranges for each of them. Then we did
5 iterations of optimization, in each of which we examined

ICR ωz

vy

Vl Vr

Fig. 2. Instantaneous Center of Rotation. Left: A schematic view of
the ICR. If the vehicle doesn’t slip to the sides, ICR lies always on
the depicted horizontal line passing through the centers of the tracks [14].
The distance of ICR from the center depends on forward velocity vy and
angular velocity ωz (inverse kinematics), or the speeds of the left and right
track Vl and Vr (forward kinematics). Right: Computed directions of the
friction forces ti (red lines) for the case where ICR lies in the center
of the red disk. The friction forces are perpendicular to the (black) lines
connecting the contact points with ICR.

5 samples from a multivariate Gaussian distribution centered
on the so far best set of parameters (with covariance derived
from the estimated ranges). Examination of each sample con-
sisted of traversing all defined scenarios with model settings
taken from the sample, and summing up the weighted metric
values (defined further in this section). To account for the
uncertainty in the simulator, each traversal was tried 3 times
and the metric value was averaged over these trials.

1) Model based on Contact Surface Motion: This is the
novel model shortened as CSM.

2) Wheels instead of tracks: Model with 4 wheels in-
stead of each track (4wheels) or 8 wheels (8wheels). All
wheels are velocity-controlled using a skid-steer wheel con-
trol mechanism (with wheels on each side synchronized
in velocity).

3) Subdivision to plates: Model with belt subdivided into
10 cm plates (plates10) or 2 cm plates (plates2) inter-
connected by hinge joints, plus sprocket and idler wheels.
Versions with grousers attached to the track plates are
shortened as plates10g and plates2g. The inner space of
the track is filled with a solid box which can collide with
the track plates, thus emulating the non-deformability of the
track. Only the sprocket wheel is controlled, using torque
control. This model requires more tuning in the simulator. To
simplify it, the sprocket wheel is represented by a cylinder
with infinite friction with the track plates (so that it efficiently
transfers force to them without the need to model the teeth
and their interaction with the plates). Further, lateral motion
of track plates has to be avoided (otherwise, they would slip
off the track very easily). This would be best done with a
planar joint, which is however not available in Gazebo/ODE.
As a workaround, placing two virtual vertical plates to the
sides of each track (that collide only with the track plates)
yields a similar behavior (although it is not ideal).

4) No friction: Model with zero friction between the
tracks and ground (no friction). The collision shape of the
track is the same as in the CSM model, but the friction of the
track is set to zero, and the whole model is force-controlled
by applying a virtual force at its center of mass. The applied
force is always perpendicular to the vertical axis of the robot.

5) The real robot: The real robot was also part of the test.
It is the Absolem platform used in Urban Search and Rescue
project TRADR [19]. Position of the robot in 6D space
was measured by an IMU combined with track and laser
odometry [20].

B. Test Scenarios

The models were tested in the following scenarios. Each
scenario specifies a different metric showing how successful
the model was, and was selected specifically to discover
weak points of the models. All the scenarios start with the
robot in rest, no initial speed, forces or torques. A view on
the obstacles in the scenarios is provided in Figure 3.

CPU time was measured in all scenarios. It represents the
(real-world) time difference between the start of first scenario
execution, and the end of the last scenario execution (so
it is summed up over all scenarios for each model). The
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TABLE I
NUMERICAL COMPARISON OF THE SIMULATION METHODS.

Metric csm (proposed) 4wheels 8wheels no friction plates10 plates2 plates10g plates2g
Straight dt 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.2± 0.1 1.6± 0.0 1.3± 0.0 1.6± 0.1 0.5± 0.0

Rotate dω 0.1± 0.0 0.5± 0.0 1.6± 0.0 0.1± 0.1 1.4± 0.6 1.0± 0.1 2.5± 0.2 3.1± 0.0

Circular
∑

dt 157.8± 5.7 45.5± 1.7 116.9± 6.4 47.4± 2.2 210.5± 30.6 189.5± 4.7 564.9± 36.3 195.7± 6.5

Back&forth dst 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.1± 0.0 1.3± 0.1 0.1± 0.0 2.6± 0.2 0.3± 0.0

Ramp
∑

dω 1.8± 0.0 2.2± 0.1 1.8± 0.0 2.0± 0.0 4.6± 1.1 2.6± 0.4 10.5± 4.1 34.7± 1.9∑
dt 8.0± 2.7 4.6± 1.3 5.3± 0.8 16.8± 4.3 36.3± 1.6 61.7± 0.2 36.9± 3.5 121.9± 1.1

Staircase
∑

dω 14.0± 0.8 10.2± 0.1 10.7± 0.3 17.1± 0.4 36.0± 31.3 8.4± 1.8 25.1± 11.1 45.5± 1.8∑
dt 12.1± 1.0 16.3± 2.3 15.2± 0.9 13.0± 3.7 111.5± 5.9 86.8± 2.5 14.4± 7.0 163.0± 1.6

Stand on st. dst 0.0± 0.0 0.1± 0.0 0.2± 0.0 0.2± 0.0 0.6± 0.6 0.2± 0.0 0.2± 0.2 0.2± 0.0

dω 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.1± 0.0 0.4± 0.4 0.1± 0.0 0.2± 0.2 0.1± 0.0

Pallet
∑

dω 27.6± 0.9 27.7± 12.5 28.3± 17.7 31.8± 1.0 164.4± 151.5 47.6± 4.7 83.0± 13.1 64.3± 2.6∑
dt 49.9± 2.5 116.9± 76.2 157.8± 46.6 45.2± 3.4 508.3± 146.3 181.1± 3.8 198.6± 72.7 78.4± 1.2

CPU time time 38.9± 1.4 47.5± 1.7 82.4± 3.3 33.0± 1.3 254.9± 4.9 2282.6± 112.7 203.5± 8.3 2241.3± 31.8

Numerical results of the conducted experiments. Each model-scenario pair was executed 10 times, and the averages and standard deviations of the
defined metrics are shown in the table. Shorthand dt means the distance to target point metric (units are meters), dst is distance from start. Term dω
denotes the smallest angular offset from target roll-pitch-yaw orientation (units are radians). Terms

∑
dt and

∑
dω stand for the sum of positional

errors or sum of angular errors respectively (with units meters and radians). CPU time (in last row) is not a scenario, but as it is aggregated over all
scenarios for each model, we display it as a row of values. The duration of all scenarios in simulation time is 110 seconds, so a run-time of 30 seconds
means the simulation ran at 11

3
real-time speed on the test notebook. Best results in each scenario are highlighted in bold for better orientation.

simulators were running with high process priority without
an upper bound on performance. The time complexity could
be probably lowered for most of the models by adjusting the
dynamics engine for the particular case; our measurements
show CPU time needed by the implementation in the stock
simulator without any code modifications.

Where a metric refers to the error from real robot trajec-
tory, it means the scenario was traversed with the real robot,
and the trajectory was recorded as a reference.

Fig. 3. Obstacles used in test scenarios. Obstacles that appear in the test
scenarios (from the left): ramp, pallet, staircase. Also flat ground was used
in scenarios. The models of the obstacles are 1:1 models of the obstacles
traversed by the real robot.

1) Straight drive: Drive straight on a building floor using
velocity 0.3 m.s−1 for 10 seconds. Metric: distance from
point (3.0, 0.0, 0.0)T .

2) Rotating in place: Keep the center at one place while
rotating at 0.6 rad.s−1 for 10 seconds. Metric: Angular
distance from heading 6.0 rad, metric distance from the
starting point.

3) Circular path: Follow a circular path by driving left
track at velocity 0.1 m.s−1 and right track at velocity
0.3 m.s−1 for 10 seconds. Metric: Sum of positional errors
(from real robot trajectory) sampled at 10 Hz.

TABLE II
SUMMARY RESULTS

CSM Wheels Plates No friction
Computation speed X X × X

Plausibility on flat surfaces X X X X

Plausibility on rough terrain X × X ×
Non-deformable tracks X X X X

Deformable tracks × × X ×
Grousers × × X ×

This table presents an overview based on the results of the conducted
experiments. Sign “X” means that the model is suitable for/supports the
given use-case. Sign “×” means that the method is not suitable for/does
not support the given use-case.

4) Ramp: Drive straight on a tilted ramp using velocity
0.3 m.s−1 for 10 seconds. Metric: Sum of positional errors
sampled at 10 Hz, sum of angular errors sampled at 10 Hz.

5) Staircase: Climb down a staircase using velocity
0.3 m.s−1 for 10 seconds. Metric: Sum of positional errors
(from real robot trajectory) sampled at 10 Hz, sum of angular
errors sampled at 10 Hz.

6) Stand on staircase: Stand on a staircase with no control
commands for 10 seconds. Metric: Distance from the starting
point, angular offset from the starting orientation.

7) Pallet: Climb over a pallet using velocity 0.1 m.s−1

for 30 seconds. Metric: Sum of positional errors (from real
robot trajectory) sampled at 10 Hz, sum of angular errors
sampled at 10 Hz.

8) Back and forth: Drive using velocity 0.2 m.s−1 back
and forth 10 times, with 2 seconds between every direction
switch. Metric: distance from the starting point.
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C. Test results

Each model was tested 10 times in each scenario, and the
values of the metrics were averaged over these tests.

The detailed results are shown in Table I. A summary
extracted from the test results is given in Table II.

From the table, it follows that the track plate models
are slower by an order of magnitude or two than the other
models. We have also observed, that the 10 cm plates are too
rough approximation of the smoothly curved belt, and the
resulting model’s motion could be described as “bumpy”.
Last observation for track plate models is that without
grousers, the robot is often not able to climb up the pallet.
That, however, corresponds to the expected real behavior of
a belt without grousers.

The wheeled models are computationally fast and provide
good plausibility in most scenarios. They suffer from unreal-
istic slippage in the stand on staircase scenario, because the
friction forces have unrealistic directions. The pallet scenario
showed to be a big problem for these methods—if a sharp
edge (e.g. a step or pallet edge) touches the track in a point
where neighboring wheels intersect, the model suddenly
stops moving as a result of unrealistic forces and their
directions. We think it is not a bug in our implementation,
since the same behavior was also observed with the wheeled
track model available in V-REP simulator (which even uses
a different dynamics engine—Bullet).

The no friction model provided good results in all tested
scenarios, except stand on staircase. That failure is obviously
caused by the missing friction between tracks and ground. It
was the fastest tested model.

The proposed Contact Surface Motion model was the
second fastest tested model. It provided good results in all
tested scenarios except circular path. Here, the parameter
optimization was not able to find a set of parameters that
would provide good performance for both rotate in place and
circular path; with the best set of parameters, the robot was
turning too quickly in the circular path scenario. Together
with no friction, only these two models traversed the pallet
without problems.

VI. CONCLUSION AND FUTURE WORK

Simulation of tracked vehicles is a complicated task even
when it is narrowed down only to simulation of non-
deformable tracks. The presented Contact Surface Motion
model proved to be one of the fastest methods that still
provide highly plausible results in most cases. It is the first
computationally-light method allowing the use of precise
geometry of the tracks while keeping plausible dynamic
behavior. It can be utilized not only for simulation of tracked
vehicles, but also for conveyor belts, treadmills and any other
kind of moving planar surfaces.

The proposed set of metrics for comparison of the simula-
tion models showed as a practical test for discovering weak
and strong points of each model. Once the pull request to
Gazebo [2] is merged, the testing world and obstacles [21]
can be utilized by others to compare with their models.
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Abstract

We propose an active 3D mapping method for depth sen-
sors, which allow individual control of depth-measuring
rays, such as the newly emerging solid-state lidars. The
method simultaneously (i) learns to reconstruct a dense 3D
occupancy map from sparse depth measurements, and (ii)
optimizes the reactive control of depth-measuring rays. To
make the first step towards the online control optimization,
we propose a fast prioritized greedy algorithm, which needs
to update its cost function in only a small fraction of pos-
sible rays. The approximation ratio of the greedy algo-
rithm is derived. An experimental evaluation on the sub-
set of the KITTI dataset demonstrates significant improve-
ment in the 3D map accuracy when learning-to-reconstruct
from sparse measurements is coupled with the optimization
of depth measuring rays.

1. Introduction
Development of autonomous vehicles such as self-

driving cars or ground robots has attracted substantial atten-
tion of the robotics community in the last few years. One of
the reasons is that an accurate 3D perception, which is an es-
sential component for many fundamental capabilities such
as emergency braking, predictive active damping or self-
localization from offline maps [12], has finally become pos-
sible. Since state-of-the-art rotating lidars are very expen-
sive, heavy and contain moving parts prone to mechanical
wear, several manufacturers have announced the develop-
ment of cheaper, lighter, smaller and motionless solid-state
lidars (SSL), which should become available soon [1].

In contrast to rotating lidars, the SSL uses an opti-
cal phased array as a transmitter of depth measuring light
pulses. Since the built-in electronics can independently
steer pulses of light by shifting its phase as it is projected
through the array, the SSL can focus its attention on the
parts of the scene important for the current task. Task-driven
reactive control steering hundreds of thousands of rays per
second using only an on-board computer is a challenging
problem, which calls for highly efficient parallelizable al-

Figure 1. Active 3D mapping with Solid State Lidar. Iteratively
learned deep convolutional network reconstructs local dense oc-
cupancy map from sparse depth measurements. The local map
is registered to a global occupancy map, which in turn serves as
an input for the optimization of depth-measuring rays along the
expected vehicle trajectory. The dense occupancy maps are visu-
alized as isosurfaces.

gorithms. As a first step towards this goal, we propose an
active mapping method for SSL-like sensors, which simul-
taneously (i) learns to reconstruct a dense 3D voxel-map
from sparse depth measurements and (ii) optimize the re-
active control of depth-measuring rays, see Figure 1. The
proposed method is evaluated on a subset of the KITTI
dataset [5], where sparse SSL measurements are artificially
synthesized from captured lidar scans, and compared to a
state-of-the-art 3D reconstruction approach [3].

The main contribution of this paper lies in propos-
ing a computationally tractable approach for very high-
dimensional active perception task, which couples learning
of the 3D reconstruction with the optimization of depth-
measuring rays. Unlike other approaches such as active
object detection [6] or segmentation [7], SSL-like reac-
tive control has significantly higher dimensionality of the
state-action space, which makes a direct application of un-
supervised reinforcement learning [6] prohibitively expen-
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sive. Keeping the on-board reactive control in mind, we
propose prioritized greedy optimization of depth measur-
ing rays, which in contrast to a naı̈ve greedy algorithm re-
evaluates only 1/500 rays in each iteration. We derive the
approximation ratio of the proposed algorithm.

The 3D mapping is handled by an iteratively learned con-
volution neural network (CNN), as CNNs proved their su-
perior performance in [3, 17]. The iterative learning pro-
cedure stems from the fact that both (i) the directions in
which the depth should be measured and (ii) the weights of
the 3D reconstruction network are unknown. We initialize
the learning procedure by selecting depth-measuring rays
randomly to learn an initial 3D mapping network which es-
timates occupancy of each particular voxel. Then, using
this network, depth-measuring rays along the expected ve-
hicle trajectory can be planned based on the expected recon-
struction (in)accuracy in each voxel. To reduce the training-
planning discrepancy, the mapping network is re-learned on
optimized sparse measurements and the whole process is it-
erated until validation error stops decreasing.

2. Previous work
High performance of image-based models is demon-

strated in [14], where a CNN pooling results from multi-
ple rendered views outperforms commonly used 3D shape
descriptors in object recognition task. Qi et al. [10] com-
pare several volumetric and multi-view network architec-
tures and propose an anisotropic probing kernel to close the
performance gap between the two approaches. Our network
architecture uses a similar design principle.

Choy et al. [3] proposed a unified approach for single
and multi-view 3D object reconstruction which employs a
recurrent neural architecture. Despite providing competi-
tive results in the object reconstruction domain, the archi-
tecture is not suitable for dealing with high-dimensional
outputs due to its high memory requirements and would
need significant modifications to train with full-resolution
maps which we use. We provide a comparison of this
method to ours in Sec. 6.2, in a limited setting.

Model-fitting methods such as [13, 15, 11] rely on a
manually-annotated dataset of models and assume that ob-
jects can be decomposed into a predefined set of parts. Be-
sides that these methods are suited mostly for man-made
objects of rigid structure, fitting of the models and their
parts to the input points is computationally very expensive;
e.g., minutes per input for [13, 15]. Decomposition of the
scene into plane primitives as in [8] does not scale well with
scene size (quadratically due to candidate pairs) and could
not most likely deal with the level of sparsity we encounter.

Geometrical and physical reasoning comprising stabil-
ity of objects in the scene is used by Zheng et al. [18] to
improve object segmentation and 3D volumetric recovery.
Their assumption of objects being aligned with coordinate

axes which seems unrealistic in practice. Moreover, it is not
clear how to incorporate learned shape priors for complex
real-world objects which were shown to be beneficial for
many tasks (e.g., in [9]). Firman et al. [4] use a structured-
output regression forest to complete unobserved geometry
of tabletop-sized objects. A generative model proposed by
Wu et al. [17], termed Deep Belief Network, learns joint
probability distribution p(x, y) of complex 3D shapes x
across various object categories y.

End-to-end learning of stochastic motion control policies
for active object and scene categorization is proposed by Ja-
yaraman and Grauman [6]. Their CNN policy successively
proposes views to capture with RGB camera to minimize
categorization error. The authors use a look-ahead error
as an unsupervised regularizer on the classification objec-
tive. Andreopoulos et al. [2] solve the problem of an ac-
tive search for an object in a 3D environment. While they
minimize the classification error of a single yet apriori un-
known voxel containing the searched object, we minimize
the expected reconstruction error of all voxels. Also, their
action space is significantly smaller than ours because they
consider only local viewpoint changes at the next position
while the SSL planning chooses from tens of thousands of
rays over a longer horizon.

3. Overview of the active 3D mapping
We assume that the vehicle follows a known path con-

sisting of L discrete positions and a depth measuring device
(SSL) can capture at most K rays at each position. The set
of rays to be captured at position l is denoted Jl.

We denote Y the global ground-truth occupancy map,
Ŷ its estimate, and X the map of the sparse measurements.
All these map share common global reference frame cor-
responding to the first position in the path. For each of
these maps there are local counterparts yl, ŷl, and xl, re-
spectively. Local maps corresponding to position l all share
a common reference frame which is aligned with the sensor
and captures its local neighborhood. The global ground-
truth map Y is used to synthesize sensor measurements xl

and to generate local ground-truth maps yl for training.
The active mapping pipeline, consisting of a measure-

reconstruct-plan loop, is depicted in Fig. 1 and detailed in
Alg. 1. Neglecting sensor noise, the set of depth-measuring
rays obtained from the planning, the measurements xl, and
the resulting reconstruction Ŷ can all be seen as a determin-
istic function of mapping parameters θ and Y. If we assume
that that ground-truth maps Y come from a probability dis-
tribution, both learning of θ and planning of the depth-
measuring rays approximately minimize common objective

EY{L(Y, Ŷ(θ,Y))}, (1)

where L(Y, Ŷ) =
∑

i wi log(1 + exp(−YiŶi)) is the
weighted logistic loss, Yi ∈ {−1, 1} and Ŷi ∈ R denote
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Algorithm 1 Active mapping
1: Initialize position l ← 0 and select depth-measuring

rays randomly.
2: Measure depth in the directions selected for position l

and update global sparse measurements X and dense
reconstruction Ŷ with these measurements.

3: Obtain local measurements xl by interpolating X.
4: Compute local occupancy confidence ŷl = hθ(xl) us-

ing the mapping network hθ.
5: Update global occupancy confidence Ŷ ← Ŷ + ŷl.
6: Plan depth-measuring rays along the expected vehicle

trajectory over horizon L given reconstruction Ŷ.
7: Repeat from line 2 for next position l← l + 1.

the elements of Y and Ŷ, respectively, corresponding to
voxel i. In learning, wi ≥ 0 are used to balance the two
classes, empty with Yi = −1 and occupied with Yi = 1,
and to ignore the voxels with unknown occupancy. We
assume independence of measurements and use, for corre-
sponding voxels i, additive updates of the occupancy con-
fidence Ŷi ← Ŷi + hi(xl) with hi(xl) ≈ log(Pr(Yi =
1|xl)/Pr(Yi = −1|xl)). Pr(Yi = 1|xl) denotes the condi-
tional probability of voxel i being occupied given measure-
ments xl and σ(Ŷi) = 1/(1 + e−Ŷi) is its current estimate.

4. Learning of 3D mapping network

The learning is defined as approximate minimization of
Equation 1. Since (i) the result of planning xl (θ,Y) is not
differentiable with respect to θ and (ii) we want to reduce
variability of training data1, we locally approximate the cri-
terion around a point θ0 as

EY{
∑

l

L(yl,hθ(xl(θ
0,Y)))} (2)

by fixing the result of planning in xl(θ
0,Y). The learning

then becomes the following iterative optimization

θt = argmin
θ

EY{
∑

l

L(yl,hθ(xl(θ
t−1,Y)))}, (3)

where minimization in particular iterations is tackled by
Stochastic Gradient Descent. Learning is summarized in
Alg. 2.

Note, that in order to achieve (i) local optimality of the
criterion and (ii) statistical consistency of the learning pro-
cess (i.e., that the training distribution of sparse measure-
ments xl corresponds to the one obtained by planning), one
would have to find a fixed point of Equation 3. Since there
are no guarantees that any fixed point exists, we instead it-
erate the minimization until validation error is decreasing.

The mapping network consists of 6 convolutional layers

1We introduce a canonical frame by using the local maps instead of the
global ones, which helps the mapping network to capture local regularities.

Algorithm 2 Learning of active mapping
1: Initialize t← 0 and obtain dataset D0 = {(xl,yl)}l by

running the pipeline with the rays being selected ran-
domly, instead of using the planner.

2: Train the mapping network on Dt to obtain ht with pa-
rameters θt.

3: Obtain Dt+1 = {(xl(θ
t,Y),yl)}l by running Alg. 1

and using hθt for mapping.
4: Set t ← t + 1 and repeat from line 2 until validation

error stops decreasing.

Figure 2. Architecture of the mapping network. Top: An exam-
ple input with sparse measurements, showing only the occupied
voxels. Bottom: The corresponding reconstructed dense occu-
pancy confidence after thresholding. Right: Schema of the net-
work architecture, composed from the convolutional layers (de-
noted conv), linear rectifier units (relu), and pooling (pool) and
upsampling layers (deconv).

with 5×5 kernels followed by linear rectifier units (element-
wise max{x, 0}) and, in 2 cases, by max pooling layers
with 2× 2 kernels and stride 2, see Fig. 2. In the end, there
is an fourfold upsampling layer so that the output has same
size as input. The network was implemented in MatCon-
vNet [16].

5. Planning of depth measuring rays
Planning at position l searches for a set of rays J ,

which approximately minimizes the expected logistic loss
L(Y,hθt(xl+L)) between ground truth map Y and recon-
struction obtained from sparse measurements xl+L at the
horizon L. The result of planning is the set of rays J ,
which will provide measurements for a sparse set of vox-
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els. This set of voxels is referred to as covered by J and
denoted as C(J). While the mapping network is trained of-
fline on the ground-truth maps, the planning have to search
the subset of rays online without any explicit knowledge of
the ground-truth occupancy Y. Since it is not clear how to
directly quantify the impact of measuring a subset of vox-
els on the reconstruction hθt(xl+L), we introduce simpli-
fied reconstruction model ĥ(J, Ŷ), which predicts the loss
based on currently available map Ŷ. This model conser-
vatively assumes that the reconstruction in covered voxels
i ∈ C(J) is correct (i.e. L

(
Yi, ĥi(J, Ŷ)

)
= 0) and recon-

struction of not covered voxels i /∈ C(J) does not change
(i.e. L

(
Yi, ĥi(J, Ŷ)

)
= L(Yi, Ŷi)). Given this reconstruc-

tion model, the expected loss simplifies to:
∑

i

L
(
Yi, ĥi(J, Ŷ)

)
=

∑

i/∈C(J)

L(Yi, Ŷi) (4)

Since the ground-truth occupancy of voxels is apriori un-
known, neither the voxel-wise loss nor the coverage are
known. We model the expected loss in voxel i as

L(Yi, Ŷi) ≈ EYi∼B(σ(Ŷi))
L(Yi, Ŷi) = H(B(σ(Ŷi))) = ǫi,

(5)

where H(B(p)) is the entropy of the Bernoulli distribution
with parameter p, denoting the probability of outcome 1
from the possible outcomes {−1, 1}. The vector of con-
catenated losses ǫi is denoted ǫ.

The length of particular rays is also unknown, therefore
coverage C(J) of voxels by particular rays cannot be de-
termined uniquely. Consequently, we introduce probability
pij that voxel i will not be covered by ray j ∈ J . This prob-
ability is estimated from currently available map Ŷ as the
product of (i) the probability that the voxels on ray j which
lie between voxel i and the sensor are unoccupied and (ii)
the probability that at least one of the following voxels or
the voxel i itself are occupied. If ray j does not intersect
voxel i, then pij = 1. The vector of probabilities pij for
ray j is denoted pj . Assuming that rays J are independent
measurements, the expected loss is modeled as ǫT

∏
j∈J pj .

The planning searches for the set J = J1 ∪ · · · ∪ JL of
subsets J1 . . . JL of depth-measuring rays for the following
L positions, which minimize the expected loss, subject to
budget constraints |J1| ≤ K, . . . |JL| ≤ K

J∗ = argmin
J

ǫT
∏

j∈J

pj , s.t. |J1| ≤ K, . . . |JL| ≤ K, (6)

where |Jl| denotes cardinality of the set Jl.
This is a non-convex combinatorial problem2 which

needs to be solved online repeatedly for millions of poten-
tial rays. We tried several convex approximations, however
the high-dimensional optimization has been extremely time

2In our experiments, the number of possible combinations is greater
then 102000.

consuming and the improvement with respect to the signif-
icantly faster greedy algorithm was negligible. As a conse-
quence of that, we have decided to use the greedy algorithm.
We first introduce its simplified version (Alg. 3) and derive
its properties, the significantly faster prioritized greedy al-
gorithm (Alg. 4) is explained later.

We denote the list of available rays at position l as Vl. At
the beginning, the list of all available rays is initialized as
follows V = V1 ∪ · · · ∪ VL. Alg. 3 successively builds the
set of selected rays J . In each iteration the best ray j∗ is
selected, added into J and removed from V . The position
from which the ray j∗ is chosen is denoted l∗. If the budget
K of l∗ is reached, all rays from Vl∗ are removed from V .

In order to avoid multiplication of all selected rays at
each iteration, we introduce the vector b, which keeps voxel
loss. Vector b is initialized as b = ǫ and whenever ray j is
selected, voxel losses are updated as follows b = b ⊙ pj ,
where ⊙ denotes element-wise multiplication.

Algorithm 3 Greedy planning
Require: Set of available rays V and budget K

1: J ← ∅ ⊲ Initialization
2: b← ǫ
3: while ¬(V = ∅) do
4: j∗ ← argminj∈V bTpj ⊲ Add the best ray
5: J ← J ∪ j∗

6: b← b⊙ pj ⊲ Update voxel costs
7: V ← V \ j∗ ⊲ Remove j∗ from V
8: if |Jl∗ | = K then
9: V ← V \ Vl∗ ⊲ Close position

10: end if
11: end while
12: return Set of selected rays J

The rest of this section is organized as follows: Sec-
tion 5.1 shows the upper bound for the approximation ratio
of the greedy algorithm. Section 5.2 introduces the prior-
itized greedy algorithm, which in each iteration needs to
re-evaluate the cost function bTpj only for a small fraction
of rays.

5.1. Approximation ratio of the greedy algorithm

We define the approximation ratio of a minimization al-
gorithm to be ρ = f

OPT
, where f is the cost function achieved

by the algorithm and OPT is the optimal value of the cost
function. Given ρ, we know that the algorithm provides
solution whose value is at most ρ OPT. In this section we
derive the upper bound of the approximation ratio UB(ρ) of
Algorithm 3. Figure 3 shows values of UB(ρ) for different
number of positions L.

The greedy algorithm successively selects rays that re-
duce the cost function the most. To show how cost func-
tion differs from OPT, an upper bound on the cost function
need to be derived. Let us suppose that in the beginning
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of an arbitrary iteration we have voxel losses given by vec-
tor b, the following lemma states that for arbitrary voxel i,
there always exists a ray j, that reduces the cost function to∑

i bi(1− 1
K ) + OPT

K , where OPT = 1T
∏K

j=1 pj = 1TpOPT

is the unknown optimum value of the cost function which is
achievable by K rays p1 . . .pK .

Lemma 5.1. If for some rays
∏K

j=1 pij = pOPT
i then

∀0≤b≤1∃j
V∑

i=1

pijbi ≤
V∑

i=1

bi(1−
1

K
) +

OPT

K
(7)

Proof: We know that there is optimal solution consisting
from K rays. Without loss of generality we assume that∏K

j=1 pij = pOPT
i holds for first K rays, then

∀i
K∑

j=1

pij ≤ K − 1 + pOPT
i . (8)

This holds for an arbitrary positive scaling factor bi, there-
fore

∀i
K∑

j=1

pijbi ≤ (K − 1 + pOPT
i )bi. (9)

We sum up inequalities over all voxels i

V∑

i=1

K∑

j=1

pijbi ≤
V∑

i=1

(K − 1 + pOPT
i )bi. (10)

We switch sums in the left hand side of the inequality to
obtain addition of K terms as follows

V∑

i=1

pi1bi + · · ·+
V∑

i=1

piKbi ≤
V∑

i=1

(K − 1 + pOPT
i )bi (11)

Hence, we know that at least one of these K terms has to be
smaller than or equal to 1

K of the right hand side

∃j
V∑

i=1

pijbi ≤
1

K

V∑

i=1

(K − 1 + pOPT
i )bi =

=
V∑

i=1

bi(1−
1

K
) +

1

K

V∑

i=1

pOPT
i bi ≤

≤
V∑

i=1

bi(1−
1

K
) +

V∑

i=1

pOPT
i

K
= (12)

=
V∑

i=1

bi(1−
1

K
) +

OPT

K
�

Especially, if there is only one position, all optimal K rays
p1 . . .pK are either already selected or still available. This
assumption allows to derive the following upper bound on
the cost function of the greedy algorithm fK after K itera-
tions for L = 1.

Theorem 5.1. Upper bound UB(fK) ≥ fK of the greedy
algorithm after K iterations is

UB(fK) = E
1

e
+ OPT

(
1− 1

e

)
, (13)

where E =
∑V

i=1 ǫi and e is Euler number.

Proof: We prove the upper bound by complete induction.
In the beginning no ray is selected, per-voxel loss is b0i = ǫi
and the value of the cost function f0 =

∑V
i=1 b

0
i = E.

Using Lemma 5.1, we know that there exists ray j such that∑V
i=1 pijb

0
i ≤

∑V
i=1 b

0
i (1 − 1

k ) +
OPT
K , therefore we know

that

f1 =

V∑

i=1

pijb
0
i ≤

V∑

i=1

b0i

(
1− 1

K

)
+

OPT

K
=

= E

(
1− 1

K

)
+

OPT

K
. (14)

Greedy algorithm continues by updating the per-voxel loss
b1i = b0i pij . In the second iteration there are two possi-
ble cases: (i) we have either used the optimal ray in the
first iteration, then the situation is better and we know there
is (K − 1) rays which achieves optimum, or (ii) we have
not selected the optimal ray in the first iteration, therefore
we have still K rays which achieves the optimum. Since
the cost function reduction in the latter case gives the upper
bound on the cost function reduction in the former one, we
assume that there is still k optimal rays available, therefore
there exists ray j such that

f2 =
V∑

i=1

pijb
1
i ≤

V∑

i=1

b1i

(
1− 1

k

)
+

OPT

K
≤

≤ E

(
1− 1

K

)2

+
OPT

K

((
1− 1

K

)
+ 1

)
. (15)

We assume that the following holds

f t−1 ≤ E

(
1− 1

K

)t−1

+
OPT

K

t−2∑

u=0

(
1− 1

K

)u

.(16)

and prove the inequality for f t. Using the assumption (16)
and Lemma 5.1, the following inequalities hold

f t ≤
V∑

i=1

bt−1
i

(
1− 1

K

)
+

OPT

K
≤

≤
[
E

(
1− 1

K

)t−1

+
OPT

K

t−2∑

u=0

(
1− 1

K

)u
](

1− 1

K

)
+

OPT

K

= E

(
1− 1

K

)t

︸ ︷︷ ︸
αK
t

+OPT
1

K

t−1∑

u=0

(
1− 1

K

)u

︸ ︷︷ ︸
βK
t

(17)
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Since αK
t + βK

t = 1 3 and αK =
(
1− 1

K

)K ≤ 1
e , the

upper bound for cost function of the greedy algorithm in
Kth iteration is fK ≤ E 1

e + OPT
(
1− 1

e

)
�

Theorem 5.1 reveals that the approximation ratio of the
greedy algorithm ρ = fK

OPT
after K iterations has following

upper bound

ρ ≤ OPT( E
OPT

1
e
+

(
1− 1

e

)
)

OPT
≤ E

LB(OPT)e
+

(
1− 1

e

)
(18)

We can simply find LB(OPT) by considering for each voxel
the best K rays independently.

So far we have assumed that the greedy algorithm
chooses only K rays and that all rays are available in all
iterations. Since there are L positions and the greedy algo-
rithm can choose only K rays at each position, some rays
may be no longer available when choosing (K + 1)th ray.
In the worst case possible, the rays from the most promis-
ing position will become unavailable. Since we have not
chosen optimal rays we can no longer achieve OPT. Never-
theless, we can still choose from rays which achieve a new
optimum.

We introduce OPTv as the optimum achievable after clos-
ing v positions. Obviously OPT0 = OPT. Let us assume
that, when the first position is closed we cannot lose more
than R1, therefore OPT1 = OPT + R1. Without any addi-
tional assumption, R1 could be arbitrarily large. We discuss
potential assumptions later. Similarly OPT2 = OPT +R1 +
R2, and OPTv = OPT +

∑v
l=1 Rl. The following theorem

states the upper bound for fLK as a function of OPTv .

Theorem 5.2. Upper bound UB(fLK) ≥ fLK of the
greedy algorithm after LK iterations is

UB(fLK) = E
1

e
+

L−1∑

u=0

γuOPTu, (19)

where γu =
(
1− L

√
1
e

)(
L

√
1
e

)L−1−u

Proof. We start from the result (17) shown in the proof
of Theorem 5.1. Since there is LK rays achieving opti-
mum OPT0 = OPT, the cost function fK in Kth iteration is
bounded as follows

fK ≤ E

(
1− 1

LK

)K

︸ ︷︷ ︸
αLK

K

+OPT0
1

LK

K−1∑

u=0

(
1− 1

LK

)u

︸ ︷︷ ︸
βLK
K

(20)

In the (K + 1)th iteration, there are two possible cases: (i)
rays from some position l become not available and there
is K(L − 1) rays available which can achieve a new opti-
mum which is not higher than OPT1 or (ii) all rays are avail-
able and there is still LK rays which achieve OPT0 = OPT.

3βK
t = 1

K

∑t−1
u=0

(
1 − 1

K

)u
= (1 − a)

∑t−1
u=0 a

u = 1 − at =

1 −
(
1 − 1

K

)t
= 1 − αK

t for a =
(
1 − 1

K

)
.

Noticing that the upper bound is increasing in OPT0 and L,
we can cover both cases by considering there is still LK
rays which achieves OPT1, therefore

fK+1 ≤ (EαLK
K + OPT0β

LK
K )(1− 1

LK
) +

OPT1

LK
=

= EαLK
K+1 + OPT0β

LK
K (1− 1

LK
) +

OPT1

LK
(21)

We can now continue up to the iteration 2K in which the
upper bound is as follows

f2K ≤ EαLK
2K + OPT0β

LK
K αLK

K + OPT1β
LK
K (22)

For (2K + 1)th iteration the situation is similar as for
(K + 1)th iteration. In order to cover both cases, we con-
sider that there is LK rays which achieves OPT2 and con-
tinue up to the 3kth iteration, which yields the following
upper bound

f3K ≤ EαLK
3K + OPT0β

LK
K αLK

2K +

+OPT1β
LK
K αLK

K + OPT2β
LK
K (23)

Finally after LK iterations the upper bound is

fLK ≤ EαLK
LK + βLK

K

L−1∑

u=0

αLK
(L−1−u)KOPTu ≤

≤ E
1

e
+

L−1∑

u=0

(
1− L

√
1

e

)(
L

√
1

e

)L−1−u

OPTu. (24)

The last inequality stems from the fact that (αLK
K )L =

αLK
LK ≤ 1

e and that αLK
K + βLK

K = 1.

Finally we derive the upper bound of the approximation
ratio ρ = fLK/OPT.

Theorem 5.3. Upper bound of the approximation ratio is

ρ ≥ E

LB(OPT)

1

e
+

L−1∑

u=0

γu

(
1 +

∑u
v=1 Rv

LB(OPT)

)
(25)

where LB(OPT) is lower bound of the OPT.

Proof:

ρ =
fLK

OPT
≤ UB(fLK)

OPT
=

E 1
e +

∑L
u=1 γuOPTu

OPT
=

=
OPT( E

OPT
1
e +

∑L
u=1 γu

OPTu

OPT
)

OPT
=

=
E

OPT

1

e
+

L∑

u=1

γu
OPT +

∑u
v=1 Rv

OPT
≤ (26)

≤ E

LB(OPT)

1

e
+

L−1∑

u=0

γu

(
1 +

∑u
v=1 Rv

LB(OPT)

)
�
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Figure 3. UB(ρ) as a function of OPT
E

ratios with Rv ≤ V
L

.

The approximation ratio depends on the OPT, if OPT = 0
then ρ = ∞, if OPT = E then ρ = 1. If we make an as-
sumption that each position covers only 1

L fraction of vox-
els, then Rv ≤ V

L . Figure 3 shows values of LB(ρ) for
different ratios of OPT

E for this case.

5.2. Prioritized greedy planning
In practice we observed a significant speed up of the

greedy planning (Alg. 3) by imposing prioritized search for
argminj b

Tpj . Namely, let us denote ∆k
j the decrease of

the expected reconstruction error achieved by selecting ray
j in iteration k, ∆k

j =
∑

i(b
k−1
i − bki ) =

∑
i b

k−1
i (1−pij),

and show that it is non-increasing. For pij , pij′ ∈ [0, 1] and
bk−1
i ≥ 0 it follows that bk−1

i (1−pij) ≥ bk−1
i pij′(1−pij).

Summing the inequalities for all voxels i, we get

∆k
j =

∑

i

bk−1
i (1−pij) ≥

∑

i

bk−1
i pij′(1−pij) = ∆k+1

j (27)

for an arbitrary ray j′ selected in iteration k. Note that
∆k

j ≥ ∆k+a
j for any a ≥ 1.

Now, when we search for j maximizing ∆k
j in decreasing

order of ∆k−aj

j , aj ≥ 1 ∀j, we can stop once ∆k
j > ∆

k−aj′
j′

for the next ray j′ because none of the remaining rays can
be better than j. Moreover, we can take advantage of the
fact that all the remaining rays including j remained sorted
when updating the priority for the next iteration. The pro-
posed planning is detailed in Alg. 4.

The number of re-evaluations of ∆j in Alg. 4 was ap-
proximately 500× smaller than in Alg. 3. Despite the sort-
ing took about a 1/10 of the computation time, the priori-
tized planning was about 30× faster and took 0.3s on aver-
age using a single-threaded implementation.

6. Experiments
Dataset All experiments were conducted on selected se-
quences from categories City and Residential from the
KITTI dataset [5]. We first brought the point clouds (cap-
tured by the Velodyne HDL-64E laser scanner) to a com-
mon reference frame using the localization data from the
inertial navigation system (OXTS RT 3003 GPS/IMU) and

Algorithm 4 Prioritized greedy planning
Require: Set of rays V = {1, . . . , N} at positions L, budget

K, voxel costs b, probability vectors pj ∀j ∈ V, mapping
from ray to position λ : V 7→ L

1: Jl ← ∅ ∀l ∈ L ⊲ No rays selected
2: ∆j ←∞ ∀j ∈ V ⊲ Force recompute
3: S ← (1, . . . , N) ⊲ Sequence of ray indices,

S(n) denotes the nth element in the sequence, S(m:n) the
subsequence from the mth to the nth element.

4: while S 6= ∅ do
5: for n ∈ (1, . . . , |S|) do
6: ∆S(n) ← bT(1− pS(n))
7: if n < |S| ∧∆S(n) ≥ ∆S(n+1) then
8: break
9: end if

10: end for
11: Sort subsequence S(1 : n) s.t. ∆S(n′) ≥ ∆S(n′+1)

12: Merge sorted subsequences S(1 : n− 1) and S(n : |S|)
13: j∗ ← S(1), l∗ ← λ(j∗)
14: Jl∗ ← Jl∗ ∪ {j∗} ⊲ Add the best ray
15: b← b⊙ pj∗ ⊲ Update voxel costs
16: if |Jl∗ | = K then
17: S ← S \ {j : λ(j) = l∗} ⊲ Close position
18: else
19: S ← S \ {j∗} ⊲ Remove j∗ from S
20: end if
21: end while
22: return Selected rays Jl at every position l ∈ L

created the ground-truth voxel maps from these. The voxels
traced from the sensor origin towards each measured point
were updated as empty except for the voxels incident with
any of the end points which were updated as occupied for
each incident end point. The dynamic objects were mostly
removed in the process since the voxels belonging to these
objects were also many times updated as empty while mov-
ing. All maps used axis-aligned voxels of edge size 0.2m.

For generating the sparse measurements, we consider an
SSL sensor with the field of view of 120◦ horizontally and
90◦ vertically discretized in 160× 120 = 19200 directions.
At each position, we select K = 200 rays and ray-trace in
these directions until an occupied voxel is hit or the maxi-
mum distance of 48m is reached. Only the rays which end
up hitting an occupied voxel produce valid measurements,
as is the case with the time-of-flight sensors. Local maps xl

and yl contain volume of 64m × 64m × 6.4m discretized
into 320× 320× 32 voxels.

6.1. Active 3D mapping

In this experiment, we used 17 and 3 sequences from
the Residential category for training and validation, respec-
tively, and 13 sequences from the City category for testing.
We evaluate the iterative planning-learning procedure de-
scribed in Sec. 4. For learning the mapping networks, we
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Figure 4. ROC curves of occupancy prediction from active 3D
mapping on test sets. Left: Random denotes the global occupancy
Ŷ obtained by using hθ0 with random sparse measurements, Cou-
pled the occupancy obtained by using hθ3 with the prioritized
greedy planning. The voxels which are more than 1m from what
could possibly be measured are excluded, together with the false
positives which can be attributed to discretization error (in 1-voxel
distance from an occupied voxel). Right: Random denotes the lo-
cal occupancy maps ŷl obtained by using hθ0 , Coupled the maps
obtained by using hθ1 , and Res3D-GRU-3 denotes the reconstruc-
tion obtained by the network adapted from [3].

used learning rate α = 10−3(1/8)⌈i/10⌉ based on epoch
number i, batch size 1, and momentum 0.99. Networks
hθ0 , . . . ,hθ3 were trained for 20 epochs.

The ROC curves shown in Fig. 4 (left) are computed us-
ing ground-truth maps Y and predicted global occupancy
maps Ŷ. The performance of the hθ3 network (denoted
Coupled) significantly outperforms the hθ3 network (Ran-
dom), which shows the benefit of the proposed iterative
planning-mapping procedure. Examples of reconstructed
global occupancy maps are shown in Fig. 5. Note that the
valid measurements covered around 3% of the input voxels.

6.2. Comparison to a recurrent image-based archi-
tecture

We provide a comparison with the image-based recon-
struction method of Choy et al. [3]. Namely, we modify
their residual Res3D-GRU-3 network to use sparse depth
maps of size 160 × 120 instead of RGB images. The sen-
sor pose corresponding to the last received depth map was
used for reconstruction. The number of views were fixed to
5, with K = 200 randomly selected depth-measuring rays
in each image. For this experiment, we used 20 sequences
from the Residential category—18 for training, 1 for valida-
tion and 1 for testing. Since the Res3D-GRU-3 architecture
is not suited for high-dimensional outputs due to its high
memory requirements, we limit the batch size to 1 and the
size of the maps to 128 × 128 × 32, which corresponds to
16 × 16 × 4 recurrent units. Our mapping network was
trained and tested on voxel maps instead of depth images.

The corresponding ROC curves, computed from local
maps yl and ŷl, are shown in Fig. 4 (right). Both hθ0

and hθ1 networks outperforms the Res3D-GRU-3 network.

trees cars

Figure 5. Examples of global map reconstruction. Top: Sparse
measurement maps X. Middle: Reconstructed occupancy maps
Ŷ in form of isosurface. Bottom: Ground-truth maps Y. The
black line denotes trajectory of the car.

We attribute this result mostly to the fact that our method is
implicitly provided the known trajectory, while the Res3D-
GRU-3 network is not. Another reason may be the ray-voxel
mapping which is also known implicitly in our case, com-
pared to [3].

7. Conclusions
We have proposed a computationally tractable approach

for the very high-dimensional active perception task. The
proposed 3D-reconstruction CNN outperforms a state-of-
the-art approach by 20% in recall, and it is shown that when
learning is coupled with planning, recall increases by ad-
ditional 8% on the same false positive rate. The proposed
prioritized greedy planning algorithm seems to be a promis-
ing direction with respect to on-board reactive control since
it is about 30× faster and requires only 1/500 of ray evalu-
ations compared to a naı̈ve greedy solution.
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3D mapping for multi hybrid robot cooperation

Hartmut Surmann1 and Nils Berninger1 and Rainer Worst2

Abstract— This paper presents a novel approach to build
consistent 3D maps for multi robot cooperation in USAR envi-
ronments. The sensor streams from unmanned aerial vehicles
(UAVs) and ground robots (UGV) are fused in one consistent
map. The UAV camera data are used to generate 3D point
clouds that are fused with the 3D point clouds generated by a
rolling 2D laser scanner at the UGV. The registration method is
based on the matching of corresponding planar segments that
are extracted from the point clouds. Based on the registration,
an approach for a globally optimized localization is presented.
Apart from the structural information of the point clouds, it is
important to mention that no further information is required
for the localization. Two examples show the performance of the
overall registration.

I. INTRODUCTION

Despite the growing technological advances, coping with
disaster scenarios is still a major challenge for robots and
humans. After 48 hours the probability of rescuing people
from a collapsed building is drastically reduced [1]. The
EU project TRADR develops novel science & technology
for human-robot teams to assist in disaster response efforts,
over multiple sorties during a mission. Various kinds of
robots collaborate with human team members to explore
the environment and to gather physical samples (fig. 1).
The goal is to enable the team to gradually develop its
understanding of the disaster area over multiple, possibly
asynchronous sorties (persistent environment models), to
improve team members’ understanding of how to work in
the area and to improve team-work. The fusion of different
sensor streams of different semi-autonomous robots (UAV
and UGV) in one consistent map is the basis for building the
environment models. The UGV can be equipped with several
sensors, e.g. tilting laser scanners and even actuators due to
its higher payload. The UAV is equipped with only a few
light sensors to reduce the weight and to increase the flight
time. According to the current state of the UAV market, it is
only possible to obtain important information in real-time by
using a monocular camera. Furthermore, additional sensors
such as GPS are available for localization, but a reliable
position determination cannot always be ensured depending
on the environment, e.g. close to buildings. The nature of
the resulting data, which differ due to different sensors, is
a major challenge. In order to use the data collaboratively,

TRADR is funded by EU-FP7-ICT grant No. 609763. TRADR website:
http://www.tradr-project.eu/.

1University of Applied Science Gelsenkirchen, Fraunhofer Institute for
Intelligent Analysis and Information Systems IAIS, Schloss Birlinghoven
53757 Sankt Augustin, Germany hartmut.surmann@w-hs.de

2Fraunhofer Institute for Intelligent Analysis and Information Sys-
tems IAIS, Schloss Birlinghoven 53757 Sankt Augustin, Germany
rainer.worst@iais.fraunhofer.de

(a) UAVs (b) UGV

Fig. 1. UAVs and UGV of the TRADR project after the earthquake in
Amatrice / Italy 2016.

representations and algorithms have to be found that can
process data from different sources (more or less in real-
time).

For this work, a UGV with a laser scanner and a UAV
with a monocular camera are used. While a laser scanner
can directly provide distance information, more complex
methods – generally known as Structure from Motion (SfM)
– are used for extracting distance information from camera
recordings. The difficulty when combining the data is finding
corresponding regions that allow a robust transformation
between the two point clouds. Naively, this should be possi-
ble with standard point-based scan matching. Unfortunately,
point-based ICP fails due to the differences of the point
clouds from the different sensors. Laser scanners compute
precise radial point clouds whereas SfM or multi-view stereo
algorithms compute less precise, erroneous, and non equally
distributed dense point clouds, focused on brightness differ-
ences and textures. Therefore, geometrical structures have to
be described as invariant as possible against the individual
disturbances of the different sensors.

The objective of this work is the development of a method
for a typical rescue scenario. The first responder arrives at
the disaster site and uses the UAV to get an overview, i.e.
images and an initial 3D point cloud. Humans and the UGVs
use this initial sensor streams, which allow the localization of
the UGV in a vision-based map. The approach uses surfaces
that abstract from the underlying data structure and hence
can compensate disturbances while still containing sufficient
information for the motion estimation. The resulting 3D map
combines the information from both sensors and thus has a
higher information content. The collected data of the UAV
have to be processed by a SfM method independent of the
UGV. Subsequently, the results of the processing can be
provided to the UGV for a first localization.

The remaining paper is organized as follows: The next
section summarizes state of the art methods that can be



used to generate point clouds from camera recordings. Vari-
ous registration methods are also reviewed and section III
presents the selected registration method. An example of
how we used this method for globally optimized localization
is given in section IV. Several results of our experiments
are shown in section V. Videos can be found at youtube
www.youtube.com/watch?v=xAVR5aFv8VY.

II. RELATED WORK

A basic prerequisite for many tasks, such as navigation,
mapping or cooperation of UAV and UGV, is the robot
localization. When working with three-dimensional point
clouds, the registration is significantly affected by the success
of an exact localization [2]. Due to the aim of this work,
to localize the UAV and UGV together in a global map, a
registration method has to be found that can handle point
clouds from different sources. In this context, it is important
that the methods for registration as well as the generation of
vision-based point clouds can be combined.

A. Vision-based SLAM

In order to perform visual odometry, only keypoints
are selected, which make a robust correspondence search
possible. While some methods compute complex features
([3], [4]), new developments increasingly use image points
directly ([5]–[7]). Direct approaches have the advantage
that they are not reduced to certain feature points but can
exploit all image points to determine the odometry and depth
values and thus provide more dense reconstructions of the
environment. Depending on how many image points are
utilized, the approaches can be divided into dense and semi-
dense methods.

An example of a semi-dense approach is the SVO algo-
rithm, which is presented in the work of [7]. The method uses
point features, but these are not explicitly extracted. Rather
they are an implicit result of a direct motion estimation.
The initialization of the pose is achieved by minimizing the
photometric error. LSD-SLAM [8] provides another direct
approach. Based on the odometry method of [6], the algo-
rithm generates globally consistent maps of the environment
by means of graph optimization in large-area environments.
Similar to the SVO algorithm, a probabilistic representation
of the depth map is also used here to model inaccuracies.
[9] also uses a probabilistic approach, but the method is
based on a feature-based monocular SLAM system ([10]).
Furthermore, in contrast to SVO and LSD-SLAM, the depth
values of a reference image are not filtered over many
individual images, but only key images are used for the
reconstruction.

[11] presents one of the first real-time methods and pro-
vides dense reconstructions with a monocular camera. The
tracking of the camera is based on the approach of [3]. The
reconstruction is carried out using several key images. By
expanding to several images, regions that would be hidden in
two images or would be outside the corresponding image can
also be reconstructed with a higher probability. DTAM ([5])
also provides dense reconstructions in real-time. In order

to estimate the depth values, the method performs a global
energy reduction over many individual images. REMODE
([12]) is a method for the reconstruction of dense point
clouds, which integrates a Bayesian estimate into the opti-
mization process. By modeling uncertainties of measurement
for each pixel, regularization can be controlled precisely and
inaccuracies in the localization can be reduced. Real-time
capability is achieved through a CUDA-based implementa-
tion. For the pose estimation, the method of [7] is used.
One of the recent developments of dense reconstructions
is DPPTAM [13]. The approach reconstructs high textured
regions with a semi-dense approach and low textured regions
by approximation of surfaces. Thereby the assumption is
made that homogeneously colored image regions form a
plane, which can be determined by superpixels ([14]).

The procedures described so far fall under the category
of online procedures, i.e. they are real-time capable and
can deliver first results during camera recording. In contrast,
offline procedures require all collected recordings in advance
and then carry out the corresponding calculations. In [15],
a pipeline for reconstruction is presented that combines all
necessary processing steps in a software framework called
MVE. The framework is also capable of reconstructing
texturized surfaces.

B. Registration methods

Methods for registration can be divided roughly into point-
based or iterative and feature-based methods ([2], [16]).
An example of a known iterative method is the ICP-
algorithm, which has already been implemented in several
variants. According to [17] the transformation is determined
by minimizing the Euclidean distance of the found point
correspondences. The search for corresponding points and
the calculation of the associated transformation for the align-
ment of these points is finally repeated iteratively until pre-
defined limits have been reached. A disadvantage of iterative
methods, however, is that they can converge to a local
minimum under certain assumptions, such as an insufficient
overlay of the scenes [2]. In addition, they can be sensitive
to outliers and can be very computationally intensive with
large amounts of data [18]. If several point clouds have
to be registered, the generated scene must also be globally
consistent. To achieve better results, it is common that
feature-based methods are used for the initial registration and
iterative methods are used for refining the already estimated
transformation [2]. Features can be described by feature
descriptors that incorporate geometric structures. If surfaces
are used as a geometric structure, a high compression rate
and thus a fast correspondence search can be achieved [16].

The work of [19] introduces a SLAM algorithm based on
the registration of planar segments. The algorithm for the
extraction of planar segments is based on the work of [20],
which takes up the region-growing algorithm of [21] and
adapts it by optimizations for the use in a SLAM system.
For correspondence search and registration, the work of [22]
is used. The presented MUMC-algorithm (Minimally Uncer-
tain Maximum Consensus) maximizes geometric consistency



while minimizing the resulting uncertainties. As shown in
the work of [19], both faster and more robust results can
be obtained in comparison to an ICP-alorithm. [23] provides
another plane-based registration method, which is based on
the work of [19]. An approach that is also concerned with
the registration of point clouds from different sensor groups
is presented in [24]. As a first step, the method determines
structural descriptors. For faster calculation, the descriptors
are then projected into a subspace. A matching scheme is
used to compare the descriptors and compute vote scores.
The voting space is then used for place segmentation and
for registration.

For this work, an algorithm is developed that is based on
the approaches of [23] and [19]. The presented algorithm
for surface extraction can be applied to unorganized point
clouds and is fast in the calculation. The method of [19] has
also proven itself in a test environment that is very close to
a possible application area of this work.

III. POSE TRACKING

This section introduces the registration method used for
relative localization. The first step is the segmention of planes
from the source and the target point cloud as described in
[23]. Afterwards corresponding planes and the associated
transformation must be determined. The correspondence
search is based on [23], but in contrast to the original
algorithm, the area of the planes is determined by [25].
In addition, the correspondence search was extended by
the examination of overlapping planes. This is done as
follows: First, the transformation determined on the basis of
corresponding planes is temporarily applied to the planes to
be examined. Then the minimum and maximum coordinate
values of each plane are determined and the vectors vmin and
vmax are formed. Two planes dP and mP are overlapping
when

mvmin <
dvmax + ε and dvmin <

mvmax + ε (1)

is satisfied. Here ε is a positive number that defines a
tolerance range. The directions along the surface normals
of the target planes can be ignored during verification.

The last step is to determine an optimal transformation
from all corresponding planes as described in [19]. The rota-
tion and translation is calculated in a separate step. A plane
P will be defined by its oriented and normalized surface
normal n̂ and the distance d to the coordinate origin. If the
correspondence set Ω = {〈mPi1,

dPi2〉, i = 1, . . . , NΩ},
which assigns every plane dPi2 of the source point cloud a
corresponding plane mPi1 of the target point cloud, is known,
the optimal rotation can be calculated by minimizing the
following function:

f (R) =
1

2

NΩ∑

i=1

||R dn̂i2 − mn̂i1||2. (2)

The translation is expressed by the equation

Nm
d t = d, (3)

with

NNΩ×3 =




mn̂T1
...

mn̂TNΩ


 and dNΩ×1 =




md1 − dd1

...
mdNΩ

− ddNΩ


 .

(4)
The equation is solved by means of singular value decom-
position. The singular value decomposition of the matrix N
is given by

NNΩ×3 = UNΩ×NΩ
ΣNΩ×3V

T
3×3. (5)

Here the column vectors ui of U are the left singular vectors
and the column vectors vi of V are the right singular vectors.

Σ is a NΩ × 3 diagonal matrix, which contains the real
positive singular values σi. Afterwards, a rank decision for
the matrix N will be made, i.e. the rank r will be chosen so
that σr > 0 and σr+1 = · · · = σn = 0.

The best approximation of N is given by N̂r with

N̂r =

r∑

i=1

σiuiv
T
i , (6)

The best translation estimation for rank r can finally be
achieved by

m
d t =

r∑

i=1

σ−1
1 (ui · d) vi. (7)

If two laser point clouds are compared with one another, the
ICP algorithm can be used for further refining the translation.
The transformation already determined serves as an initial
position estimation. Another option is given by the odometry
estimation of the robot. If an additional translation estimation
m
d te could be computed, it can be used to determine the
missing translation directions vi, i = r + 1, . . . , 3 and can
be integrated with

m
d t =

r∑

i=1

σ−1
1 (ui · d) vi +

3∑

i=r+1

σ−1
1 (md te · vi) vi (8)

in the overall translation estimation.

IV. LOCALIZATION

This section describes how the registration procedure
described in section III can be used for localization and
mapping. In robot localization, a distinction can be made
between relative and absolute localization. In the case of
relative localization, the changes in the respective current
pose are determined from a known pose and thus the entire
trajectory is built step by step. In the absolute localization,
the pose is determined with respect to a given map. A
disadvantage of the relative localization is that errors in
the determination of the pose changes are accumulated and
thus the estimated trajectory as well as the constructed map
are not globally consistent. However, if the starting position



within a given map is known, the relative localization can be
optimized. For each update step, the new pose is compared
with the given map and a correction is made. The global
map is provided by the UAV, which takes images during a
first flight over the environment and generates a point cloud
by means of a vision-based SLAM algorithm. If the absolute
pose of the UGV is known in the global map, the map can
be extended by the information of the laser scan and a more
detailed map can be built step by step. This is useful, on the
one hand, in low-textured regions, which cannot be covered
by most camera-based methods. On the other hand, map
areas such as interiors that are not accessible to the UAV or
that are not visible in the event of a flyover due to occlusions
can also be included in the global map. All processing steps
involved are explained below; see fig. 2 for an overview of
the whole process.
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Fig. 2. Localization pipeline for laser point clouds with following global
optimization step.

Steps a–c of fig. 2 describe the dense reconstruction with
a suitable algorithm, e.g. MVE. After a reconstruction, the
vision-based point clouds have to be scaled (fig. 2, d). This
is necessary since the scaling factor for the reconstruction
cannot be unambiguously determined when using a monoc-
ular camera. A correct scaling factor can be determined in
several ways. For this work, the GPS coordinates recorded
by the UAV during its flight are used. For the calculation,
all positions estimated using the vision-based method are
assigned to the nearest GPS coordinates and the Euclidean
distances of adjacent points are calculated. The ratio of the

average distances finally indicates the scaling factor.
As preparation for the plane segmentation, the point clouds

are filtered through several processing steps (fig. 2, e and k).
The aim of the preprocessing is to increase the robustness of
the plane segmentation and thus the subsequent registration.
By filtering, the point clouds are also reduced in size, which
can considerably reduce the computational effort. For this
work, a voxel grid filter and an outlier removal filter are
applied, but additional filters can be added if necessary.

The relative pose of the UGV is updated with each new
laser scan (fig. 2, l–p). First of all, a plane segmentation is
carried out once for each new point cloud. Then the relative
transformation between the last and the last but one point
cloud is determined by means of a planar segment-based
registration. For the initial laser point cloud, the assumption
is made that it has approximately the correct pose with
respect to the global map of the UAV. One way to determine
the pose is by matching GPS coordinates. An exact pose is
not necessary, since the initial pose is subsequently adjusted
as part of the global optimization. If the initial pose was
determined, an accumulation of the relative transformations
can be used to estimate the current global pose. This pose
will be optimized by aligning the associated point cloud
with the global point cloud of the UAV. To achieve this,
a planar segment-based registration is performed between
the current laser point cloud and a section of the global
vision-based point cloud (fig. 2, f–h). The position and size
of the section is determined by the position and size of the
current laser point cloud. Since the relative transformation is
not always exact, the section is additionally expanded by a
tolerance range. If the UGV moves in regions that are not
or only slightly captured in the global point cloud of the
UAV, a global optimization is not possible. In this case, a
relative optimization can be carried out using a metascan
algorithm (fig. 2, q). For this purpose the simultaneous
matching algorithm from [26] was adapted for a surface-
based approach and used for this work as follows:

1) The first point cloud that could no longer be optimized
globally is defined as the master point cloud and de-
termines the coordinate system. The already calculated
relative transformation of a new point cloud serves as
the initial registration of the relative optimization.

2) A list is initialized with the new point cloud.
3) The following three steps are repeated until the list

contains no more elements:

a) The first point cloud in the list is removed as the
current point cloud from the list.

b) If the current point cloud is not the master point
cloud, then the neighbouring point clouds of the
current point cloud are calculated. A point cloud
is regarded as a neighbouring point cloud when
a given minimum number of surfaces overlap
with the surfaces of the current point cloud.
All neighbouring point clouds are then grouped
into a single point cloud and a planar segment-
based registration with the current point cloud is



(a) Point cloud 1 (b) Point cloud 2 (c) Point cloud 3

(d) Point clouds 1 and 2

Fig. 3. Intermediate result of the relative optimization with three laser point
clouds recorded on the site of Fraunhofer IAIS. The segmented surfaces are
marked in color. The red dot indicates the respective position of the UGV.
(c) shows the current point cloud, which was initially registered with point
cloud (b). Point clouds 1 and 2 represent neighbouring point clouds of point
cloud 3 and are summarized in (d). Point cloud 2 has gaps due to occlusions
(see red markings). By a combination with point cloud 1, however, the gaps
could be closed and thus a better calculation of the area size with respect
to point cloud 3 could be carried out (see red markings in (d)).

performed.
c) If the calculated transformation changes the pose

of the current point cloud by more than a pre-
defined minimum, all neighbouring point clouds
that are not already in the list are added to the
list.

Figure 3 illustrates a possible result of the relative opti-
mization.

So far, the assumption has been made that the pose of the
first laser point cloud is approximately known with respect
to the global point cloud. In the following, an approach to
determine the initial pose is presented, which only uses the
structural information from the point clouds. The procedure
is orientated on [27] and can be described as follows:

1) The planes of the initial laser point clouds are seg-
mented.

2) The global point cloud is divided into cells. The
size of a cell is determined by the size of the laser
point cloud plus a tolerance range. For each cell, a
plane segmentation as well as a planar segment-based
registration with the laser point cloud is done.

3) For each registration with a cell, the proportion of the
match is calculated as follows:

r =
|K|

max (|mP |, |dP |) , (9)

where |K| is the number of matching planes. The
respective number of segmented planes of the laser
point cloud and the point cloud set by the cell is given
by |mP | and |dP |. The better the current cell represents
the position of the laser point cloud, the greater is the
number of corresponding planes. The number |K| of
the corresponding planes therefore corresponds to a

TABLE I
PLANE SEGMENTATION OF THE LASER POINT CLOUD.

Nr. Points Preprocessing [s] Segmentation [s] Planes
1 103090 0.0090 0.1989 8
2 135233 0.0096 0.8091 9
3 182623 0.0171 1.2556 11
4 265629 0.0175 1.4302 14
5 286333 0.0248 2.5137 19
6 291043 0.0197 3.0201 29
7 289934 0.0188 2.8454 24

TABLE II
REGISTRATION OF THE LASER POINT CLOUD.

Pair Registration [s] Correspondences ICP [s]
1 → 2 0.0116 2 0.817343
2 → 3 0.3643 8 0.231159
3 → 4 0.0814 7 0.725623
4 → 5 2.3613 18 1.02961
5 → 6 4.6153 15 0.72616
6 → 7 7.7108 17 0.839342

large proportion of the maximum possible number of
correspondences. For cells with few common planes,
the proportion of correspondences is small compared to
the possible number of correspondences. The cell that
best represents the position of the laser point cloud
is given by the largest value r. If r1 is the largest
determined value, the following criteria must be met
for a unique match:

r1 > α and r1 > βr2. (10)

α is a pre-defined threshold that r1 must reach at least.
r2 is the second largest value given by equation 9. The
ratio β defines the relationship between r1 and r2. If
these criteria cannot be fulfilled, there are several cells
with a similar agreement and the best position for the
laser point cloud is not clearly determinable. In this
case, further laser point clouds have to be collected
and re-evaluated. The global position of the laser point
cloud can finally be determined by the combination of
the cell position and the transformation, which was
calculated in the context of the planar segment-based
registration.

TABLE III
PLANE SEGMENTATION OF THE VISION-BASED POINT CLOUD SECTIONS.

Nr. Points Preprocessing [s] Segmentation [s] Planes
1 30745 0.0035 2.4906 53
2 49258 0.0067 6.9224 109
3 53586 0.0079 11.2961 145
4 48600 0.0072 10.2647 149
5 32366 0.0055 6.2082 111
6 28300 0.0050 6.4789 108
7 9754 0.0028 2.0793 61



TABLE IV
REGISTRATION OF THE LASER POINT CLOUDS WITH THE GLOBAL

VISION-BASED POINT CLOUD.

Pair Registration [s] Correspondences ICP [s]
1 Laser → Camera 0.012568 6 -
2 Laser → Camera 0.2772 7 0.480169
3 Laser → Camera 0.5608 11 -
4 Laser → Camera 0.4258 9 0.630182
5 Laser → Camera 0.5098 14 -
6 Laser → Camera 1.3474 20 -
7 Laser → Camera 0.0896 0 0.861286

TABLE V
RELATIVE POSE ERROR AND ABSOLUTE TRAJECTORY ERROR OF THE

RELATIVE LOCALIZATION.

Metric Ermse [m] Emin [m] Emax [m]
RPE 3.3579 0.2090 8.1820
ATE 3.1074 0.6780 7.4754

V. EXPERIMENTS

In this section the results of the planar segment-based
localization are evaluated. For the test environment the
former site of the blast furnace Phoenix-West in Dortmund
was selected (see fig. 8).

The UGV started near the entrance area of the factory
building, drove further into the hall and finished the record-
ings there. A total of 7 laser scans were recorded. The relative
pose error and absolute trajectory error (RPE / ATE) of the
estimated trajectory after [28] were used as evaluation criteria
for the localization. In order to obtain a reference trajectory
of the UGV, adjacent laser point clouds were aligned relative
to each other and the poses were subsequently refined with
the SLAM framework 3DTK [29]. The vision-based point
cloud for the following experiments was generated by MVE
with images at a resolution of 640 × 480 pixels. MVE was
choosen since it provides convincing results with respect to
the estimated trajectory as well as the Mean Plane Variance
(MPV) and Mean Map Entropy (MME), which were com-
puted according to [30]. However the approach presented in
this work is not limited to MVE.

The processing times of the pose tracking without further
optimization steps are listed in the tables I and II. The RPE
and ATE are represented in table V and fig. 4. The errors in
the trajectory are caused by less accurate registration of the
first two point clouds. The reason for this are inadequate
structural elements, that do not allow accurate estimation
of all directions of translation (see fig. 5). For the globally
optimized trajectory, the results listed in table III and
table IV were obtained. The deviations in the trajectory
could be reduced by the optimization. In contrast to the
relative localization, the global point cloud enabled the
correct registration of the first two point clouds by additional
structures (see fig. 6 and fig. 7, for the RPE and ATE).

(a) RPE (b) ATE

Fig. 4. RPE and ATE of the relative localization.

(a) RPE (b) ATE

Fig. 5. RPE and ATE of the globally optimized localization.

The overall registration result is shown in fig. 9. The initial
localization was evaluated as a final test. The test sequence
locates each laser point cloud in the global point cloud. The
first five point clouds could be located correctly. The two
last point clouds represented areas within the factory and
had too little overlap with the global point cloud.

VI. CONCLUSION AND FUTURE WORK

The base for human to robot and robot to robot collabora-
tion is a persistent environment model, which implies to fuse
different sensor streams of different modalities. We present
a novel approach for the plane-based localization of laser
point clouds (UGV) in monocular vision point clouds (UAV).
The method first performs a plane segmentation and then
attempts to register neighbouring point clouds by means of
corresponding planes. The method uses a global point cloud
generated by the UAV’s camera recordings for optimization.
The evaluation showed that the relative localization provided
a reliable registration and is therefore suitable as an initial
estimation for global optimization. Point clouds, which had
inadequate structures or slight overlaps with neighbouring
point clouds, prevented accurate registration. Differences
in the relative localization could be offset by the global
optimization. A further important component of the global
localization is the determination of the initial pose of the
UGV. We suggested an automatic search of the start sector
with subsequent registration. Areas with more than 50%
overlap were successfully localized. When evaluating the
vision-based procedures, it turned out that MVE ([15]) is
best suited for planar segment-based registration.

The localization method developed in this work will be
extended for future work, e.g. by the utilization of additional



(a) From: Point cloud 1 to (b) Point cloud 2

(c) From: Point cloud 2 to (d) Point cloud 3

Fig. 6. Registration of the first three point clouds. Corresponding planes
are randomly colored. The red marked area in image a could not be
captured from the laser scanner in image b and thus offers no possibility
for determining the direction of translation.

(a) Point cloud 1 (b) Section 1

(c) Point cloud 2 (d) Section 2

Fig. 7. Registered pairs of the globally optimized localization.

sensor information. For example, laser point clouds with
color information can be generated by the camera on the
UGV. For the correspondence search, this color information,
in addition to the surface area, forms a further useful criterion
for matching surfaces. When possible, GPS coordinates can
also be used to support the localization.
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An Online Multi-Robot SLAM System for 3D LiDARs

Renaud Dubé Abel Gawel Hannes Sommer Juan Nieto Roland Siegwart Cesar Cadena∗

Abstract— Using multiple cooperative robots is advantageous
for time critical Search and Rescue (SaR) missions as they
permit rapid exploration of the environment and provide higher
redundancy than using a single robot. A considerable number of
applications such as autonomous driving and disaster response
could benefit from merging mapping data from several agents.
Online multi-robot localization and mapping has mainly been
addressed for robots equipped with cameras or 2D LiDARs.
However, in unstructured and ill-lighted real-life scenarios,
a mapping system can potentially benefit from a rich 3D
geometric solution. In this work, we present an online lo-
calization and mapping system for multiple robots equipped
with 3D LiDARs. This system is based on incremental sparse
pose-graph optimization using sequential and place recognition
constraints, the latter being identified using a 3D segment
matching approach. The result is a unified representation of the
world and relative robot trajectories. The complete system runs
in real-time and is evaluated with two experiments in different
environments: one urban and one disaster scenario. The system
is available open source and easy-to-run demonstrations are
publicly available.

I. INTRODUCTION

Teams of autonomous mobile robots offer several advan-
tages compared to their single robot counterpart: robustness
to single robot failure, quicker exploration of environments
in time critical SaR missions, execution of tasks of high
complexity and reduction of human risks and costs associated
to disaster response [1, 2]. Accurate online localization and
mapping is a crucial competency for enabling collaboration
between multiple mobile robots. This is however a difficult
task as stated by Saeedi et al. [3] which identified 10
major challenges to achieve online multi-robot Simultane-
ous Localization and Mapping (SLAM). The current work
addresses the challenges of closing loops, complexity and
communication. Inter-robot global associations are found and
used to solve the full 3D SLAM problem with low time,
memory and communication bandwidth requirements.

There are already existing vision-based multi-robot SLAM
approaches [3] which can however become unreliable when
strong changes in illumination occur, and in the presence of
strong viewpoint variations [4]. In this work, we therefore
consider 3D LiDARs for their ability to accurately represent
the inherent 3D nature of our environment while providing
higher robustness to changes in external illumination and in
view-point.

∗Authors are with the Autonomous Systems Lab, ETH, Zurich
{rdube, gawela, sommerh, jnieto, rsiegwart,
cesarc}@ethz.ch.

This work was supported by the European Union’s Seventh Framework
Programme for research, technological development and demonstration
under the TRADR project No. FP7-ICT-609763.

Fig. 1: Top: An illustration of the presented multi-robot SLAM system.
The trajectories of three UGVs are estimated in real-time and shown in
green, yellow and red. The target map Mt is shown below in white and an
inter-robot place recognition is depicted with vertical green lines indicating
segment matches. Bottom: Two skid-steering UGVs equipped with encoders,
IMUs and rotating LiDARs and the decommissioned two-floors building
considered in the power plant experiment of Section V-E.

Current multi-robot SLAM systems for 3D LiDARs do
not offer a complete online solution [5, 6] which is perhaps
due to the absence of efficient algorithms to perform global
data association with dense 3D point clouds. This is con-
trastingly a well-studied problem in visual SLAM. Global
place recognition techniques for 3D point clouds based on
global descriptors [7, 8] and keypoint descriptors [9, 10] are
presented but rarely integrated in a full online SLAM system,
let alone a multi-robot one. Contrastingly, most of the current
3D LiDAR single-robot approaches propose to recognize
places based on local submap matching. These local searches
cannot correct for drift which occurs when long distances are
travelled and large estimation errors accumulate. In the multi-
robot case, finding robot-associations by performing global
search based on submaps does not scale well with increasing
number of robots and would require the raw LiDAR data to
be transmitted, which reflect the aforementioned multi-robot
challenges.

This paper presents an online 3D LiDAR SLAM system
capable of simultaneously and accurately estimating multiple
trajectories, as illustrated in Figure 1. To the best of our
knowledge, this is the first proposed solution to the online
multi-robot SLAM problem for 3D LiDARs. To achieve
this, a pose-graph formulation is adopted by incorporating
sequential and place recognition constraints. We perform
intra and inter-robot place recognition by leveraging our



previously proposed and publicly available SegMatch al-
gorithm [11] which was one key ingredient, along with
significant implementation efforts, in order to achieve a
full working system. The SegMatch technique is formed on
the basis of partitioning point clouds into sets of segments
which efficiently represent the environment by compact
yet discriminative features. This compact representation is
crucial for multi-robot applications as it reduces the required
communication bandwidth as well as the complexity and the
memory requirement of the overall system. This is reflected
in the proposed system which offers real-time performance
for the experiments considered in this paper.

To summarize, this paper presents the following contribu-
tions:

• A fully-integrated online multi-robot SLAM system for
3D LiDARs.

• An evaluation of the entire system in real-world, multi-
robot automotive and disaster scenario experiments.

• An open-source implementation accompanied with
easy-to-run demonstrations1.

The remainder of the paper is structured as follows: Sec-
tion II provides an overview of the related work in the field of
3D LiDAR-based SLAM and multi-robot SLAM. Section III
and IV describe our online multi-robot 3D pose-graph SLAM
system. The full system is evaluated in Section V, and
Section VI finally concludes with a short discussion.

II. RELATED WORK

This section gives an overview of the related work in
single-robot 3D LiDAR-based SLAM, with a focus on pose-
graph based approaches, and present current solutions to the
multi-robot mapping problem.

A. Single robot pose-graph SLAM

The recent survey of Cadena et al. [12] reviews common
approaches to the SLAM problem. This work considers the
pose-graph approach which was pioneered by Lu and Milios
[13] and became increasingly popular in recent years with
an active community performing research in this direction
[14–19].

Several works propose to apply the pose-graph approach to
perform 3D SLAM for single robots equipped with LiDAR
sensors [15–19]. These works mainly differ in terms of the
technique used for matching new 3D scans to previous ones.
For example, Pathak et al. [15] propose to register subsequent
3D scans on the basis of large planar surfaces which leads to
robust estimation of rotations and simplifies the pose-graph
relaxation to handle 3D translations only. This assumption of
an explicit plane model would however typically not hold for
unstructured environments. Droeschel et al. [16] introduce a
multi-resolution surface element representation for the 3D
scans which are obtained by accumulating scans from a

1The source code of the proposed system is open-sourced and demon-
strations including a newly available dataset for multi-robot mapping in
SaR scenarios are available at https://github.com/ethz-asl/
segmatch. A video demonstration is available at https://www.
youtube.com/watch?v=JJhEkIA1xSE

rotating 2D LiDAR sensor. Matching the scans through this
surface elements representation allows for efficient regis-
trations. The systems proposed in [17–19], and ours are
all based on Iterative Closest Point (ICP) for registering
successive 3D scans and for augmenting the pose-graph with
the corresponding scan-matching constraints.

Although related to this work, none of the aforementioned
approaches explicitly deal with loop-closures. Instead, scan
matching is performed against submaps containing nodes in
the vicinity of the robot, assuming that only little drift oc-
curred. In our system, place recognitions are explicitly dealt
with, allowing the fusion of maps from independent workers
and enabling the joint exploration of larger environments.

B. Multi-robot pose-graph SLAM

A thorough survey on multi-robot SLAM can be found
in [3]. There is a significant amount of works proposing
solutions to the SLAM problem for robots equipped with
cameras or 2D LiDAR but much fewer works consider 3D
LiDAR sensors [5, 6, 20].

Nagatani et al. [5] propose to merge digital elevation maps
obtained from three robots where inter-robot constraints are
found on the basis of submap matching by assuming little
drift and a known good estimate of the relative transfor-
mation between the robots. The map-merging strategy is
performed offline and the experiment only consider a small
environment. Michael et al. [6] present a strategy for gen-
erating a 3D map of a building damaged by an earthquake.
The maps are locally built on each robot using a technique
which assumes the environment to be composed of walls
and horizontal ground planes. The two maps are merged
afterwards, providing a good initial guess for the relative
robot transformation which is then refined by ICP. The two
aforementioned solutions are not applicable to online multi-
robot SLAM and cannot correct for drift which might occur
in the single maps. Finally, Kurazume et al. [20] propose to
model large buildings using multiple robots, one of which
is equipped with a 3D LiDAR. The other robots are used to
improve the sensor’s localization by using direct inter-robot
detection. Although the idea is interesting, this system differs
from ours in that a single 3D LiDAR is used.

As we could not find a single work presenting an online
SLAM system for multiple robots equipped with 3D Li-
DARs, we briefly introduce major multi-robot systems based
on vision, with a focus on the back-end particularities. The
work of Kim et al. [21] addresses the multi-robot mapping
problem based on incremental optimization of multiple rel-
ative pose-graphs. These graphs are linked through anchor
nodes which allow a relative formulation of the inter-robot
encounter detections using april-tags. Anchor nodes which
are the equivalent of base nodes first introduced in [22] were
also used in a multi-session vision-based SLAM system [23].
Anchor nodes are agnostic to the sensor used and help in
the convergence of the back-end pose-graph optimization.
Contrastingly, Konolige and Bowman [24] introduced weak-
links to allow each robot’s pose-graph to grow independently
while keeping the problem constrained in the absence of
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Fig. 2: A configuration of the proposed centralized multi-robot SLAM system where place recognition is based on a segment matching algorithm. The
robots Ri locally compute odometry and scan-matching factors f i

odom and f i
scan. The 3D source point clouds P i

s are segmented into maps M i
s which

are used by the master for generating place recognition factors fPR. Once the pose-graph is optimized by the master, the trajectories updates τ i are used
to maintain the target map Mt and transferred back to the robots. For simplicity, modules acting locally on each robot have been expanded only once.

inter-robot constraints. Our system is based on weak-links
and could easily integrate anchor nodes instead if slow
convergence is noticed during optimizations following inter-
robot place recognitions.

III. SYSTEM ARCHITECTURE

This section introduces our multi-robot localization and
mapping system based on 3D LiDAR and displacement
measurements. As illustrated in Figure 2, the system is
centralized such that a master agent is responsible of merging
sensor information transmitted by multiple robots. At the
core of the master agent lies an incremental pose-graph
optimization back-end which is responsible for estimating
the robot trajectories. On the other hand, the front-end is
distributed between the robots and the master agent and
is responsible for providing constraints to the optimiza-
tion problem. For instance, each robot is responsible of
computing sequential constraints, and of pre-processing the
laser point clouds in order to compress the information to
be transmitted over a communication channel of limited
bandwidth.

The remainder of the section presents the back-end of the
proposed multi-robot 3D SLAM system whereas Section IV
details the front-end with the computation of LiDAR odom-
etry, loop-closure and robot-association constraints.

A. Pose-graph formulation

The system is based on a pose-graph optimization ap-
proach [25] where a factor graph G=(F ,Θ, E) is the under-
lying bipartite graph which connects all relevant elements
of the system. It consists of factor nodes f i∈F , variable
nodes θi∈Θ and edges εi∈E , that connect factor nodes with
variable nodes. Variable nodes θi are the states of the system
and represent robot poses, i.e., θi ∈ SE(3). Factor nodes f i

on the other hand are constraints between several poses.
The factor graph then defines the factorization of a func-

tion f(Θ)

f(Θ) =
∏

i

f i(Θi) (1)

with Θi being the subset of variables adjacent to the factor
f i. Our system implements three different types of fac-
tor nodes, i.e., prior factors fprior(Θ0), sequential factors

fseq,i(Θi), and place recognition factors fPR,i(Θi) which
include both intra-robot loop-closures and inter-robot associ-
ations. Both fseq,i(Θi) and fPR,i(Θi) are always expressed
as relative pose measurements which is particularly practical
for multi-robot applications as the measurements are entirely
independent from the fixed frame of reference. Finally, each
factor is expressed in full 6 Degrees of Freedom (DOF).

B. Sparse incremental optimization

The aim of the back-end is to compute a Maximum A
Posteriori (MAP) estimate of f(Θ) given its observations
z̃i that minimizes a negative log-posterior E. Assuming a
Gaussian measurement model leads to Equations 2, 3 and 4.

f i(Θi) ∝ exp

(
−1

2
||zi(Θi)− z̃i||2Ωi

)
(2)

E = − log f(Θ) (3)

argmin
Θ

(E) = argmin
Θ

(
∑

i

eTi Ωiei) (4)

where ei = zi(Θi)− z̃i is the error between the prediction
function zi(Θi) and a measurement z̃i, with the information
matrix Ωi. In order to robustify the optimizer against false
place recognitions, we add a Cauchy function as M-estimator
to the place recognition factors as described in [26] which
down-weights the effect of possibly wrong factors on the
optimization objective E.

As the prediction function zi(Θ) is nonlinear, we min-
imize the error E using nonlinear optimization with the
Gauss-Newton algorithm. Specifically, we perform incremen-
tal update and optimization of the pose-graph using the
iSAM2 algorithm [14] which allows for efficient variable
re-ordering and relinearization using the Bayes tree.

Given that we use weak links, introduced by Konolige and
Bowman [24], through the prior factor fprior(θ0), the Bayes
tree approach is particularly suitable for updating the pose-
graph resulting from the multi-robot problem. Once an inter-
robot place recognition is detected, one prior is removed from
the graph and iSAM2 allows for efficient re-ordering and
relinearization of the variables.



IV. SYSTEM FRONT-END

In this section, we show one possible front-end con-
figuration where sequential factors are created using ICP
and displacement measurements and where the SegMatch
algorithm is used for generating place recognition factors.
As illustrated in the block diagram of Figure 2 the system
is modular so that one could select and integrate different
techniques for factors generation modules.

A. Sequential factors

This first front-end module is responsible for transforming
3D LiDAR and proprioceptive sensors measurements into
sequential factors fseq,i(Θi). In order to keep this module
robust to failures when doing scan matching, we separate
its contribution to the graph in two different types of factors
i.e., odometry factors fodom,i(Θi) and scan-matching factors
fscan,i(Θi).

A pose node θi is added to the graph, along with one
odometry and one scan-matching factor for every 3D laser-
scan Si, given that the robot travelled a minimum distance
dmin. This minimum travel distance is a standard practice to
help avoiding un-informative accumulation of data, and the
growth of the factor graph, when the robot is not moving.

1) Odometry factors: Odometry factors fodom,i(Θi) are
based on displacements between consecutive robot poses as
stated in Eq. 5 and are built using Eq. 2.

zodom,i(Θi) = θ
−1
i−1 ⊕ θi (5)

These odometry measurements can be obtained from differ-
ent sources of proprioceptive sensors. For instance, for the
UGVs illustrated in Figure 1, these constraints are obtained
fusing wheel encoders and IMU data using an extended
Kalman filter as proposed by Kubelka et al. [27].

2) Scan matching factors: The 3D LiDAR data is used
to compute scan-matching factors fscan,i(Θi) between adja-
cent nodes in the graph. These factors are obtained using ICP
by registering the current scan against a submap composed of
the m previous scans, expressed in the frame of the previous
pose. The submap size is controlled by m, the number of
previous scans and dmin, the minimum travelled distance
between consecutive scans.

Performing ICP against this submap helps dealing with
sparsity in the scans, eg. when working with Velodyne
data, and helps making the system more robust. The ICP
registration step between the submap and the new scan
results in the 6 DOF rigid transformation iT ij which is a
transformation from pose θi to θj expressed in the frame
of θi. This transformation is directly used to build a laser
scan-matching factor fscan,i(Θi) using the distance between
the relative transformation prediction and measurement as an
error function, i.e. e = d(iT ij , iT̃ ij).

B. Place recognition factors

Our multi-robot SLAM system has a flexible imple-
mentation which can receive place recognition candidates
from different sources. In the present work, we propose
one configuration where associations are generated using

(a) First inter-vehicle association.

(b) Last intra-vehicle association.

Fig. 3: Two autonomous vehicles mapping KITTI sequence 05 using LiDAR
information only. The trajectories are shown in red and green and the source
map segments are shown in colors. The optimized associations are show in
blue with the latest association shown by segment matches with vertical
green lines. The target map Mt is shown in white below.

the SegMatch algorithm introduced in [11]. This algorithm
takes as input (i) a source point cloud Ps representing
local LiDAR measurements and (ii) a target point cloud Pt

against which place recognition is performed. Segments are
extracted and described from both Ps and Pt to respectively
generate a source map Ms and a target map Mt which
contain lists of low dimensional segments descriptors. In
this work we consider two region growing algorithms for
extracting segments from 3D point clouds: one based on
Euclidean distance [11] and the other based on smoothness
constraints [28]. Compact eigenvalue based features are used
for describing the segments [11]. Associations are made
between Ms and Mt and a geometrical verification step is
used to identify clusters of matches which represent place
recognitions as illustrated in Figure 3.

The remainder of this section will detail how segment
matching is used within the full system and the reader is
encouraged to consult our prior work for more information
about the SegMatch algorithm [11].

1) Source map generation: As illustrated in Figure 2,
each robot in the system is responsible of generating its
own segment source map M j

s where j denotes the robot’s
unique identifier. M j

s is, along with the sequential factors
f j
odom,i(Θi) and f j

scan,i(Θi), the only information commu-
nicated to the centralized master. Converting the raw point
cloud P j

s into M j
s induces a high level of compression which

is a key advantage for reducing the required communication
bandwidth in multi-robot systems.



The intermediate source point cloud representation P j
s is

created by accumulating the 3D scans Si once the corre-
sponding nodes θi are optimized by the back-end. Noisy data
are filtered using a voxel grid of resolution resvoxel with
nmin, a minimum number of points per voxel to consider
them as occupied. An octomap [29] can also be used if
one further wishes to filter dynamics. The growth of P j

s is
limited by extracting a cylindrical neighbourhood of radius
R, centred around the current robot location. Applying this
cylindrical filter inevitably results in cut objects, which then
results in ‘incomplete segments’ in M j

s that can interfere
with ‘complete views’ in the target map Mt. These ‘incom-
plete segments’ are detected by filtering P j

s with a smaller
radius r = R− b, where b is the thickness of the outer zone.
Segments containing points within that zone are discarded
from M j

s which is transferred to the master and used for
both matching and building the target map Mt.

2) Incremental target map management: Given our cen-
tralized approach, the master agent is responsible of incor-
porating incoming source maps M j

s into a single target map
representation Mt. For each segment in M j

s , we check for
a duplicate in Mt, i.e. a segment resulting from the same
object part, but extracted at different times. As single-robot
odometry is locally accurate, these ‘duplicate segments’ can
efficiently be detected by comparing the distances to the
closest segments centroids in Mt with a minimum distance
dseg . As we prefer to keep the latest view of a segment, we
choose to remove the oldest of these duplicates.

In event of place recognitions, Mt is updated with a similar
approach. Given the updated robot trajectories, the positions
of the target segments are first refreshed, knowing the origin
of their segmentation relative to the trajectories. In case of
successful place recognitions, segments of the target map
will correctly align and can safely be filtered for removing
duplicates as described above.

3) Place recognition factor generation: Given Ms and
Mt, segment matching is performed through k-Nearest
Neighbors (k-NN) retrieval. Afterwards, a geometric verifica-
tion step based on RANSAC identifies clusters containing at
least minRANSAC segment matches that are geometrically
consistent with a resolution resRANSAC . In order to convert
these segment matches in the form of place recognition
factors fPR,i(Θi), the nodes to be constrained by the factors
are first identified. For both the source and the target, we
select the trajectory node that is, on average, the closest to all
corresponding segments and which lies within a time window
defined by the segments’ timestamp.

As the segments centroids are represented in world frame
when doing geometrical verification, the resulting relative
transformation will also be given in world frame, i.e. wT ij .
This transformation can be expressed in the frame of the first
node θi using Eq. 6 and converted into a factor as described
in Section IV-A.

iT ij = θi
−1 ⊕w T ij ⊕ θj (6)

Given these new factors, the pose-graph is incrementally

optimized and Mt is updated as explained in IV-B.2. As
shown in Figure 2, the resulting trajectory updates τ j are
transmitted back to the individual robots which then update
P j
s to follow the transformation applied to the trajectory

head. The performances of this SegMatch based place-
recognition module are evaluated in the following section.

V. EXPERIMENTS

In this section we demonstrate the performance of the
proposed system through two different multi-robot experi-
ments. In the first experiment, we adapt sequence 05 of the
KITTI odometry dataset [30] in order to generate a multi-
robot scenario. The second experiment is based on data
collected during a SaR mission performed by the “Long-
Term Human-Robot Teaming for Robots Assisted Disaster
Response” (TRADR) consortium2 at the Gustav Knepper
Power Station in Dortmund, Germany.

A. Implementation details

This section briefly presents implementation details which
can be relevant when exploring the system. The system
is built on multiple available libraries, as for instance, the
incremental optimization back-end which is based on the
iSAM2 implementation of the GTSAM library3. The factor’s
Jacobians are evaluated using the block automatic differen-
tiation functionality of GTSAM. For creating scan-matching
factors we use the ICP implementation of libpointmatcher4.
The place recognition implementation is based on the Seg-
Match library5 which itself uses PCL6 for voxel grid filtering
and geometric verification functionalities and libnabo7 for
segment matching with fast k-NN search in low dimensional
space. The system has a full ROS interface with integration
to the TF tree for publishing the estimated robot poses.

B. Experimental setup

The two following experiments are performed on a sin-
gle computer equipped with an Intel i7-4900MQ CPU @
2.80GHz and 32 GB of DDR3 RAM. In order to realize
the multi-robot scenarios, the system is implemented with
multiple threads. One thread per robot is used for computing
the sequential factors and the local maps whereas the place
recognition, pose-graph optimization and target map manage-
ment functionalities are all running on a separate thread. For
real missions, the latter thread would run on the master agent
and the computational load would be distributed amongst the
multiple computers.

C. System parametrization

The front-end parameters used for both experiments are
resumed in Table I. For the place recognition module,
segment retrieval is always performed using k-NN. Different
segmentation algorithms and segment descriptors are used

2http://www.tradr-project.eu/
3https://research.cc.gatech.edu/borg/gtsam
4https://github.com/ethz-asl/libpointmatcher
5https://github.com/ethz-asl/segmatch
6http://pointclouds.org/
7https://github.com/ethz-asl/libnabo



TABLE I: Front-end parameters for the two experiments.

Parameter KITTI Power plant

Min. distance between poses (dmin) 0.05 meter 0.1 meter
Number of scans per submap (m) 5 10
Voxel grid resolution (resvoxel) 0.1 meter 0.1 meter

Min. point count per voxel (nmin) 1 2
Source map radius (R) 60 meters 25 meters

Number of neighbors (k) 45 20
Min. RANSAC cluster size (minRANSAC ) 5 5

RANSAC resolution (resRANSAC ) 0.45 meter 0.55 meter
Min. segment distance (dseg) 2 meters 2 meters

which reflects the difference in sensor configuration, vehicle
speed and environment between the two experiments. For the
multi-robot KITTI experiment, Euclidean segmentation and
eigenvalue based features are adopted, as described in [11].
For the power plant experiment, segments are obtained
based on region growing with smoothness constraints [28].
Normals are computed with a radius of 0.5 meters and the 15
nearest neighbours of each seed are considered for growing
segments. The threshold on the difference of normals is set
to 8 degrees and we keep only segments having a minimum
of 75 points. In addition to the eigenvalue based features, we
use the fact that the power plant environment contains many
vertical and horizontal planar surfaces and make a distinction
between these by adding a single value feature describing its
orientation. This can efficiently be computed by comparing
the x, y, and z dimensions of the segments.

For the two platforms considered in the experiments, the
noise models could easily be adjusted on different datasets
in order to yield good localization results.

D. LiDAR-only multi-vehicular KITTI

In this first experiment, we split sequence 05 of the KITTI
odometry dataset which lasts 2.2 km and 287 seconds into
two sequences of equal duration. A multi-robot scenario is
simulated by simultaneously playing back the two sequences.

With this experiment, we aim to show the capabilities
of our system for performing online multi-robot SLAM by
using LiDAR information only. In other words, the scan-
matching factors fscan,i(Θi) are the only sequential factors
considered in this experiment. A constant velocity model is
adopted for generating initial guesses to the ICP based reg-
istrations, acting as measurement functions for these factors.
The rest of the parametrization is introduced in V-C.

On this multi-robot sequence and using LiDAR measure-
ments only, our system could in real-time detect 18 valid
intra and inter-robot global associations. The first and last
associations are illustrated in Figure 3 along with the two
estimated trajectories. The timings for each module are stated
in Table II with an indication whether this module should
be executed by the robot (R) or by the master agent (M).
Cumulative computation times are given in Figure 4.

During this experiment, 154 source point clouds P i
s were

processed for place recognition and contained in average
96200 points (after downsampling, voxelization and cylindri-
cal filtering). With each point defined by three doubles and
assuming a typical size of 8 bytes per double, communicating

TABLE II: Timing of each module (in ms).

Module (Agent) KITTI Power plant

Scan-matching (R) 78.9 916.8
Trajectories estimation (M) 3.7 4.3

Trajectories estimation after PR (M) 43.1 24.9
Segmentation and description (R) 600.1 1176.0

Segment matching (M) 8.1 6.0
Geometric verification (M) 57.2 13.8

Duplicates removal (M) 91.8 21.2

Fig. 4: Cumulative computation time for each module during the LiDAR-
only multi-robot KITTI experiment. The 18 valid place recognitions are
shown with vertical lines. During this experiment, no false place recognition
was detected.

the source clouds to the master computer would require the
transmission of 356 MB of data. In comparison, 5MB would
be transmitted if one would select 100 keypoints per source
cloud and describe these with Fast Point Feature Histograms
(FPFH) [31] of dimension 1x33. With our segment approach,
the source maps M i

s contained in average 30.4 ± 9.9
descriptors for a total of 4682 descriptors transmitted to
the master computer. With the compact representation of
eigenvalue based features [1x7], this results in only 562 kB
of data to be transmitted over 143 seconds of operation. Note
that for these computations, six doubles and two unsigned
int are additionally required to link each descriptor to the
trajectories. We also only treat the useful data and do not
consider the data transfer overhead.

E. Gustav Knepper Power Station

For this experiment, we use data collected during a SaR
mission performed by the TRADR consortium at the decom-
missioned Gustav Knepper Power Station. The experiment
took place in one large two-floors utility building measuring
100m long by 25m wide illustrated in Figure 1. During the
experiment held in November 2016, three UGVs equipped
with multiple encoders, an Xsens MTI-G IMU and a rotating
2D SICK LMS-151 LiDAR were teleoperated by firemen
end-users in order to efficiently explore the scenario. With
their skid-steering climbing capabilities, the TRADR UGVs
can traverse and map challenging 3D environments.

The power plant mission lasted 950 seconds with the three
robots starting at different locations and traversing different



paths with a cumulative distance of 694 meters. As can
be seen in Figure 1, UGVgreen began its mission outside,
entered the building and performed a loop in clock-wise
direction of the ground floor. Simultaneously, UGVred first
climbed challenging metal stairs at the right side of the
ground floor in order to reach and explore the upper level
whereas UGVyellow started at the left side of the upper floor,
went down and explored the ground floor.

For this experiment, the odometry factors fodom,i(Θi)
are obtained by fusing encoders and IMU measurements
with the technique presented by Kubelka et al. [27]. This
odometry information is also used for accumulating mea-
surements from the rotating 2D LiDAR sensor into dense 3D
point clouds which are used to compute the scan-matching
factors fscan,i(Θi) as described in Section IV-A.2. The
parametrization of the other modules is defined in Section V-
C and Table I.

During the three-robot power plant experiment, our SLAM
system with the presented configuration was capable of
detecting 20 valid place recognitions, in real-time and on
one single computer. Eight of these successful SegMatch
detections were in challenging scenarios where the UGVs
drove in opposite directions. The three trajectories, as esti-
mated at different moments of the mission, are depicted in
Figure 5. Figures 5b and 5c specifically illustrate the case
where a global prior factor fprior(Θ0) is removed from the
pose-graph due to a first inter-robot association, as described
in Section III-B. Two of the eight place recognitions in
areas visited in opposite directions are shown in Figure 5c
and 5d. The final trajectories are illustrated in Figure 1 and
a top-down view is given in Figure 6. As for the previous
experiment, the timings are stated in Table II.

VI. CONCLUSION

This paper presented a SLAM system for multiple robots
equipped with 3D LiDAR sensors. After considerable devel-
opment efforts, our system successfully integrates different
state of the art modules that are advantageous for multi-
robot systems with regards to closing loops, computational
complexity, and communication bandwidth requirements.

The system’s back-end is based on a pose-graph optimiza-
tion approach where updates and inference are performed
incrementally using the Bayes tree. We showed how this
architecture can easily be configured to handle multiple
trajectories without any prior information on their relative
position. The front-end is responsible of providing the graph-
ical model with LiDAR odometry and place recognition con-
straints. The LiDAR odometry constraints relate successive
nodes using ICP scan-matching between the latest scan and a
submap of previous scans. Place recognition is performed by
leveraging a segment extraction and matching algorithm. We
demonstrated through two experiments in different scenarios
that the presented system enabled multiple-robots to jointly
map large areas in real-time and with a high rate of successful
place recognitions. During these experiments, we found that
identifying valid and accurate place recognitions is a crucial
capability when dealing with multiple robots.

(a) Start of the mission with each robot in its own frame of reference.

(b) At t = 180s, first global association between UGVred and
UGVgreen.

(c) At t = 380s, first encounter of UGVgreen and UGVyellow when
exploring the lower floor in opposite directions.

(d) At t = 476s, another association is made between the same UGVs in
a corridor traversed in opposite directions.

Fig. 5: A demonstration of our multi-robot SLAM system based on data
collected in a two-floor building of the Gustav Knepper Power Station
in Dortmund, Germany. The trajectories of UGVred, UGVgreen and
UGVyellow are estimated in real-time. The vertical green lines repre-
sent segment matches which resulted in one of the 20 inter-robot place
recognitions. For visualization purposes, the source maps are coloured by
height and the target map is illustrated in white below. The final trajectories
are illustrated in Figure 1. The reader is encouraged to consult the video
demonstration for a better visualization.



Fig. 6: A top down view of the multi-robot experiment in the Gustav
Knepper Power Station. The target map Mt is coloured by height.

In the context of multi-robot systems acting in difficult
scenarios and under limited communication bandwidth, one
important challenge is to limit the data to be transmitted
for finding robot associations [3]. One key advantage of the
proposed system is to detect these associations on the basis
of segments that offer a high level of descriptiveness and
information compression.

Whereas this paper proposed a centralized system, future
work could include a distributed system which would also
directly benefit from these advantages. To this end, the
implementation of the complete system is available online
with easy to run demonstrations, along with the new SaR
dataset introduced in this work.
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Incremental Segment-Based Localization in 3D
Point Clouds
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Abstract—Localization in 3D point clouds is a highly challenging
task due to the complexity associated with extracting information
from 3D data. This paper proposes an incremental approach
addressing this problem efficiently. The presented method first
accumulates the measurements in a dynamic voxel grid and
selectively updates the point normals affected by the insertion. An
incremental segmentation algorithm, based on region growing,
tracks the evolution of single segments which enables an efficient
recognition strategy using partitioning and caching of geometric
consistencies. We show that the incremental method can perform
global localization at 10Hz in a urban driving environment, a
speedup of x7.1 over the compared batch solution. The efficiency
of the method makes it suitable for applications where real–time
localization is required and enables its usage on cheaper, low–
energy systems. Our implementation is available open source
along with instructions for running the system1.

Index Terms—Localization, Range Sensing, Recognition, SLAM

I. INTRODUCTION

PERCEPTION capabilities are a key requirement for robots
to perform high–level tasks like navigation and inter-

action. For this reason, mobile robots are often equipped
with 3D time-of-flight sensors which can produce precise
reconstructions of the environment. Processing these detailed
data can however result in high computational costs. Amongst
important capabilities which can strongly benefit from efficient
solutions, we focus on the challenging task of localization
in 3D point clouds. Making global associations in 3D data
permits us to construct an unified representation without
making an assumption of low drift, or known relative starting
position, in case of multi-robot applications.

This work presents an incremental solution to localization in
3D point clouds based on the principle of segment extraction
and matching from accumulated data [1]. As demonstrated
in our previous work, accumulating data can help recognize
places which are observed from different viewpoints [2].
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and a video demonstration is available at https://youtu.be/cHfs3HLzc2Y.

Figure 1: Example of localization made by our incremental approach in
a urban driving scenario. The robot is driving from right to left and its
trajectory is shown in orange. Segments are extracted, tracked and merged
over successive observations. At t = 2 a localization is made against the
target map with segment correspondences denoted by green lines.

However, fully processing such representation at each time-
step leads to expensive redundant computations. Therefore,
we propose to reuse the processed information by retaining
data structures that are likely to save computations in later
localization attempts.

The first module of the presented solution accumulates and
filters a continuous stream of 3D point cloud data through
a Dynamic Voxel Grid (DVG), providing information about
newly occupied voxels. This key information is leveraged
for estimating normals by re-computing only those affected
by newly occupied voxels and by caching information to
incrementally compute covariance matrices. Incremental re-
gion growing segmentation is then performed by using only
the newly occupied voxels as seeds and by merging with
previously clustered points. As illustrated in Fig. 1, this
strategy enables to robustly track segments between successive
observations which offers multiple benefits to the overall
framework. Amongst others, it enables the final stage of our
solution: an efficient recognition strategy based on partitioning
and caching of geometric consistencies.

To the best of our knowledge, this is the first work to
propose combining incremental solutions to normal estimation,
segmentation, and recognition for finding global associations
in 3D point clouds. The full solution is evaluated in real-world
experiments demonstrating localization rates of up to 10Hz.
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We also show that the efficiency of the presented method
makes it suitable for real–time applications and enables its
usage on cheaper, low–energy systems.

To summarize, this paper presents the following contributions:

• An incremental method for localization in 3D point
clouds based on segment matching.

• A set of incremental algorithms for the normal estimation,
segmentation, and recognition steps.

• An exhaustive comparison of the incremental approach
with a batch solution through disaster response and urban
driving experiments.

The remainder of the paper is structured as follows: Section II
provides an overview of the related work, and Section III
describes the proposed incremental approach. The incremental
approach is compared to a batch solution in Section IV, and
Section V finally concludes the work.

II. RELATED WORK

An overview of the related work in the field of localization in
3D point clouds was presented in our previous work [1]. In
this section we review previously proposed methods related to
the two core modules of our approach: efficient point cloud
segmentation, and geometric verification.

a) Incremental point cloud segmentation: Closely related to
our work, Whelan et al. [3] proposes an incremental region
growing method for segmenting dense point cloud maps.
Segmentation is done only once for each input cloud with
a merging step afterwards. Only planar segments were con-
sidered whereas our generic region growing algorithm allows
for different tuples of growing policies. Tateno et al. [4]
merge RGB-D data into a global segmentation map that is
maintained by matching and propagating segments extracted
from the current depth map. Similarly, Finman et al. [5]
propose to segment the depth maps using an incremental
variation of the graph-based Felzenszwalb algorithm. A voting
algorithm is proposed for recomputing parts of the segmented
map given new data. None of the above works proposed a
solution for retrieving models based on the generated seg-
ments. Contrastingly, we show through multiple experiments
that our incremental region growing algorithm can effectively
be leveraged for localization.

b) Efficient geometric verification: Strategies for reducing
the number of correspondence pairs have been proposed for
stereo images. Ayache and Faverjon [6] describe a partitioning
scheme for efficiently finding neighbor segments in stereo im-
ages, while [7] performs RANSAC only on spatially consistent
correspondences, i.e. correspondences that have a minimum
fraction of matching neighbor features in both images. Both
methods rely on assumptions about the disparity between im-
ages, thus their accuracy is influenced by the presence of high
disparity and strong variation in viewing angles. In this work
we present a method for performing localization efficiently
through partitioning and caching, reducing the asymptotic
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Figure 2: Architecture of the incremental segment matching pipeline and its
interface with a laser SLAM framework2.

complexity of the geometric consistency grouping method [8].

III. METHOD

This section introduces our incremental solution to localization
in 3D point clouds and the contributing modules. An overview
of the approach is depicted in Fig. 2.

A. Dynamic Voxel Grid

The continuous input stream of 3D points is filtered and
accumulated in a local cloud using a voxel grid approach.
Instead of performing batch voxel filtering of the entire local
cloud with each new measurement, we add and update only
voxels that are affected by the new points. We implemented a
DVG, an efficient data structure supporting dynamic insertion
and removal of points. Occupied voxels are stored in a vector
in increasing voxel index order. Each voxel maintain its index,
centroid, and the number of points it contains. In order to
reduce noise, a voxel is considered active if it contains at
least a desired amount of points. For the successive stages of
the pipeline, only active voxels are used.

1) Voxel Indexing: Virtually, the voxel grid is a regular grid
of size l × w × h voxels, where each voxel has a unique
index in the interval [0, l · w · h− 1]. The grid has a fixed
resolution r and a rigid transformation from the grid frame
to the map frame Tmg which is initialized such that the robot
starts at the center of the grid. Indexes are stored in b–bits
unsigned integers, for computational efficiency we require the
sizes of the grid to be powers of 2: l = 2lbits , w = 2wbits and
h = 2hbits , where lbits + wbits + hbits ≤ b. The voxel index
I (q) of a point q is computed as:

I (q) = bt.xc+ bt.yc � lbits + bt.zc � (lbits + wbits) (1)

where � is the bitwise left shift operator and t corre-
sponds to the grid coordinates of the point q according to:
t = T−1mg · q · r−1.

2In this work we use a pose-graph SLAM system which performs registra-
tion between successive LiDAR scans using Iterative Closest Point (ICP) [2].
The implementation is available at https://github.com/ethz-asl/laser_slam.
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2) Insertion and Removal: When new points are inserted, the
DVG computes their voxel indices and sorts them in increasing
voxel index order. Considering that sorting has an asymptotic
complexity O (n log (n)), this is an important optimization
over sorting all the points as performed in batch voxelization.
Once new points are sorted, they are added to the existing
voxels in linear time with a merge operation: When m points
qi are inserted in a voxel with centroid p downsampled from
n points, its properties are updated as:

p←
(
n · p+

m∑

i=1

qi

)
· 1

n+m
, n← n+m (2)

In addition, the indices of the voxels that turned active after the
insertion are collected in a set U , so that the normal estimator
and the segmenter can operate on the new voxels only. When
the robot moves, the DVG is updated by removing voxels that
fall outside the radius of the local map.

3) Rigid Transformation: When a loop closure is detected,
the SLAM application re–evaluates the trajectory of the robot
and provides a new estimation of its pose. Consequently,
the local cloud must be updated with a rigid transform T
which is applied to the centroid of each voxel. Moreover, in
order for new points to be assigned to the correct voxel, the
transformation of the DVG is updated as Tmg ← TTmg .

B. Incremental normal and curvature estimation

The normal of a point pi in a 3D point cloud is commonly
estimated from the covariance matrix M of a neighborhood
N (pi) [9]. After finding the neighborhood by fixed–radius
Nearest Neighbors (NN) search and arranging the neighbor
points in a ni-tuple {νj}ni

j=1 := N (pi), Mi is computed as
a sample covariance, using · to denote the average operation,
i.e. νj := 1

|ν|
∑|ν|
j=1 νj , omitting the index if unnecessary:

Mi := (νj − ν)(νj − ν)ᵀ, (3)

The estimate of the normal is equal to the normalized eigen-
vector of Mi corresponding to the smallest eigenvalue, while
the curvature is computed as σ = λ0(λ0 + λ1 + λ2)

−1 where
λ0 < λ1 < λ2 are the eigenvalues of Mi.

In this work, we apply two major optimizations to make the
process incremental: The covariance matrix Mi is computed
incrementally and only normals affected by new scanned
points are updated. By expanding the factors in eq. (3), we
obtain an incremental formulation:

Mi = νjν
ᵀ
j − ννᵀ =

1

ni
·Ai −

1

n2i
· bibiᵀ (4)

where Ai and bi are respectively the accumulators for νjν
ᵀ
j

and ννᵀ. The advantage of this formulation over eq. (3) is
that it can be computed incrementally, without the need to keep
track of the neighborhood N (pi) of each point. For reference,
a similar formulation is introduced by Poppinga et al. [10] for
performing efficient batch plane detection in 3D point cloud
data.

1) Incremental Updates: The accumulators of each point are
computed incrementally following a contributions scattering
and gathering procedure. For each new point index i ∈ U
accumulators Ai, bi and ni are initialized with 0 and for each
pj ∈ N (pi), including already the new points, contributions
are scattered as:

Aj ← Aj + pipi
ᵀ, bj ← bj + pi, nj ← nj + 1 (5)

Similarly, contributions are gathered from old points only, i.e.
if j /∈ U :

Ai ← Ai + pjpj
ᵀ, bi ← bi + pj , ni ← ni + 1 (6)

Finally, covariance matrices, normals, and curvatures are re-
computed for points whose accumulators have been updated.

2) Rigid Transformation: In the event of loop closures, the
trajectory of the robot is re–estimated and a rigid transfor-
mation is applied to the filtered point cloud C. When this
happens, we transform the accumulators in order to avoid in-
consistencies caused by the accumulation of points belonging
to different reference frames.

The transformation, expressed as translation t after rotation
R, is applied to all points pi belonging to the local cloud as
pi ← Rpi + t. Let ν̃ := (Rνj + t)

ni

j=1 be the transformed
neighborhood tuple of the point pi. Then the updated sample
covariance (4) for ν̃ can be computed using:

ν̃j ν̃
ᵀ
j = Rνjν

ᵀ
j R

ᵀ +Rνtᵀ + t νᵀRᵀ + ttᵀ (7)

ν̃ = Rνj + t = R ν + t (8)

Thus, the accumulators are updated as:

Ai ← RAiR
ᵀ+Rbitᵀ+ tbi

ᵀRᵀ+nittᵀ, bi ← Rbi+nit (9)

The normals are updated as: Ni ← RNi, while the point
curvatures are not affected by the transformation.

C. Incremental region growing segmentation

This section presents our generic algorithm for incremental
segmentation of 3D point clouds based on region growing
policies. Given the low fraction of new points added with each
measurement, we achieve an efficient segmentation by using
only new points as seeds for growing regions.

Algorithm 1 shows the pseudocode for growing a region
in a 3D point cloud starting from a seed point with index
s. Growing is performed using the seeds contained in the
ordered seeds list provided by the PREPARESEEDS policy.
The growing strategy is controlled by the CANGROWTO
and CANBESEED policies, which respectively determine if
growing from a seed to a neighbor is allowed and if a point
can be used as seed. The result is a cluster Γ with a unique
cluster ID γ. New unclustered points initially have no cluster
ID assigned. The NN function on line 5 finds the neighbors of
a point by fixed–radius search. In order to reduce the number
of k–d tree constructions, the same tree is shared with the
normal estimator. Future work could gain efficiency over this
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Figure 3: An illustration of three segments being incrementally grown over
successive observations.

approach by exploiting the underlying structure of the DVG
through organized region growing segmentation.

Once all points have been clustered, clusters that reached a
minimum number of points are promoted to segments and
obtain a unique segment ID. A mapping from cluster to
segment IDs is maintained in order to enable segment tracking
(section III-C3). An example of segments being grown over
multiple observations is depicted in Fig. 3.

Algorithm 1 Incremental region growing given a starting seed
s, a point cloud P and a new cluster ID γ.

1: function GROWFROMSEED(s, P, γ)
2: Γ ← {s} , S ← {s} // Initialize cluster and set of seeds.
3: while Seeds 6= ∅ do
4: s← POPFRONT(S)
5: for each n : NN(s, P ) do
6: if CANGROWTO(s, n) then
7: if HASCLUSTERID(n) then
8: LINKCLUSTERS(s, n, γ)
9: else

10: SETCLUSTERID(n, γ)
11: Γ ← Γ ∪ {n}
12: if CANBESEED(n) then
13: S ← S ∪ {n}
14: return Γ
15: end function

1) Clusters merging: While batch algorithms only need to
cover the cluster growing case, the incremental version must
also handle the cluster merging case (see Fig. 4). This is illus-
trated on line 8 where a point that has been previously assigned
to another cluster is reached. In this case, the two clusters
are merged and obtain the same cluster ID. If both clusters
already have a valid segment ID (Fig. 4c), the minimum (i.e.
the oldest) segment ID is used for the resulting set. In SLAM
applications, this causes the segments to be merged in the
target map as well.

2) Growing policies: In this work, we present two triples
of policies for our incremental region growing algorithm.
The smoothness constraint policies are derived from the
work by Rabbani et al. [11]. During the preparation phase,
PREPARESEEDS collects the indices of the points that pass
the CANBESEED test and sorts them in increasing curvature
order. This guarantees that regions are grown starting from
the flattest points, reducing the number of segments created.
CANGROWTO returns true if the normals of the seed and

(a) (b) (c)

Figure 4: Region growing and merging examples using Euclidean distance
policies in 2D. (a) An unclustered point is reached and added to the current
cluster. (b) An existing cluster (blue) is reached and linked to the growing
region (orange). (c) A current cluster (orange) reaches and is linked with two
other clusters (blue and green).

(a) (b) (c)

Figure 5: Evolution and tracking of segments as the robot moves. The black
circle represents the boundary of the local map. In this example, the minimum
size a cluster must have in order to be considered a segment is 3. (a) The robot
observes a segment (blue) and a cluster (orange). (b) As the robot moves, more
points are inserted in the local map. The orange cluster turns into a segment
and another cluster appears. The blue segment grows but maintains the same
ID. (c) From a different perspective, more points are observed, triggering the
merge of the blue and orange segments.

neighbor points are close to parallel. Since the orientation of
the normals is unknown, this is approximated by checking that
the magnitude of the dot product between the two normals falls
below a threshold. Another maximum threshold is applied on
the point curvature in order for the CANBESEED test to pass.

The Euclidean distance policies are straightforward as the
incremental region growing algorithm already finds candidate
neighbors based on their euclidean distance. Therefore, both
CANGROWTO and CANBESEED always return true and PRE-
PARESEEDS simply collects the indices of points that are not
yet assigned to a cluster.

3) Segment Tracking: While cluster IDs are only temporary
values used for identifying points belonging to the same
clusters, segment IDs are lifetime–long identifiers of segments.
The segmentation procedure presented in this section allows
us to robustly track segments and their successive views in
the local map which offers multiple benefits. In the previous
work [1], multiple views could not be associated to the
same segment and would obtain different IDs, causing the
insertion of segment duplicates in the target map. Although
heuristically identifiable by small distances between segment
centroids, precise detection of such segments was not possible.
Contrastingly, our method can robustly track segments and
update them in the target map. Segment tracking also enables
correspondences caching, which is needed by our incremen-
tal recognition approach (Section III-D). Moreover, having
access to the complete history of the observations of each
segment enabled the development of a method for learning
segment descriptors that are more robust to changes in point
of view [12]. Future work will explore different methods of
leveraging the segment view history for improving segment
matching performance.
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D. Graph-based incremental recognition

Segments extracted from the local cloud are described with
generic feature vectors (an eigenvalue-based descriptor [13] is
used in the experiments of Section IV). Candidate correspon-
dences between segments in the local and target maps are
then found through NN searches in the feature space. A pair
ci, cj of correspondences is called geometrically consistent if
the difference of the Euclidean distance between the segment
centroids in the local map and in the target map is less than
a threshold ε, i.e. if

|dl (ci, cj)− dt (ci, cj)| ≤ ε, (10)

where dl (ci, cj) and dt (ci, cj) are the distances between
centroids in the local map and in the target map respectively.
In our approach we formulate recognition as a graph problem
with the goal of identifying a Maximum Pairwise Consistent
Set (MPCS), which is a set of maximum size among all
correspondence sets that are pairwise geometrically consistent.

Geometrical consistency relationships are encoded in a con-
sistency graph G = (V,E) where V = {ci} is the set of
correspondences ci and E = {eij} is the set of undirected
edges eij connecting all consistent pairs of correspondences
(ci, cj). Identifying a maximum geometrically consistent set
is then equivalent to finding a maximum clique of G.

We take advantage of the segment tracking feature described
in section III-C3 which enables us to track correspondences as
well. The number of consistency tests performed is reduced
in an incremental fashion by reusing information computed
in previous recognition steps. Since the insertion of new
points in a segment changes its centroid, caching consistencies
directly is not efficient. We rather propose to cache, for each
correspondence ci, a set of correspondences S (ci) ⊂ V that
are candidate to be consistent with ci.

Based on eq. (10) we define the consistency distance, a
measure for how far two correspondences ci and cj are from
being consistent:

∆ (ci, cj) = |dl (ci, cj)− dt (ci, cj)| (11)

For each ci, its consistent candidates set S (ci) is then defined
as the set of correspondences cj whose consistency distance
to ci falls below a maximum threshold θ∆:

S (ci) = {cj ∈ V | j ≤ i ∧∆ (ci, cj) ≤ θ∆ + ε} (12)

where ε is the tolerance for consistency and the condition j ≤
i prevents duplicate entries of the same pair (caused by the
symmetry of the consistency relation) from being stored.

1) Cache Maintenance: When a correspondence ci is found
for the first time, S (ci) is computed and stored in the
cache, together with the centroids of the local and target map
segments. When a correspondence is not observed anymore,
all references to it are removed from the cache. Furthermore,
the consistent candidates set of a correspondence is invalidated
if its two centroids move in total by more than 1

2θ∆. The
total movement is computed as the sum of the distances of
each centroid to its cached position. This ensures that pairs

c₁
c₂

c₃

(a)

c₁
c₂

c₄

c₃

(b)

c₁

c₂

c₄

c₃

(c)

Figure 6: An example of consistency cache maintenance. Correspondences
have arbitrary positions, while the distance between correspondences repre-
sents their consistency distance according to eq. (11). Arrows point from
correspondences to their consistent candidates and circles represent the
threshold for caching θ∆. (a) The correspondences c1, c2 and c3 are inserted
in the given order, and c2 is found to be a candidate for consistency with c1.
(b) When c4 is inserted, caching c1 and c2 as candidates for consistency. (c)
The centroid of a segment of c4 changes by a distance smaller than 1

2
θ∆,

thus its cached information is still valid. c2 changes by a distance greater
than 1

2
θ∆, thus its consistent candidates are recomputed.

(a) (b)

Figure 7: A consistency graph example where nodes and edges represent cor-
respondences, plotted at their target map centroid’s position, and tested pairs
respectively. (a) Current approaches need to test all possible correspondence
pairs for consistency. (b) Our partitioning approach allows to drastically reduce
the number of consistency tests.

of correspondences initially considered inconsistent are recon-
sidered if the combined movement of the segment centroids
can cause them to be consistent. Correspondences, whose
consistent candidate set has been invalidated, are reinserted in
the cache as new correspondences. Fig. 6 shows an example
of consistency cache maintenance.

2) Consistent candidates set identification: In order to effi-
ciently determine the consistent candidates set of a correspon-
dence, we adopt the following partitioning approach. In order
for two correspondences to be consistent, the distance between
their target segments must be less or equal to the diameter
of the local map. Thus we propose to prefilter candidates
using a partition of the correspondences corresponding to the
position of their target segment centroids in a regular grid
with a cell edge length equal to the diameter of the local
map. All the elements of S (ci) can then be found among
the correspondences whose target map centroid belongs to the
same or to a neighbor partition as shown in Fig. 7. This process
is described in detail in our workshop report [14].

3) Consistency Graph Construction: Consistencies involving
new correspondences are identified while searching for their
consistent candidates sets. For all other correspondences ci,
consistency tests only need to be performed for all the cached
candidates, i.e. for {ci} × S (ci).

4) MPCS Identification: We consider a recognition to be
successful in case the size of the detected MPCS set is greater
than or equal to a threshold parameter T . Thus we need
to identify a maximum k–clique with k ≥ T . Since the
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consistency graph is sparse, we can rely on a particular class
of algorithms [15] to find a maximum clique in linear time.

IV. EXPERIMENTS

In this section we evaluate the proposed incremental approach
to localization in 3D point clouds. The performance of the
system is first evaluated and compared to a baseline solution
through three experiments. Finally, we present a challenging,
large–scale, multi–robot, SLAM application which is made
possible with the proposed approach.

A. Baseline

The baseline used for the comparison is the original
SegMatch implementation [1] which is composed of standard
Point Cloud Library (PCL) components. Specifically, batch
voxel filtering is performed by the pcl::VoxelGrid
while batch normals estimation is achieved with
pcl::NormalEstimation. Batch segmentation is pro-
vided by pcl::EuclideanClusterExtraction and
pcl::RegionGrowing. Recognition is finally performed
using pcl::GeometricConsistencyGrouping.

B. Performance

The proposed solution and the baseline have been bench-
marked in three different conditions:

• KITTI Localization: The vehicle drives in a known
urban scenario, continuously localizing against a map
generated from sequence 00 of the KITTI dataset [16].

• KITTI SLAM: The vehicle explores an unknown urban
scenario, continuously updating a dynamic target map and
trying to detect loop-closures (KITTI sequence 05).

• Powerplant Localization: A rescue robot drives in
a known indoor scenario continuously localizing. The
dataset has been recorded at the Knepper powerplant in
Dortmund in the context of the TRADR project [2].

For both solutions, segments are extracted using Euclidean
distance policies for the KITTI scenarios and with smoothness
constraints policies the powerplant scenario. Segments are
always described using eigenvalue-based features [13].The
other parameters are detailed in Table I and have been found
experimentally to yield good performance for both the baseline
and proposed solutions. Note that coarser grid resolutions and
higher minimum number of points results in fewer active
voxels and faster segmentation rates. However, the resulting
segments could be less descriptive of the actual scene objects.

1) Hardware: All experiments have been performed on a
system equipped with 32GB of RAM and an Intel i7–6700K
processor.The segment matching pipelines run in single–
threaded mode and, for all experiments presented in this paper,
the RAM usage of the whole system, including 3D mapping
and trajectory estimation, never surpassed 1.6GB.

Parameter KITTI Powerplant

Local map radius (m) 50.0 25.0
DVG resolution r (m) 0.1 0.1
Min number of points for activating voxel 1 2
NN search radius for growing (m) 0.2 0.5
Max angle between normals for growing (degrees) – 4.0
Max point curvature for using as seed (m−1) – 0.05
Max distance for consistency ε (m) 0.4 0.4
Min MPCS set size T 5 6

Table I: Parametrization of the segment matching modules.

2) System performance: The timings and speedups resulting
from these experiments are presented in Table II. Details are
given separately for each module, to which an incremental
solution is proposed, and for both the baseline and the
proposed approaches. The category others includes segment
description, matching, and, in the SLAM experiment, target
map construction. Note that the batch method additionally
requires 10ms for associating segments when updating the
target map whereas this is obtained directly in the incremental
solution. In event of loop closures, an average of 22.8ms more
is required by both methods for updating the target map and
the k–d tree used for matching segments.

In all experiments, the proposed localization approach can
process the measurements faster than the update rate of the
sensor. This is particularly interesting in the KITTI exper-
iments where our approach allows to process in real-time
the large data throughput of the Velodyne HDL-64E. The
overall speedups achieved by the incremental approach over
the batch solution are 8.9x, 7.1x, and 12.4x respectively
for each scenario. The processing rates achievable by the
incremental pipeline range between 13Hz and 25Hz depending
on the experiment. However, in practice, these values are now
limited by the sensor frequencies. Further detailed statistics
about the experiments are summarized in Table III.

We observe that successful localizations are generally based on
a redundant amount of correspondences. Since the recognition
step automatically rejects inconsistent candidate correspon-
dences, the algorithm is still able to localize even in moder-
ately dynamic environments. As an example, the localization
shown in Fig. 1 is based on 18 candidates. Since we require
at least T = 5 correspondences, localization would still be
successful even if the parked cars would move. Future work
could further improve the robustness to dynamic objects by
(1) leveraging semantic information that can be extracted
from machine learning-based segment descriptors [12] and
(2) simultaneously using multiple growing policies in order
to generate more candidate segments.

3) Dead reckoning distances: The higher localization rates of
the proposed method results in lower dead reckoning distances.
This is illustrated in Fig. 8 which shows the probability of
traveling a specific distance without successful localization
in the map generated from KITTI sequence 00. See [1] for
a definition of this metric. With the proposed incremental
approach, localization happen within 1.5m more than 90%
of the times, while the original approach can localize within
the same distance less than 10% of the times, occasionally
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Table II: Runtimes of the modules of the batch and incremental approaches (ms).

Module
KITTI Localization KTTI SLAM Powerplant Localization

Batch Incremental Speedup Batch Incremental Speedup Batch Incremental Speedup

Voxel filtering 56.9± 19.2 4.2± 2.8 x13.5 69.6± 35.1 4.11± 1.88 x16.9 32.7± 18.7 1.7± 0.8 x18.8
Normal estimation - - - - - - 166.4± 64.9 10.2± 1.6 x16.4
Segmentation 389.7± 147.8 40.7± 13.4 x9.6 395.1± 123.0 44.5± 15.2 x8.9 275.5± 112.5 22.4± 8.6 x12.3
Recognition 85.4± 39.7 6.0± 3.2 x14.2 41.3± 54.5 3.5± 4.15 x11.8 0.7± 0.5 0.1± 0.05 x7.4
Others 10.0± 3.6 10.2± 3.5 - 34.4± 19.7 23.9± 12.7 - 3.7± 1.7 4.4± 1.9 -

Total 542.1± 210.3 61.2± 23.0 x8.9 540.4± 232.3 76.0± 33.9 x7.1 479.1± 198.2 38.7± 13.0 x12.4

KITTI KITTI Powerplant
Quantity (per–step) Localization SLAM Localization

Sensor rate 10Hz 10Hz 0.33Hz
Created voxels 2.1k±0.6k 2.1k±0.7k 2.2k±0.3k
Local cloud size 156.5k±50k 159.5k±41k 76.5k±34k
Modified normals - - 10.6k±3.3k
Local map clusters 9.1k±3.9k 8.6k±2.1k 7.4k±2.4k
Local map segments 52.8± 13.7 60.1± 13.8 42.7± 20.9

Target map segments 1204 847± 423 83

Partitions 25 8.2± 3.9 1

Correspondences 3.1k±0.9k 1.6k±1.0 103± 55

Cached correspondences 2.8k±0.8k 1.5k±0.9k 95± 53

Cache invalidations 2.3± 8.4 1.8± 6.3 0.1± 0.3

Table III: Statistics (mean and standard deviation) characterizing the different
experiments. Values refer to observations made in one localization step. It is
interesting to note some strong differences between experiments (e.g. number
cache invalidations) caused by the changes in scenario and configuration.

Figure 8: Probability of travelling a specific distance without a successful
localization (data recorded during 5 runs of the KITTI localization example).

traveling more than 10m without localization.

4) Dynamic Voxel Grid: As described in Section III-A, voxel
filtering requires a sorting step to group points belonging
to the same voxel. This O (n log n) step has a significant
impact when the local cloud contains a lot of points. With
the incremental approach, this operation is reduced to sorting
only the new points and then merging them with the stored
sorted points in linear time. As shown in Table III, the new
voxels represent only a small fraction of the entire local cloud,
justifying the speedups observed in Table II. The timings stated
for the voxel filtering include one pose update (removal of
voxels outside the radius of the local cloud) and one insertion
of the queued scans.

5) Incremental normals estimation: Normal estimation has
been evaluated in the powerplant scenario only, as the Eu-
clidean distance policies used in the KITTI examples do
not require point normals. In this case, a speedup of 16.4x

Figure 9: Mean runtime of the
recognition stage with different
caching radii. None indicates the
pure partitioned approach without
caching. In this dataset the ideal
compromise between caching and
invalidation is about 3m.

is observed which is explained by the smaller number of
NN searches required and by the caching of the covariance
matrices. Furthermore, our implementation allows us to reuse
the k–d tree built for segmentation which was not performed
in the batch solution. In an equitable comparison where both
estimators need to build a k–d tree of the local cloud, the
incremental approach is in average 7.1 times faster.

6) Incremental region growing segmentation: Similarly, the
most important improvement factor for the segmentation mod-
ule is the reduction of the number of NN searches performed
at every step. This is achieved by reusing stored information
about the clusters in the cloud and only starting region
growing from new unsegmented points. As stated in Table II,
incremental segmentation achieves speedups over the batch
methods of 9.6x, 8.9x and 12.3x.

7) Graph–based incremental recognition: Thanks to the par-
titioning scheme and the incremental caching, our recognition
method reached speedups of 14.2x, 11.8x and 7.4x respec-
tively. Moreover, the runtime of our method scales linearly
with the number of correspondences, significantly improving
over the cubic scaling of the batch algorithm (see Gollub
et al. [14] for an asymptotic complexity analysis). Interest-
ingly, cached correspondences represent > 90% of the total
correspondences (Table. III), but are tested for consistency
faster than new correspondences. In the KITTI localization
experiment, the incremental recognizer performed on average
313k and 30k consistency tests on new and cached correspon-
dences respectively. This is only 7.2% of the ~4.7 million
tests performed by the batch solution at each recognition step.
In the powerplant experiment, both recognizers can test for
consistencies very quickly as the target map contains only a
small number of segments.

The effect of different thresholds θ∆ on the consistency
distance for caching is compared Fig 9. Whereas high values
of θ∆ result in a lot of cached candidates, requiring a high



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

Figure 10: A top-down il-
lustration of a common
representation constructed
in real-time on a sin-
gle computer, by simulat-
ing five autonomous vehi-
cles equipped with Velo-
dyne HDL-64E sensors.
The segments centroids are
colored according to their
associated vehicle trajecto-
ries.

number of consistencies tests, small values increase the num-
ber of invalidated cache entries. Therefore, the best setting for
the radius is a trade-off between number of cached candidates
and invalidation frequency.

C. Large-scale multi-robot experiment

This final experiment shows that the performance of the pre-
sented incremental approach enables us to address challenging
SLAM scenarios. In order to simulate a multi-robot scenario,
sequence 00 of the KITTI odometry dataset is split into five
sequences which are simultaneously played back for a duration
of 114 seconds. The data generated by five Velodyne HDL-
64E sensors are processed in real-time on a single computer,
in order to identify sufficient global associations to link the
trajectories.

Although successful results were demonstrated in multi-robot
scenarios with the batch approach [2], we found that it did not
scale well to this higher number of vehicles. Specifically, its
lower processing rate led to the extraction of too few segments,
preventing the association of some trajectories. Contrastingly,
our incremental approach successfully closed more than 100
loops which enabled to construct, in real-time, the common
representation illustrated in Fig. 10. Similarly to the timings
presented in Table II, 77.8ms±38.2ms were on average re-
quired to perform a localization step. This shows that the
incremental approach effectively managed the higher number
of voxels created at each step (5.2k vs 2.1k on average) which
is caused by the delay when sequentially processing data from
multiple sensors.

V. CONCLUSION

In this work, we presented a novel incremental approach
for performing localization in 3D point clouds. We started
by identifying the most computationally demanding opera-
tions in our previous pipeline. Then, efficient solutions were
proposed for the individual sub-problems of the underlying
segment extraction and matching technique. Unlike previous
works, this approach maintains a segmented local map and
performs geometry verification incrementally, reducing the
computational burden and then allowing for more frequent
localizations. The speed-up achieved allows for localizations

at 10Hz, enabling real–time operation of 3D point cloud
based SLAM systems. Our results indicate that the proposed
approach could allow for seamlessly performing map-tracking,
i.e. localization in a known map with a constrained search
space based on the current position estimate. In the same
direction it is worth to further investigate the application of
our incremental recognition scheme to geometric verification
for vision-based SLAM. Furthermore, whereas the present
work considered eigen-based segment descriptors, it would be
interesting to investigate incremental updates of learning-based
descriptors that can potentially gain discriminative power and
reliability over time.
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