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loop closure and merging UGV and UAV maps.

1



DR 1.3: Sensing, mapping and low-level memory III T. Svoboda et al.

1 Tasks, objectives, results 5
1.1 Planned work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Addressing reviewers’ comments . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Actual work performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Task T1.5 (Essential sensing and UGV control functionality III –
Multi-robot perception . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Task T1.6 (Robot centric metrical maps and models storage III –
Multi-robot models grounding: into one frame, into one representa-
tion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Relation to the state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Policy search for flipper control . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Active scene segmenation . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.3 Vision based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.4 Registration methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.5 Loop closures in 3D point clouds . . . . . . . . . . . . . . . . . . . . 24
1.4.6 UGV-UAV Map Merging . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Annexes 34
2.1 Dubé (2017), “SegMatch: Segment based loop-closure for 3D point clouds” . 34
2.2 Gawel (2016), “Structure-based Vision-Laser Matching” . . . . . . . . . . . 34
2.3 Pecka-TIE2016, “Controlling Robot Morphology from Incomplete Measure-

ments” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Pecka-IROS-2016, “Autonomous Flipper Control with Safety Constraints” . 36
2.5 Jasek-bc-thesis-2016, “Detecting Objects for Autonomous System Verifica-

tion” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Kashammer-ms-thesis-2016, “A semantic interpreter for multimodal and

multirobot data” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Petricek-TRO2017-unpub, “Guided reinforcement learning for simultaneous

exploration and segmentation” . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8 Berninger-IROS2017-unpub, “Planar segment based vision-laser point cloud

registration” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

EU FP7 TRADR (ICT-60963) 2



DR 1.3: Sensing, mapping and low-level memory III T. Svoboda et al.

Executive Summary

The key objective of WP1 is to provide sensory data from all involved robots
registered in space and time, to keep creating and updating robot centric
representations, and ground them into the world coordinate frame. The
obtained representations are furnished to other WPs, which maintain higher
level situation awareness.

During Year 3 we concentrated on upgrading the 3D mapping algorithm
with the crucial ability of finding loop closures and of optimizing the full
pose-graph in real-time. We developed two methods for merging UGV maps
(lidar) and UAV maps (from vision). One uses sparse vision maps and aims
at a very general solution for global localization. The second one is more
problem specific it does dense visual reconstruction and exploits a relative
pose prior. We extended the adaptive traversal to continuous flipper control
asymmetric for front and rear flippers. A new active search algorithm was
developed for 3D scene labeling. We designed a bi-directional connection be-
tween high and low-level databases for managing multiple object detections.

Role of robot perception and metrical mapping in
TRADR

The robot perception means the robot is able to analyze its neighborhood and
act accordingly. Terrain recognition is essential for robot locomotion regard-
less whether the robot is teleoperated or moves autonomously. It is desirable
the robot overcomes obstacles in a reasonable way - fast, safe, consuming less
power and reducing cognitive load of a human operator. Automatic victim
detection is important for many search and rescue scenarios. A human op-
erator may provide final decision however, robots, when crawling through a
disaster site should provide warning about possible victim locations.

The metrical mapping serves as the very basis for modeling the world.
It is also the basis for sharing information between robots and also among
several sorties and even missions.

Persistence

Persistence in WP1 is addressed mainly by re-using the data in creating an
enviroment model. The 3D metric map serves as the main basis for multi-
modal (data), multi-source (robots), multi-level (abstraction, decisions) reg-
istration. In WP1, we are working on robust methods for merging partial 3D
maps. The merging challenges include weak data overlap, dynamic changes
in scenes, large displacement of local coordinate systems. The terrain per-
ception and robot control algorithms use machine learning techniques in a
quest of gaining experience from operator-robot interactions.

EU FP7 TRADR (ICT-60963) 3
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Contribution to the TRADR scenarios and proto-
types

The new 3D mapping algoritm is an important step towards multi-robot col-
laboration (WP4) and models for acting (WP2), The algorithms for sensing
in sensory deprived environments together with related hardware advance-
ments contribute to the models for acting (WP2), multi-robot collaboration
(WP4) and also support the human-robot teaming (WP5).

EU FP7 TRADR (ICT-60963) 4
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1 Tasks, objectives, results

1.1 Planned work

In Year3, WP1 planned to investigate “Sensing, mapping and low-level mem-
ory III – Multi-robot perception” (Milestone MS1.3). The work was divided
into two tasks:

• Essential sensing and UGV control functionality (T1.5)

• Robot centric metrical maps and models storage (T1.6)

Both tasks emphasize multi-robot sensory data and also closing feedback
loops from semantic higher level and alos from the world-as-a-memory rep-
resentation

1.2 Addressing reviewers’ comments

Comment:

The Continuous Trajectory Scan Matching mapping framework
was demonstrated to be able to merge offline laser maps ob-
tained in different sorties, nevertheless doing it online is still
not possible, in spite of being a fundamental feature required by
the TRADR system in operational scenarios involving multiple
robots.

Response: We developed a tool to interactively align maps of previous
sorties that were merged offline. This summary map can then be used online
and extended by the UGVs. Furthermore, this enables the UGVs to do both
path-planning and multi-robot patrolling on these maps.

Comment:

Moreover, the innovation beyond the SoA of the SLAM frame-
work was not demonstrated and it was hard to understand in
the demonstration why the proposed framework was presented
in parallel with an ICP-based map merging code running on a
separate computer. Essentially, a clear evaluation of the frame-
work advantages and disadvantages with respect to the SoA was
missing from the presentation and demonstration.

Response:

1. The proposed pose-graph SLAM framework [15] was fully integrated
in the TRADR system, running on all UGVs.

EU FP7 TRADR (ICT-60963) 5
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2. Several iterations for 3D laser-based map merging based on the Oc-
toMap representation have been investigated, with increasing complex-
ity, i.e., static map merging with known locations, static map merging
with unknown locations and manual alignment, dynamic map merging
using SegMatch [16].

3. Laser-based loop closure and multi-robot registration has been imple-
mented with the SegMatch technique. The previous static ICP SLAM
framework is not able to propagate any retrospective updates to the
map, rendering the drift correction imposed by loop closure impossible.

Comment:

The deliverable D1.2 mentions that the consortium is still in the
process of developing change detection techniques, therefore the
work progress in the WP is slightly behind schedule . . .

Response:

1. A dynamic laser-scan filtering has been adopted using the OctoMap
framework to filter dynamics during a mission and allow robot naviga-
tion under dynamic conditions.

2. A change detection algorithm was developed to identify and segment
changes between missions and highlight points of interest.

3. We report this progress under WP2, T2.6.

Comment:

The consortium should review carefully recent work on naviga-
tion in smoky environments in the scope of other EU-funded
projects (e.g. SmokeBot, http://aass.oru.se/Research/mro/smokebot/)

Response: Research areas of SmokeBot and TRADR partially overlap; for
us, interesting results come from their interest in thermal images, especially
the effects of cold and hot smoke on the images. Moreover in localization,
utilization of radar fused with lidar seems promising, at least for coarse
mapping and localization in smoky areas. Unfortunately, their radar setup
is specific to their platform and would be difficult to install to the TRADR
platform. Nevertheless, we keep in mind these alternative approaches to
localization. Finally, the gas sensors the SmokeBot project develops are a
clear choice for TRADR scenario, if they become available.

EU FP7 TRADR (ICT-60963) 6
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Comment:

How the traversability information will be integrated into the sys-
tem, as promised in the presentation/demo, should be clarified.
We additionally look forward to seeing non-symmetric flipper
control and clear evaluation of the victim detection technology
already developed in Y1 and Y2

The use of the flippers to assist in traversal is commended and
should continue to develop. The proposed development direc-
tions towards continuous, asymmetric control look promising.

Response:

1. In Year3 we concentrated on flipper continous control where front and
rear flippers are controlled independently (assymetrically) [56] (Annex
Overview 2.4). This is for both from uncomplete data as for the blind
mode exploration (detailed in WP2 - Deli2.3).

2. Victim (object) detection were extended in two ways. We advanced
toward active search where the result is a complete 3D scene segmen-
tation and an optimal sensor control [58] (Annex Overview 2.7). We
also closed the gap between low and high level TRADR databases by
reasoning over multiple detections [37] (Annex Overview 2.6).

3. Integrating the traversability information into the multi-robot planning
is still ongoing.

1.3 Actual work performed

1.3.1 Task T1.5 (Essential sensing and UGV control functionality
III – Multi-robot perception

Terrain perception for robot control

We extended our work on autonomous flipper control [57] (Annex Overview
2.3) towards continous tilting and effectivity of training [56] (Annex Overview
2.4). Last years, we discretized the space of flipper morphology into 5
hand-cratfed configurations and autonomous traversal algorithm selected (by
learning) the proper configuration from both interoceptive and exterocep-
tive measurements. The discretization eased the learning, effectively reduc-
ing number of real robot roll-outs. On the other hand, the discretization
inevitably led to a suboptimal control and frequent switching between con-
figurations slowed down the traversal. In Year3, we extended the approach
towards continuous control of the front and rear flippers.

Policy Gradient methods require many real-world trials. Some of the
trials may endanger the robot system and cause its rapid wear. Therefore, a

EU FP7 TRADR (ICT-60963) 7
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Figure 1: Left: Real robot executing a safe policy. Right: Visualization of
the simulated robot.

safe or at least gentle-to-wear exploration is a desired property. We incorpo-
rate bounds on the probability of unwanted trials into the recent Contextual
Relative Entropy Policy Search method. The task of Reinforcement Learn-
ing (RL) [35] is to search through the space of policies π : S → A, which map
agent states S to possible actions A; the actions are then applied either in
reality or using a transition model, and the agent reaches a new state (this
description is usually known as Markov Decision Process, MDP).

Model-free policy search algorithms usually follow these steps: (i) gener-
ate trajectories from the real-world system, (ii) compute a policy maximizing
the expected sum of rewards on the so-far-generated trajectories, (iii) use the
policy to generate a new real-world trajectory, (iv) repeat from (ii). Con-
textual Relative Entropy Policy Seatch (REPS) [40] adds a task-dependent
context. We extend Contextual REPS with additional constraints. In par-
ticular, for systems which are not inherently safe, or which are prone to wear,
we use a cautious physics-based simulator to determine a rollout safety.

States of the task are: (i) robot body pitch, and (ii) height of the terrain
approximately 20 cm in front of the robot body (read from an octomap built
online from laser scans).

A policy controls independently the pairs of front and rear flippers using
positional control. Therefore, the action space is continuous and 2-dimensional.

In the previous adaptive traversal (AT), safety is not modeled separately,
and some of the safety features are part of the reward. The reward for the
AT task is a weighted sum of (i) manually assigned safety penalty, (ii) high
pitch/roll angle penalty, (iii) penalty for excessive flipper motion, (iv) robot
forward speed reward, and (v) motion roughness penalty measured by ac-
celerometers [76]. In the safe traversal (ST) task, the reward is simply the
distance traveled in 30 seconds over the pallet (the choice of policy influences
e.g. track slippage and motor stress, which lower the speed). Safety is mod-
eled explicitly by the cautious simulator, which marks as unsafe all rollouts
in which the robot tops over, hits hard on the ground or obstacle (measured

EU FP7 TRADR (ICT-60963) 8
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as deceleration), or hits objects with delicate parts of its body (e.g. sensors).
We use a policy that is linear in the states, and that controls front and

rear flippers separately.
To run the simulation on a computer, we use the Open Dynamics En-

gine (ODE) which aims at fast approximate simulation. In ODE, we use a
simple, yet reasonably plausible way to simulate the mobile robot with non-
deformable tracks – a method typically used for simulating conveyor belts.
The collision model used in the simulator consists of simple-shape collision
links (boxes, cylinders) approximating the CADmodel of the robot. Weights,
centers of mass, inertias, friction coefficients and other dynamics coefficients
are estimated manually. It is important to estimate these parameters pre-
cisely enough, so that the simulator can be assumed cautious (which can be
easily done using the CAD model). Or, in case of very influential unknown
parameters, the simulator has to be run with multiple possible values and
the worst-case outcome treated as the simulation result.

We also continued our work on blind terrain inspection by exploring
the free space by the robotic arm equipped with a newly developed handle
for tactile sensing, see Figure 2. The exploration algorithm is described in
Deliverable 2.3 (WP2) in a more detail. The tactile sensing by arm shall
support terrain perception and robot control in both standard and blind
mode. The arm can touch the terrain part wich is in front of and below the
robot level and is thus invisible for lidar and camera sensing.

...................... 2.5. Contributions to the hardware and framework

a: b:

Figure 2.4: The optoforce sensor reference frame (a) and cross-section (b). Taken
from [8]

When the sensor is operational, the LED emits light which bounces around
the dome and provides known, constant illumination on the photodiodes.
When force is applied to the dome, it deforms, and the deformation causes
the illumination of the diodes to shift. From this shift, it is possible to
determine the direction in which the force has been applied. According to
the manufacturer, deformations in range of hundreds of nanometers can be
measured [8].

The sensor has its own DAQ (Data AcQuisition) module, which communi-
cates with a computer via a serial link emulated over USB. The manufacturer
provides a C++ library that exposes the sensor functionality in an API. It
however depends on the problematic Qt framework. Shadow Robot Company
[9] implemented a ROS node that connects to the sensor serial interface,
configures sensor parameters like measurement and filter frequency, reads
the data output by the sensor and publishes them on a ROS topic to be
processed by other components. The readings published are in Newtons, as
the driver is provided with a “sensitivity report”, a calibration result provided
by the manufacturer that relates the internal units used by the sensor to
actual physical forces. The driver software was released under GPLv2. We
simplified the driver and slightly adjusted it to work better in our setup.

2.5 Contributions to the hardware and framework

2.5.1 Arm simulator

To simplify development, we implemented a fake arm driver mimicking the
Kinova ROS driver. The fake driver is meant to be used with MoveIt! as
a drop-in replacement of the original driver, and hence it only implements

15 ctuthesis t1606152353

...................... 2.5. Contributions to the hardware and framework

a: b:

Figure 2.5: The sensing tool assembly in cross-section (a) and forces in the
instrument (b)

sensing_toool_photo.png

Figure 2.6: The sensing tool

17 ctuthesis t1606152353

Figure 2: A device for free space exploration. The opto-force sensor (left) is
mounted at the end of the stick and the construction allows to measure both
lateral (black arrows) and axial (blue arrows) forces, see the scheme at the
middle. The blue handle is 3D printed and specially designed for the Jaco
arm.
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Figure 3: Skid-steer Search&Rescue robot with (i) a panoramic RGBD sensor
consisting of an omnidirectional camera and a rotation laser scanner, (ii) a
narrow-FOV thermal (T) sensor, mounted on a pan-tilt unit.

Object detection and scene analysis

We ehanced our work on victim detection towards a more general active
3D-scene labeling algorithm [58] (Annex Overview 2.7). We closed the loop
between high and low level database by reasoning over multiple victim de-
tections [37] (Annex Overview 2.6).

We consider the problem of pan-tilt sensor control for active segmenta-
tion of incomplete multi-modal data. Since demanding optimal control does
not allow for online replanning, we rather employ the optimal planner offline
to provide guiding samples for learning of a CNN-based control policy in a
guided Q-learning framework. The proposed policy initialization and guided
Q-learning avoids poor local optima and yields reasonable results from hun-
dreds of roll-outs.

To make further reading easier, we summarize the algorithm now, using
the simplified notation input→output, which denotes deep convolutional
network with defined input and output layers. Given the human/background
annotated dataset, we learn segmentation and control networks:
Segmentation networks: Use annotated dataset to train multi-modal seg-
mentation networks RGBD→H and RGBDT→H from pretrained Long’s network
RGB→H. Here V stands for the layer with the same resolution as the input
panoramic data, which assign confidence for each particular pixel to be a hu-
man H. Control network: Learn Q-value network RGBDT→Q, which maps
captured RGBD-data directly on Q-values connected with discrete control sig-

EU FP7 TRADR (ICT-60963) 10
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Figure 4: The RGBDT→Q network is divided into two sub-networks: (i) the
RGBD→∆ε part predicts ∆ε from RGBD data, and (ii) the TD∆ε→Q part pre-
dicts the Q-values from the depth D and the reduction in the classification
error ∆ε.

nals u ∈ U . To avoid learning the huge Q-value network from the scratch,
we first use previously learned segmentation networks for its initialization.

When all networks are available, we use them online in the following
algorithm: Examples of 3D segmentation results are depicted on Figure 5.

1: Capture RGBD data from panoramic sensor.
2: Capture and accumulate T data from the current thermal camera view-

point i.
3: Use the RGBD→H and RGBDT→H networks to obtain pixel-wise human

confidence.
4: Project and accumulate confidence into corresponding voxels.
5: Use the RGBDT→Q network to estimate new control signal u for the

thermal camera.
6: Move simultaneously: the robot towards the next position in the explo-

ration path and the thermal camera towards the next viewpoint.
7: Repeat from beginning

Algorithm 1: The active segmentation.

We implemented a semantic connection between low-level and high-level
TRADR database [37] (Annex Overview 2.6). A 2D visual detector [61]
crawls the low-level database for new images and detect object (victims in
this case). All available information, including robot position, time stamps,
is included in the reasoning about the identity of the detected object. Two
approaches were experimentally compared i) similarity based on image de-
scriptors, ii) geometrical verification - essentially, only one object can be on
one 3D position at the same time. A victim detection and association ex-
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ample is depicted on Figure 6. Currently, we are extending the semantic
connection for a 2D fire detector.

Figure 5: Panoramic images (first row) and corresponding voxels maps (sec-
ond row) from two experiments with the mobile Search&Rescue platform.
First row consists of three panoramic images: (i) grayscale image (generated
from RGB image) with segmentation of humans outlined by green borders
and accumulated temperature rendered from the voxel map emphasized by
blue color, (ii) depth D image and (iii) thermal T image both rendered from
the voxel map. Second row shows successively built voxel maps, with robots
position and orientation, color of voxels corresponds to the accumulated seg-
mentation confidence (red-human, white-background).

UGV-Mapping

Building on top of the progress the TRADR consortium has made up to the
second year, we have extended for the third year the functionalities of the
UGV mapping system with the crucial ability of finding loop closures and of
optimizing the full pose-graph in real-time.

Current strategies for detecting loop-closures in 3D laser data are primar-
ily based on local keypoint detection and matching, a few others are based
on global scene descriptors. The state-of-the-art approaches have been re-
vised and analyzed in [16] (Annex Overview 2.1). Given the drawbacks of
the local and global descriptors, especially in the search-and-rescue scenarios
where the TRADR system works, we have developed a novel technique that
works at the middle ground level without the assumption of being able to
detect full objects.

EU FP7 TRADR (ICT-60963) 12
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5 Test results and evaluation

a) Victim 3 - Detection 1 b) Victim 3 - Detection 2

c) Victim 3 - Detection 3 d) Victim 4 - Detection 1

Figure 5.2 Resulting ”victims” for test scenario 1 part 2 (see 5.1.1). Figure a), b) and c) depict
Victim 3 whereas d) shows victim 4. Notice that Victim 3 in a) is detected in a di↵erent
camera frames than in b). Detection boxes are marked red.

42

Figure 6: Victim 3 correctly associated in three different observations.

The technique closes loops by matching segments that belong to partial
or full objects, or to parts of larger structures (windows, arcs, façades).
Our system first extracts and describes segments from a 3D point cloud,
matches them to segments from already visited places and uses a geometric-
verification step to propose loop-closures candidates. The full pipeline is
depicted in Fig. 8 and described in full detail in [16] (Annex Overview 2.1).

This segment-based technique is able to considerably compress the point
cloud into a set of distinct and discriminative elements for loop-closure detec-
tion. We show that this not only reduces the time needed for matching, but
also decreases the likelihood of obtaining false matches. An example of a loop

EU FP7 TRADR (ICT-60963) 13
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4.3 High-level victim reasoning

Figure 4.6 Exemplary scheme illustrating the assignment process

2. Feature similarities are calculated. Since the current detection has to be compared
to all victim detections anyway, it makes sense to test for the special case (section
4.3.1) here simultaneously. If detections are in the same image and their bounding-
box overlap is bigger than 50%, the victim is the represented one, otherwise it will
be dismissed (if not disabled).

3. Remaining possible candidates are tested in the previously arranged order of increas-
ing distance to the target by the feature comparison method. The detection is then
assigned to the first successful candidate. Again, if non succeeds, a new victim is
created.
As mentioned, a victim candidate must have at least three (or more depending on
the threshold) detections, otherwise this method fails. It would then be inequitable
to simply dismiss the current candidate and try the next one. Consequently, in this
case, the method cannot be used at all to derive a reasonable decision. The algorithm
will then switch to ”by distance only” mode.

4. If assignment is done ”by distance only”, the closest candidate is tested whether its
distance to the target detection is smaller than a threshold (around 0.5 - 1.5 meter).
Here the threshold is equivalent to the radius of a sphere with the new target at its
center. If the candidate is not located within this sphere, there is no need to test
others as well because it is the closest candidate already. A new victim will then be
created.

4.3.2 Assignment of detections with occupation-pyramid

The assignment algorithm for detections that have a occupation-pyramid instead of
precise location (hasLocation = "None", hasOccupationPyramid 6= "None") is quite
similar to the one explained above. However, there are a few di↵erences that need to
be outlined:
First and most importantly, these detections can only be assigned to existing victims
for which locations already exist. In other words: No new victims can be created in case
a detection can not be assigned because the detection cannot provide a precise location

29

Figure 7: Associations between multiple detections and multiple observa-
tions.

closure using our segment based approach is depicted in Fig. 9. The code has
been open-sourced at https://github.com/ethz-asl/segmatch along with
the laser SLAM back-end at https://github.com/ethz-asl/laser_slam.

UGV-UAV Map Merging

The fleet of robots in TRADR is composed of UGVs and UAVs. These robots
are equipped with different sensing modalities due to their inherent pay-load
constraints, e.g., the UGVs can carry on heavy 3D laser scans and the UAVs
cannot, instead the UAVs are equipped with RGB cameras. While each
robot can build a metric map with their specific sensors, the multi-modal
nature of the sensing poses challenges when merging these maps due to the
differences in point-of-view (ground VS. aerial) and density of the metric
representation.

An evaluation on the state-of-the-art methods for merging maps obtained
from the same modality, e.g. laser-laser or vision-vision, has been carried
out on our maps from different modalities. This evaluation motivated the
development of a technique for merging vision maps and laser maps in the
absence of further prior registration, see [29] (Annex Overview 2.2).

The researched technique is based on finding similar structural features
in vision and laser maps and reporting back the transformation between
matching map elements. The full processing pipeline is depicted in Fig. 10
and described in full detail in [29] (Annex Overview 2.2). Metric maps are
independently built from laser sensory data and vision data. The laser maps
are constructed using the technique described in [TRADR Year2 Deliverable
2.2, general description of the mapper]. Vision maps are constructed us-
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Figure 8: Block diagram of SegMatch, a modular loop detection algorithm.
The target map can either be loaded from disk (for localization) or computed
online (for loop-closure).

Figure 9: An illustration of the presented loop-closure framework on 3D laser
data collected during the TRADR Evaluation 2016 at the Gustav Knepper
powerplant. The reference point cloud is shown below (in white), and the
local point cloud is aligned above using the loop-closure information. Colours
are used to show the point cloud segmentation, and segment matches are
indicated with green lines.

EU FP7 TRADR (ICT-60963) 15
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Figure 10: Left: System diagram of the approach for matching and fusing
vision-laser maps. Right: The figure illustrates two different point-cloud
maps obtained with vision and laser and the final alignment resulting from
our approach.

ing a monocular SLAM system [47], facilitating a similar pose-graph-based
pipeline.

The two point clouds are of different density; the laser-map is denser
than the vision-map. Then, a density filter is applied to the laser point cloud
to approximate the sparsity of the visual keypoint map. Having two point-
cloud candidates of equal densities, structural descriptors are calculated on a
subset of the points. Structural descriptors capture the local neighbourhood
around a chosen keypoint using a combination of a binning shape and a
descriptor paradigm. Simple occupancy-based and binary density-comparing
descriptors offer the best performances amongst all evaluated descriptors.

In a next step the descriptor dimensionality is drastically reduced by per-
forming a projection to the most expressive dimensions. This can be achieved
by assessing artificial noisy matches between nearby keypoints and observ-
ing the robust descriptor dimensions. This functionality was inspired by [6].
A reduced descriptor dimensionality significantly accelerates the following
feature matching step.

A subsequent k-nearest-neighbour search between the two keypoint-feature
maps results in the matching matrix. The densest regions of the matching
matrix are then segmented into place matching candidates using the ap-
proach by [44].

Before finally feeding the place matching candidates for map merging
back into the map, a geometric verification is performed. The verification
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step assesses the individual feature matching candidates of a place match for
a common transformation between the places.

Ultimately, the place matching candidates are added as constraints be-
tween the vision and laser map and can be optimized within the pose-graph
framework. The result of such approach can be visualized in Fig. 10 (Right).

1.3.2 Task T1.6 (Robot centric metrical maps and models storage
III – Multi-robot models grounding: into one frame, into
one representation)

Vision-Lidar point cloud registration

We developed a method for vision-laser point cloud registration [4] (Annex
Overview 2.8). The method allows the localization of the UGV in a vision
based map. The approach uses surfaces, that abstract from the underlying
data structure and therefore can compensate for minor disturbances while
still containing sufficient information for the motion estimation. The result-
ing map combines the information from both sensors and thus has a higher
information content. Because the UAV operates from the air, it can collect
data faster than the UGV and create a map of the environment in advance.
For this purpose the collected data of the UAV must be processed by an
structure from motion method independent of the UGV. Subsequently, the
results of the processing can be provided to the UGV for a first localization.

The global map is provided by the UAV, which records the environment
during a first flight over the environment and generates a point cloud by
means of a vision-based SLAM-algorithm. If the absolute pose of the UGV
is known in the global map, the map can be extended by the information of
the laser scan and a more detailed map can be built step by step. This is
useful, on the one hand, in low-textur regions, which can not be covered by
most camera-based methods. On the other hand, map areas such as interiors
which are not accessible to the UAV or which are not visible in the event
of a flyover due to occlusions can also be included in the global map. All
processing steps involved are explained below. For an overview of the whole
process see Figure 11.

Merging of metrical maps

The progress done on online loop-closure using the technique described in [16]
(Annex Overview 2.1) allows to handle several metric maps from the UGVs to
be merged in a single and consistent metric map, see Fig. 13 for an example.

Due to the efficiency and low memory consumption of the proposed
segment-based loop closure, the framework can handle multiple sorties on
the same environment, to improve and complete the metric model. As the
TRADR laser SLAM framework uses the iSAM2 [36] algorithm for optimiz-
ing the pose-graph, it can efficiently handle several robots simultaneously
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Figure 11: Localization pipeline for laser point clouds with following global
optimization step.
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Figure 12: Registered point clouds of the globally optimized localization.
Points of the laser point clouds were dyed with the color information of
the global point cloud. Within the factory no color information could be
extracted. The estimated trajectory is shown in green.

and in real-time by linearizing and recomputing pose variables only when
required.

1.4 Relation to the state-of-the-art

1.4.1 Policy search for flipper control

Policy gradient (PG) methods usually require many trials which endanger the
real system or cause its excessive wear. Therefore, they are usually not used
directly on the real system, but on data-driven models. For example, Kupcsik
et al. [40] demonstrate data-driven PG learning of the ball throwing problem
with a robotic arm, and Tedrake et al. [67] argues that Policy Gradient
learning for aerial maneuvers with an ornithopter may be very efficient, in
fact. Transeth et al. [69] show that for snake-like robots with significant
side-slip, no closed form expression of the snake’s motion exists, therefore
policy learning must resort to simulation.

Contextual REPS uses a stochastic upper-level policy which generates
deterministic lower-level policy samples. The performance of these policies
is evaluated by executing them in the real world, and is used to estimate
the upper-level policy gradient. The Gaussian Process REPS (GPREPS)
method [40] adds a Gaussian Process (GP) in the loop, which learns a rep-
resentation of the system dynamics. The GP is used for better evaluation of
the policies without the need for executing more real-world samples. Several
PG methods also take constraints into account: Uchibe and Doya [1] propose
constrained policy search for GPOMDPs [3]. However, GPOMDPs belong
to early PG algorithms which use the likelihood-ratio trick to compute the
gradient of the expected sum of rewards and then update the policy param-
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Figure 13: The top figure illustrates the beginning of the multi-robot map-
ping process with unknown relationship between the two UGVs trajectories.
Once robot-associations are made, the metric maps are fused and the trajec-
tories are optimized accordingly, as shown in the bottom figure. This data
was collected during the TRADR Evaluation 2016 at the Gustav Knepper
powerplant.
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eters by a user-defined learning rate. Prashanth [2] propose constrained PG
method for Stochastic Shortest Path problem with inequality constraints on
Conditional Value-at-Risk (CVaR) as a risk measure. This method does not
allow to include implicit constraints and cannot be easily extended for general
episodic rewards, such as minimum distance of the trajectory from a target
position. We propose a combination of GPREPS with the work of Uchibe
and Doya – to extend Contextual REPS with constraints. The proposed
method is called Constrained REPS, (CREPS). It evaluates the generated
policies in a simulator and successively constrains the upper-level policy dis-
tribution. This (i) reduces the number of needed samples/iterations and
consequently speeds-up the learning process of the model, and (ii) provides
a safe policy when used with the real system.

1.4.2 Active scene segmenation

Convolutional Neural Networks (CNNs) have recently been shown to be pow-
erful representation for both classification [39] and control [41]. However, the
success of CNNs is usually conditioned either by (i) a large number of la-
beled training examples [39, 46, 42], or (ii) a careful initialization [43, 41]. We
show that in contrast to a general reinforcement learning task, the structure
of simultaneous exploration and segmentation with incomplete data (SES)
allows for efficient policy initialization.

In particular, we first extend Long’s segmentation CNN [43] by depth and
depth+thermal modalities and retrain it on our own human/background
annotated RGBDT-dataset. These segmentation CNNs are further used for
self-supervised training of a control sub-network (on a not annotated RGBDT-
dataset), which estimates potential impact of thermal measurements on the
classification error. The control sub-network is further extended by sub-
sampling layers and fully connected layers and trained to predict long-term
impact of possible thermal-camera motions on the classification error. To
train the control CNN efficiently, we propose a guided Q-learning algorithm,
which makes use of optimal trajectories estimated by the Mixed Integer
Linear Programming (MILP) planner to guide the exploration of the Q-
learning and consequently avoids poor local optima. We show how pretrained
segmentation network [43] can be extended by depth and thermal modalities.
We propose guided Q-learning and show that it outperforms non-guided Q-
learning of Mnih et al. [46]. We suggest self-supervised policy initialization
for instances of SES problems.

1.4.3 Vision based SLAM

In order to determine the visual odometry, only keypoints are selected which
make a robust correspondence search possible. While some methods are
computing complex features ([38, 12]), new developments increasingly using
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image points directly ([50, 17, 24]). Direct approaches have the advantage
that they are not reduced to certain feature points but can exploit all image
points to determine the odometry and depth values and thus provide more
dense reconstructions of the environment. Depending on how many image
points are utilized, approaches can be divided into dense and semi-dense
methods.

An example of a semi-dense approach is the Semi-Direct Monocular Vi-
sual Odometry (SVO)-algorithm, which is presented in the work of [24]. The
method uses point features, but these are not explicitly extracted, but are
an implicit result of a direct motion estimation. The initialization of the
pose is achieved by minimizing the photometric error. LSD-SLAM [18] pro-
vides another direct approach. Based on the odometry method of [17], the
algorithm generates globally consistent maps of the environment by means
of graph optimization in large-area environments. Similar to the SVO algo-
rithm, a probabilistic representation of the depth map is also used here to
model inaccuracies. [48] also uses a probabilistic approach, but the method
is based on a feature-based monocular SLAM system ([49]). Furthermore,
in contrast to SVO and LSD-SLAM, the depth values of a reference image
are not filtered over many individual images, but only key images are used
for the reconstruction.

Stuehmer et. al. [66] presents one of the first real-time methods, which
provides dense reconstructions with a monocular camera. The tracking of
the camera is based on the approach of [38]. The reconstruction is carried
out using several key images. By expanding to several images, regions that
would be hidden in two images or would be outside the corresponding im-
age can also be reconstructed with a higher probability. DTAM ([50]) also
provides dense reconstructions in real-time. In order to estimate the depth
values, the method performs a global energy reduction over many individ-
ual images. REMODE ([59]) is a method for the reconstruction of dense
point clouds, which integrates a Bayesian estimate into the optimization
process. By modeling uncertainties of measurement for each pixel, regular-
ization can be controlled precisely and inaccuracies in the localization can
be reduced. Real-time capability is achieved through a CUDA-based im-
plementation. For the pose estimation the method of [24] is used. One of
the recent developments of dense reconstructions is DPPTAM [11]. The ap-
proach reconstructs high textured regions with a semi-dense approach and
low textured regions by the approximation of surfaces. Thereby the assump-
tion is made that homogeneously colored image regions form a plane which
can be determined by superpixels ([19]).

The procedures described so far fall under the category of online pro-
cedures, i.e. they are real-time capable and can deliver first results during
camera recording. In contrast, offline methods require all collected record-
ings in advance and then carry out the corresponding calculations. In [25]
Fuhrmann et. al. present a pipeline for reconstruction, which combines all
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necessary processing steps in a software framework called MVE. The frame-
work is also capable of reconstructing texturized surfaces.

1.4.4 Registration methods

A basic prerequisite for many tasks, such as the navigation, mapping or the
cooperation of UAV and UGV, is the robot localization. When working with
three-dimensional point clouds, the registration is significantly involved in
the success of an exact localization [34]. Since the aim of this work is that
the UAV and UGV can be located together in a global map, a registration
method must be found, which can handle point clouds from different do-
mains. In this context, it is important that the methods for registration as
well as the generation of vision based point clouds can be combined.

Methods for registration can be divided roughly into point-based or iter-
ative and feature-based methods ([34, 53]). An example of a known iterative
method is the ICP-algorithm, which has already been implemented in several
variants. According to [5] the transformation is determined by minimizing
the Euclidean distance of the found point correspondences. The search for
corresponding points and the calculation of the associated transformation for
the alignment of these points is finally repeated iteratively until set limits
have been reached. A disadvantage of iterative methods, however, is that
they can converge to a local minimum under certain assumptions, such as
an insufficient overlay of the scenes [34]. In addition, they can be sensitive
to outliers and can be very computationally intensive with large amounts of
data [71]. If several point clouds have to be registered, the generated scene
must also be globally consistent. To achieve better results, it is common
that feature-based methods are used for the initial registration and itera-
tive procedures are used for refining the already estimated transformation
[34]. Features can be described by feature descriptors, that are incorporat-
ing geometric structures. If surfaces are used as a geometric structure, a
high compression rate and thus a fast correspondence search can be made
possible [53]. The work of [54] introduces a SLAM algorithm based on the
registration of planar segments. The algorithm for the extraction of planar-
based segments is based on the work of [60], which takes up the region-
growing algorithm of [32] and adapts it by optimizations for the use in a
SLAM system. For correspondence search and registration, the work of [55]
is used. The presented MUMC-algorithm (Minimally Uncertain Maximum
Consensus) maximizes geometric consistency while minimizing the resulting
uncertainties. As shown in the work of [54], both faster and more robust
results can be obtained in comparison to an ICP-alorithm. [73] provides
another plane-based registration method, which is based on the work of [54].
An approach, that is also concerned with the registration of point clouds
from different sensor groups, is presented in [30]. As a first step the method
determines structural descriptors. For faster calculation, the descriptors are
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then projected into a subspace. A matching scheme is used to compare the
descriptors and compute vote scores. The voting space is then used for place
segmentation and for registration.

For TRADR, an improved algorithm is developed which is based on the
approaches of [73] and [54]. The presented algorithm for surface extraction
can be applied to unorganized point clouds and is fast in the calculation.
The method of [54] has also proven itself in a test environment which is close
to USAR environements.

1.4.5 Loop closures in 3D point clouds

Detecting loop-closures from 3D data is still an open problem in robot lo-
calization. The problem has been tackled with different approaches. We
have identified three main trends: (i) approaches based on local features, (ii)
global descriptors and (iii) based on planes or objects.

The works presented in [9, 75, 64, 65, 28] propose to extract local features
from keypoints and perform matches on the basis of these features. Bosse
and Zlot [9] extract keypoints directly from the point clouds and describe
them with a 3D Gestalt descriptor. Keypoints then vote for their near-
est neighbours in a vote matrix which is finally thresholded for recognizing
places. Similar approach has been used in [28]. Apart from such Gestalt
descriptors, a number of alternative local feature descriptors exist which can
be used in similar frameworks. This includes features such as fast point fea-
ture histogram (FPFH) [63] which we employed to compare our approach.
Alternatively, Zhuang et al. [75] transform the local scans into bearing-angle
images and extract Speeded Up Robust Features (SURFs) from these im-
ages. A strategy based on 3D spatial information is employed to order the
scenes before matching the descriptors. A similar technique by Steder et al.
[64] first transforms the local scans into a range image. Local features are
extracted and compared to the ones stored in a database, employing the
Euclidean distance for matching keypoints. This work is extended in [65]
by using Normal-Aligned Radial Features (NARF) descriptors and a bag of
words approach for matching. Zhang and Singh [74] are able to estimate
odometry in real-time using range data. Loop-closures are mentioned but
rely on an offline algorithm.

Using global descriptors of the local point cloud for loop-closures is also
proposed [62, 31, 45]. Rohling et al. [62] propose to describe each local point
cloud with a 1D histogram of point heights, assuming that the sensor keeps a
constant height above the ground. The histograms are then compared using
the Wasserstein metric for recognizing places. Granström et al. [31] describe
point clouds with rotation invariant features such as volume, nominal range,
and range histogram. Distances are computed for scalar features and cross-
correlation for histogram features, and an AdaBoost classifier is trained to
match places. Finally, ICP is used for computing the relative pose between
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point clouds. In another approach, Magnusson et al. [45] split the cloud
into overlapping grids and compute shape properties (spherical, linear, and
several type of planar) of each cell and combine them into a matrix of surface
shape histograms. Similar to other works, these descriptors are compared
for finding loop-closures.

While local keypoint features often lack descriptive power, global descrip-
tors can struggle with invariance. Therefore other works have also proposed
to use 3D shapes or objects for the place recognition task. Fernandez-Moral
et al. [20], for example, propose to perform place recognition by detecting
planes in 3D environments. The planes are accumulated in a graph and an
interpretation tree is used to match sub-graphs. A final geometric consis-
tency test is conducted over the planes in the matched sub-graphs. The work
is extended in [21] to use the covariance of the plane parameters instead of
the number of points in planes for matching. This strategy is only applied to
small, indoor environments and assumes a plane model for segments which is
no longer valid in unstructured environment. A somewhat analogous, semi-
nal work on object-based loop-closure detection in indoor environments using
RGB-D cameras is presented by Finman et al. [22]. Although presenting in-
teresting ideas, their work can only handle a small number of well segmented
objects in small scale environments.

We therefore aim for an approach which does not rely on assumptions
about the environment being composed of simplistic geometric primitives
such as planes, or a rich library of objects. This allows for a more general,
scalable solution. Inspiration is taken from Douillard et al. [13] and Nieto
et al. [51] which proposed different SLAM techniques based on segments. A
strategy for aligning Velodyne scans based on segments is proposed in [13]
where the Symmetric Shape Distance is used to compare and match segments
as defined in [14]. Analogously, [51] proposed an Extended Kalman Filter
solution which uses segments as landmarks, rather than point features.

1.4.6 UGV-UAV Map Merging

Relative UAV to UGV localiation is an important part in the TRADR sce-
nario for seamless integration of mission data. For example, if UAVs are
used for reconaissance, interest points should be communicated to the UGV
for further assessment. Therefore their maps need to be aligned. Vision
to vision place recognition can be performed between the robots if both
are equipped with cameras, as presented in [27, 44, 47]. In TRADR, the
UAV is equipped with a camera due to weight constraints, while the UGV is
equipped with both camera and 3D LiDAR sensor. However, tests showed
that the drastically different viewpoints of UAV and UGV camera prevent
reliable application of vision based place recognition in the TRADR scenar-
ios, rendering the vision to vision matching infeasible. The other case can
be LiDAR based place recognition, if both robots are equipped with LiDAR
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sensors, as presented in [7, 8, 16]. Furthermore, the obvious case of having
a robot with both sensors can yield multi-modal maps and localization in
these as shown by [33, 70, 52].

Our approach as presented in [29] focuses on the case, in which one robot
is equipped with a LiDAR sensor, while the other on is carrying a camera.
Former work on such applications focuses on simulating camera pictures
using the LiDAR’s intensity returns [72] or reconstructing dense maps from
vision data [23]. While the first approach has been shown to work in urban
environments, the strong viewpoint dependence and its weak generalization
to cluttered environments make it infeasible for the application in TRADR.
In contrast, reconstructing scenes from camera images has shown to be more
general. However, these 3D reconstruction techniques as presented in [26, 68]
are computationally expensive and fail in untextured or poorly illuminated
areas.

Using a good initial guess, it was shown that sparse vision maps and
dense LiDAR maps can be aligned [10]. With our approach we go beyond
this and show that sparse visual keypoint locations and LIDAR maps con-
tain sufficient mutual structural information to be merged without an initial
guess.
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2 Annexes

2.1 Dubé (2017), “SegMatch: Segment based loop-closure
for 3D point clouds”

Bibliography Renaud Dubé, Daniel Dugas, Elena Stumm, Juan Nieto,
Roland Siegwart and Cesar Cadena. “SegMatch: Segment based loop-closure
for 3D point clouds.” In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA) (submitted), 2017.

Abstract Loop-closure detection on 3D data is a challenging task that
has been commonly approached by adapting image-based solutions. Meth-
ods based on local features suffer from ambiguity and from robustness to
environment changes while methods based on global features are viewpoint
dependent. We propose SegMatch, a reliable loop-closure detection algorithm
based on the matching of 3D segments. Segments provide a good compro-
mise between local and global descriptions, incorporating their strengths
while reducing their individual drawbacks.

SegMatch does not rely on assumptions of ‘perfect segmentation’, or on
the existence of ‘objects’ in the environment, which allows for reliable exe-
cution on large scale, unstructured environments. We quantitatively demon-
strate that SegMatch can achieve accurate localization at a frequency of 1Hz
on the largest sequence of the KITTI odometry dataset. We furthermore
show how this algorithm can reliably detect and close loops in real-time,
during online operation. In addition, the source code for the SegMatch al-
gorithm is made publicly available.

Relation to WP Describes the loop-closure strategy for 3D point-clouds
introduced in WP 1, T1.5, Section 1.3.1.

Availablity Unrestricted and available online (https://arxiv.org/pdf/
1609.07720v1.pdf).

2.2 Gawel (2016), “Structure-based Vision-Laser Matching”

Bibliography Abel Gawel, Titus Cieslewski, Renaud Dubé Mike Bosse,
Roland Siegwart and Juan Nieto. “Structure-based Vision-Laser Matching.”
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016.

Abstract Persistent merging of maps created by different sensor modali-
ties is an insufficiently addressed problem. Current approaches either rely
on appearance-based features which may suffer from lighting and viewpoint
changes or require pre-registration between all sensor modalities used. This
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work presents a framework using structural descriptors for matching LIDAR
point-cloud maps and sparse vision keypoint maps. The matching algorithm
works independently of the sensors’ viewpoint and varying lighting and does
not require pre-registration between the sensors used. Furthermore, we em-
ploy the approach in a novel vision-laser map-merging algorithm. We analyse
a range of structural descriptors and present results of the method integrated
within a full mapping framework. Despite the fact that we match between
the visual and laser domains, we can successfully perform map-merging us-
ing structural descriptors. The effectiveness of the presented structure-based
vision-laser matching is evaluated on the public KITTI dataset and further-
more demonstrated on a map merging problem in an industrial site.

Relation to WP Describes a map registration strategy for vision and
laser pointclouds introduced in WP 1, T1.5, Section 1.3.1.

Availablity Unrestricted and available online (http://rpg.ifi.uzh.ch/
docs/IROS16_Gawel.pdf).

2.3 Pecka-TIE2016, “Controlling Robot Morphology from In-
complete Measurements”

Bibliography Pecka, Martin and Zimmermann, Karel and Reinstein, Michal
and Svoboda, Tomáš. “Controlling Robot Morphology from Incomplete Mea-
surements” In IEEE Transactions on Industrial Electronics, Special issue on:
on Motion Control for Novel Emerging Robotic Devices and Systems. Ac-
cepted, early access http://ieeexplore.ieee.org/document/7490379/.

Abstract Mobile robots with complex morphology are essential for travers-
ing rough terrains in Urban Search & Rescue missions (USAR). Since tele-
operation of the complex morphology causes high cognitive load of the oper-
ator, the morphology is controlled autonomously. The autonomous control
measures the robot state and surrounding terrain which is usually only par-
tially observable, and thus the data are often incomplete. We marginalize
the control over the missing measurements and evaluate an explicit safety
condition. If the safety condition is violated, tactile terrain exploration by
the body-mounted robotic arm gathers the missing data.

Relation to WP Describes an approach for automatic robot control on
rough terrain. Contributes to the robot perception suite. T1.5.

Availablity Unrestricted. Included in the public version of this deliver-
able. https://arxiv.org/abs/1612.02739.
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2.4 Pecka-IROS-2016, “Autonomous Flipper Control with
Safety Constraints”

Bibliography Martin Pecka, Votjech Salansky, Karel Zimmermann, and
Tomas Svoboda. “Autonomous flipper control with safety constraints”. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Con-
ference on

Abstract Policy Gradient methods require many real-world trials. Some
of the trials may endanger the robot system and cause its rapid wear. There-
fore, a safe or at least gentle-to-wear exploration is a desired property. We
incorporate bounds on the probability of unwanted trials into the recent Con-
textual Relative Entropy Policy Search method. The proposed algorithm is
evaluated on the task of autonomous flipper control for a real Search and
Rescue rover platform.

Relation to WP Describes a novel reinforcement learning approch that
effectively combines simulator and real roll-outs of the ground robot. Con-
tributes to the robot perception suite. T1.5.

Availablity Unrestricted. Included in the public version of this deliver-
able. http://cmp.felk.cvut.cz/~peckama2/papers/2016_IROS_Autonomous_
Flipper_Control_with_Safety_Constraints.pdf.

2.5 Jasek-bc-thesis-2016, “Detecting Objects for Autonomous
System Verification”

Bibliography Jašek, Otakar. Detecting Objects for Autonomous System
Verification. Bachelor Thesis, Czech Technical University in Prague.

Abstract In this thesis we created a framework for easy evaluation and
training of Faster R-CNN type of networks. We fine-tuned VGG16 and
ZFNet networks on our internal Victims dataset as well as standard KITTI
dataset. We later showed that VGG16 architecture is far more suitable for
fine-tuning on data from slightly different training and target domains. This
framework can later serve as a baseline for further improvements in the field.

Relation to WP Contributes to the scene analysis. T1.5.

Availablity Unrestricted. Available for download. https://dspace.cvut.
cz/bitstream/handle/10467/64667/F3-BP-2016-Jasek-Otakar-jasek.pdf
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2.6 Kashammer-ms-thesis-2016, “A semantic interpreter for
multimodal and multirobot data”

Bibliography Käshammmer, Philipp Florian. “A semantic interpreter for
multimodal and multirobot data”. Master thesis, Czech Technical University
in Prague and Lulea University of Technology. 2016.

Abstract Huge natural disaster events can be so devastating that they of-
ten overwhelm human rescuers and yet, they seem to occur more often. The
TRADR (Long-Term Human- Robot Teaming for Robot Assisted Disaster
Response) research project aims at devel- oping methodology for heteroge-
neous teams composed of human rescuers as well as ground and aerial robots.
While the robots swarm the disaster sites, equipped with advanced sensors,
they collect a huge amount row-data that cannot be processed ef- ficiently
by humans. Therefore, in the frame of the here presented work, a semantic
interpreter has been developed that crawls through the raw data, using state
of the art object detection algorithms to identify victim targets and extracts
all kinds of informa- tion that is relevant for rescuers to plan their missions.
Subsequently, this information is restructured by a reasoning process and
then stored into a high-level database that can be queried accordingly and
ensures data constancy.

Relation to WP Contributes to the scene analysis, closing higher and
lower loops. T1.5.

Availablity Unrestricted. Available for download. ftp://cmp.felk.cvut.
cz/pub/cmp/articles/svoboda/Kashammer-ms-thesis-2016.pdf

2.7 Petricek-TRO2017-unpub, “Guided reinforcement learn-
ing for simultaneous exploration and segmentation”

Bibliography Tomáš Petříček, Vojtěch Šalanský, Karel Zimmermann, and Tomáš
Svoboda. “Guided reinforcement learning for simultaneous exploration and
segmentation”. Submitted to IEEE Transactions on Robotics

Abstract We consider the problem of pan-tilt sensor control for active seg-
mentation of incomplete multi-modal data. Since demanding optimal control
does not allow for online replanning, we rather employ the optimal planner
offline to provide guiding samples for learning of a CNN-based control policy
in a guided Q-learning framework. The proposed policy initialization and
guided Q-learning avoids poor local optima and yields reasonable results
from hundreds of roll-outs. The results suggest that the proposed policy
outperforms the baseline and is suitable for real-time control.
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Relation to WP An active sensing algorithm for scene segmantation.
Contributes to T1.5.

Availability Restricted. Not included in the public version of this deliv-
erable.

2.8 Berninger-IROS2017-unpub, “Planar segment based vision-
laser point cloud registration”

Bibliography Nils Berninger, Hartmut Surmann, Rainer Worst. “Planar
segment based vision-laser point cloud registration”. Submitted to IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) 2017.

Abstract This work is concerned with the registration of point clouds,
which were generated from laser scans and camera recordings. The registra-
tion method is based on the matching of corresponding planar segments, that
are extracted from the point clouds. Based on the registration, an approach
for a globally optimized localization is presented. Apart from the structural
information of the point clouds, no further information is required for the
localization. Experiments show the results of the overall registration.

Relaion to WP Contributes to the world modeling, T1.6.

Availability Restricted. Not included in the public version of this deliv-
erable.
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