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Executive Summary

The key objective of WP1 is to provide sensory data from all involved robots
registered in space and time, to keep creating and updating robot centric
representations, and ground them into the world coordinate frame. The
obtained representations are furnished to other WPs, which maintain higher
level situation awareness.

During Year 2 we concentrated on addressing challenges caused by dy-
namic elements of the scenes, e.g. varying presence of dense smoke which
effectively blinds exteroceptive sensing (cameras and lidar). We focused
on developing a new 3D mapping and map merging aiming at multi-sortie,
multi-robot mapping persistence. We designed new algorithms for terrain
perception in sensory deprived environments. We enrich the robot flippers
by adding force sensors and design an algorithm for computing terrain pro-
file from interoceptive measurements only. In collaboration with WP4, we
also worked in a sensorless alternative for terrain contact sensing based on
the residual dynamics of the flippers. For creating metric 3D maps we opted
for the Continuous Trajectory Scan Matching (pose-graph SLAM variant)
where the robot trajectory is the state of the map. Therewith exchanging
updates on the map between robots, i.e. updating the nodes of the tra-
jectories and co-registrations of nodes can be achieved efficiently with low
communication bandwidth. The map merging is based on a flexible frame-
work that permits to select which section of the trajectory one wishes to
optimize and is capable of co-optimizing trajectories resulting from different
sorties.

Role of robot perception and metrical mapping in
TRADR

The robot perception means the robot is able to analyze its neighborhood
and act accordingly. Terrain recognition is essential for robot locomotion
regardless whether the robot is teleoperated or moves autonomously. It is
desirable the robot overcomes obstacles in a reasonable way - fast, safe,
consuming less power and reducing cognitive load of a human operator. Au-
tomatic victim detection is important for many search and rescue scenarios.
A human operator may provide final decision however, robots, when crawl-
ing through a disaster site should provide warning about possible victim
locations.

The metrical mapping serves as the very basis for modeling the world.
It is also the basis for sharing information between robots and also among
several sorties and even missions.
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Contribution to the TRADR scenarios and proto-
types

The new algorithms for sensing in sensory deprived environments together
with related hardware advancements contribute to the models for acting
(WP2), multi-robot collaboration (WP4) and also support the human-robot
teaming (WP5). The advancements in algorithms that address the failure of
exteroceptive sensing (Lidar, cameras) were significantly motivated by the
end-user evaluations and we plan to deploy them in the Y3 of the project.

Based on the feedback from the end-user evaluations, we implemented
several software packages and hardware upgrades that ease the deployment
of the UGVs, e.g. warm restart of motor drivers.

Persistence

Persistence in WP1 is addressed mainly by re-using the data in creating an
enviroment model. The 3D metric map serves as the main basis for multi-
modal (data), multi-source (robots), multi-level (abstraction, decisions) reg-
istration. In WP1, we are working on robust methods for merging partial 3D
maps. The merging challenges include weak data overlap, dynamic changes
in scenes, large displacement of local coordinate systems. The terrain per-
ception and robot control algorithms use machine learning techniques in a
quest of gaining experience from operator-robot interactions.

EU FP7 TRADR (ICT-60963) 4
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1 Tasks, objectives, results

1.1 Planned work

In Year2, WP1 planned to investigate “Sensing, mapping and low-level mem-
ory II Dynamic scene” (Milestone MS1.2). The work was divided into two
tasks:

• Essential sensing and UGV control functionality (T1.3)

• Robot centric metrical maps and models storage (T1.4)

Both tasks emphasize a dynamic aspect of scenes. The plan for Task T1.3
was to improve low level sensing capabilities of UGV and enhance intercon-
nection with WP4. The goal of Task T1.4 was to develop an algorithm for
computing one single metrical map from possibly highly incomplete partial
maps in dynamic environments. One of the main challenges expected was
merging different modalities.

1.2 Addressing reviewers’ comments

The adaptive traversability for the UGV considers in the future
also different environmental conditions, e.g. wet floor due to rain
or snow, so as to adapt to different friction coefficients.

The adaptive traversability controls the robot morphology which is far more
important for traversing obstacles then reacting to friction changes. The
friction changes are currently not a major issue. At the moment a few rules
are hand-crafted - like going up or down a staircase where stability and
friction are of high importance.

Traversability information can be integrated into the display and
user controls, as the user needs to know how much time it will
take a robot to move, and whether it is possible.

We will tackle this issue until the next TRADR Joint Excercise TJEx. We
plan visualizing information helping the operator drive the robot in UGV
Operator Control Unit (OCU) (robot roll/pitch, flipper torque visualization,
visualization when the adaptive traversability needs more data or considers
the situation unsafe). We still do not estimate the time-to-traverse as the
actual speed/direction control is in operator’s hands. Traversability analysis,
performed on the 3D metric information coming from the robot laser sensor,
can be exploited to inform the user about which regions of the environment
can be traversable or not by the robot. The result of this analysis is provided
to the planning algorithm for computing affordable paths towards the goal.
On the other hand, this result can be provided to the user, in the form of
colored point cloud, via the OCU. According to a predefined color range,
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the user can identify traversable areas and instruct the robot toward that
directions. We are currently experimenting with this.

Considerable thought should go into how to allow “just drive” on
one hand, while still “pushing” the user towards easier terrains.

Pushing the user toward easier terrain is possible when the robot knows
the terrain beyond its current view/measurement. This is more the role of
the planning. The AT is applied in the situations when the robot “knows”
only what it directly measures, i.e. it can work during the eploration when
no complete 3D model is available. This point is closely connected to the
visualisation plans, see above.

In future demonstrations or reviews, it would be useful to see
quantitative comparison to non-adaptive tests.

We performed some comparison experiments in [64] (Annex Overview 2.1).
Generally, the traversal time is not always better with AT (and is not in-
tended to be), but the cognitive load should be essentially lower. We think
about setting up a task where the operator should drive the robot through
a demanding terrain and look for objects of interest at the same time. With
AT, he should be able to detect more objects than without AT.

Role of persistence in the learned results (or vice versa, role of
learning in promoting persistence) is still in early stages, and
should come into play in the coming years of the project.

The main idea is that the AT is learns versatile models through extensive
training in varied terrains and simulations. Learning AT during mission may
be not the best idea because it is not sure the operator did drive the robot
in the desired manner. Also, most situations are already covered by training
data. What we could do is to detect situations far away from anything in
the training data, remembering their location, and then manually traversing
them to show what the ideal traversal should look like.

Anomaly detection: clarify what is meant, put into context of
related work.

The notion of anomaly has changed in Y2. In Y1, the anomaly was more
about detection outliers in data. In Y2, the anomaly is understood as a
failure of exteroceptive sensing, i.e. situations when Lidar and cameras
produce outliers only, no usable measurement. At the moment, the AT
starts arm/flipper active sensing when there is not enough probability of
achieving safe state with any flipper configuration – typically because of
missing data. We detail this issue in this deliverable.

The victim detection classification learning methods should work
well even with a subset of operational sensors.

EU FP7 TRADR (ICT-60963) 6
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We are now testing how far can we go with RGB data only - which is perhaps
the prevailing case. On the other side of the problem, we are employing a
thermal cam on a pan-tilt unit and developing active search algorithm.

The victim detection module, because of the high false-result
bias, may benefit from proposing candidates to the operator,
which it can quickly rule in or out.

The 2D detections are fused in a 3D map. Collection of relevant snapshots
may be displayed to an operator who can discard the relavant 3D area.
However, we did not work out the human-in-the loop yet. This is still an
open issue (from the implementation/integration) point of view.

Globally persistent SLAM: key test would be in supporting, and
being supported by, persistence: multiple runs, multiple robots.

The basic multi-sortie mapping is detailed in this deliverable.

In WP1 and WP4, special attention should be given in the future
to communication contention methods when scaling to larger
teams of robots, e.g. in 3D mapping (CTSM), multi-robot col-
laboration, etc.

In Continuous Trajectory Scan Matching (CTSM) the robot trajectory is
the state of the map. Therewith exchanging updates on the map between
robots, i.e. updating the nodes of the trajectories and co-registrations of
nodes can be achieved efficiently with low communication bandwidth. The
higher bandwidth exchange of metrical map information is presently only
done in offline batch processing of maps between sorties. Furthermore, the
state trajectories represent valid paths of the robots that update over the
course of time. Therewith they build a sparse connected traversability graph
of the environment which can be facilitated for the planning.

1.3 Actual work performed

1.3.1 Task T1.3 (Essential sensing and UGV control functionality
II – Scene part and object recognition, dynamic scene)

Terrain perception in sensory deprived environments We propose
a combined hardware and software solution to predict the profile of terrain
underneath and in front of the tracked robot. The algorithm exploits a
prototype of a force sensor array installed inside a track of the robot, a
robotic arm attached to the robot, proprioceptive measurements from joints
and an inertial measurement unit (IMU), and information learned from a
dataset of traversed terrains. The prototype of the force sensor (Fig. 2, is
suitable for tracked robots and is installed between rubber track and its
support, allowing it to serve as a tactile sensor. The arm is used to measure

EU FP7 TRADR (ICT-60963) 7
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Figure 1: From left: UGV robot approaches smoke area; Example of visual
information that the operator sees inside a cloud of smoke: a crop out from
the omni-directional camera (middle) and output of the laser range-finder
(rainbow-colored point cloud in the right half of the image). Laser beams
are randomly reflected by smoke particles. The resulting 3D point cloud is
just noise close to the robot.

height of terrain outside the reach of the force sensor as contact between
the arm end-effector and the terrain. To obtain well-defined contact points
with the ground, we decided to take advantage of the flippers that can
reach in front of the robot and are designed to operate on dirty surfaces
or sharp edges. The original mechatronics of the robot allows to measure
torque in flipper servos and thus detect physical contact between flippers
and the environment. To be able to locate the contact point on the flipper
exactly, we designed a thin force sensor between the rubber track and its
plastic support (see Fig. 2). The sensor construction is a sandwich of two
thin stripes of steel with FSR 402 sensing elements between them which
allows the rubber track to slide over it while measuring forces applied onto
the track. There are six force sensing elements; the protecting sheet of steel
distributes the force among them, the sensor is thus sensitive along its whole
length. Figure 3 shows three examples of the sensor readings. The first case
consists of a flipper touching flat floor. Although one would expect to see
more or less equal distribution of the contact force along the flipper track,
the torque generated by the flipper actually lifts the robot slightly and thus,
most of the force concentrates at its tip (element n. 6). Compare this case
with the third one (bottom), where the pose of the robot prohibits the lifting
effect, and we therefore see the expected result. The second case (middle)
shows an example of a touch in one isolated point.

We propose a novel active tactile exploration mode (ATEM), in which
flippers and robotic arm autonomously explore the terrain shape in close
vicinity of the robot. Estimated terrain shape and expected reconstruction
accuracy are eventually displayed to the operator, at the moment in a form
of simplified 2D graph. If ATEM is requested by the operator, the robot first

EU FP7 TRADR (ICT-60963) 8
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Figure 2: Prototype of the flipper force sensor: array of six sensing elements
(FSR 402) is covered by a stripe of steel, forming a thin sensor that fits
between the rubber track and the plastic track support. The stripe of steel
protects the sensors from the moving rubber track and distributes measured
force among them. The sensor mounted to the plastic track support (top).
The sensing elements are passive sensors that exhibit decrease in resistance
with applied force. For each sensing element, we use a reference resistor to
form a voltage divider and an analog-to-digital converter expansion board
for the Raspberry Pi computer to read the six voltages.

adjusts its flippers to press against the terrain and capture proprioceptive
measurements. Then the initial probabilistic reconstruction of the underly-
ing terrain shape is estimated from the captured data. If the reconstruction
is ambiguous, the robotic arm explores the terrain height in the most inac-
curate place. Eventually, the probabilistic reconstruction is repeated. As
a result, reconstructed terrain shape with estimated variances is provided.
More details can be found in [77] (Annex Overview 2.3).

Controlling robot morphology from incomplete measurement In
Year 2 of the TRADR project we have extended and improved the adap-
tive traversability (AT) pipeline introduced in [83, 84] (see Figure 5 for an
overview) in several ways. We introduce a safety measure which allows to
invoke tactile exploration of non-visible terrain if needed. We develope sev-
eral strategies for the tactile exploration with a body-mounted robotic arm.
We suggest a regression forest based Q-function representation which allows
easier marginalization over missing data.

The output of Q-learning is a Q-function Q(c,x), which assigns the suit-
ability value q of a possible flipper configuration c to the current state in
terms of sums of discounted rewards, see [83] for detailed description. The
state is described by a feature vector x computed from the proprioceptive
(IMU, wheel odometry, . . . ) and exteroceptive data (Lidar, cameras . . . ).
Instead of using only the expected value of q, we model the full q-value
probability distribution function p(q|c,x) (which will be further referred to
as QPDF). Given this probability distribution and full feature vector x, the

EU FP7 TRADR (ICT-60963) 9
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Figure 3: Examples of the force sensor readings. The top photos document
the moments of the readings acquisition. The bottom line plots show raw
readings of each sensing element, only corrected for bias.

optimal flipper configuration c∗ is:

c∗ = argmax
c

Q(c,x) = argmax
c

E(Q | c,x) =

= argmax
c

∫
q · p(q|c,x) dq (1)

There are two reasons for modeling the full QPDF: (i) measuring the safety
of given flipper configurations and (ii) marginalization when only incomplete
measurements x are available. Two different QPDF models: (i) Gaussian
Processes and (ii) Regression Forests, are discussed in [84].

While proprioceptive data are usually fully available, the exteroceptive
data are often incorrect or incomplete. This occurs in case of reflective
surfaces such as water or in presence of smoke. We denote missing part of
measurements as x, and available measurements as x̃, i.e. x = [x̄, x̃]. In the
case that x is not empty, we marginalize p(q|c,x) over the missing data x
to estimate p(q|c, x̃). Given the marginalized distribution and measurement
x̃, the optimal flipper configuration c∗ is estimated as follows:

c∗ = argmax
c

∫
q · p(q | c, x̃) dq. (2)

However, the more features are missing, the higher the scatter of achievable
q-values. Any state-action pair yielding a negative q-value, considering our

EU FP7 TRADR (ICT-60963) 10
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Figure 4: Left: Controlling robot morphology (flippers) allows for travers-
ing obstacles. Right: Robotic arm inspects terrain below water surface
compensating thus incomplete lidar measurement.

Figure 5: Principle overview: individual blocks in this scheme correspond
to Sections IV-VII.

definition of the reward function.

S(c, x̃) =

∞∫
0

p(q | c, x̃) dq, (3)

that corresponds to the probability of achieving a safe state (q ≥ 0) with
the configuration c. Search for the optimal configuration c∗ (Equation 2) is
restricted to the safe configurations only:

S(c, x̃) > ε. (4)

If none of the available configurations satisfies the safety condition (Equa-
tion 4), we use the robotic arm to evaluate selected missing terrain features;
see Figure 5 for the pipeline overview. We propose several strategies that
guide the active exploration of missing features in order to achieve a safe
configuration as fast as possible. If all terrain features have already been

EU FP7 TRADR (ICT-60963) 11
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Table 1: Description of the states, actions and rewards

State x ∈ Rn DEM, speed, roll, pitch, flipper angles,
compliance, currents in flippers, actual
flipper configuration

Actions c ∈ C = {1 . . . 5} 5 different, pre-set but self-adjustable
flipper configurations [83].

Reward r(c,x) : C× Rn → R α×user reward+β×pitch penalty+γ×
roughness penalty

Figure 6: Top left: Forest obstacle. Top right: Rubble obstacle. Bottom
left: Stairs obstacle. Bottom right: Operator controlling the robot using
only sensor data.

measured and there is still no configuration satisfying the safety condition,
then manual flipper control is requested from the operator. More details in
[64] (Annex Overview 2.1).

Victim detection We have investigated Fully Convolutional Networks [52]
for the task of victim segmentation in multimodal images, as deep net-
works can supposedly provide higher performance compared to boosted de-
cision trees, with the trade-off of higher computational demands. A model
from [52] was fine-tuned on our semisynthetic multimodal images of humans
in arbitrary poses (i.e., victims), using an early-fusion scheme to add the
depth and temperature modalities. We have observed that the information
contained in these additional modalities cannot be fully utilized using the

EU FP7 TRADR (ICT-60963) 12
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Figure 7: Victim segmentation examples.

early-fusion scheme (without special encoding) and it provides only marginal
performance gain despite the overall large performance gain achieved in fine-
tuning. For depth information, this is consistent with previous observations
reported in [34], where a larger performance gain is achieved by using a
special depth encoding; a similar preprocessing may also be needed for the
temperature. An example segmentation from a fine-tuned model using all
the modalities is shown in Figure 7.

Terrain classification using acoustic features We explored sound as
a complementary perception modality to classify terrain types with respect
to the ground surfaces on which the UGV is moving. We collected audio
data with the TRADR UGV platform driving on five basic human-classified
terrain types: grass, pavement, gravel, carpet and sand, including different
conditions, such as dry or wet gravel , grass with or without leaves, smooth
or rough asphalt pavement or tiled pavement. We used several state-of-
the-art acoustic feature extraction techniques and trained different types of
classifiers. Average accuracy obtained on testing audio samples not used for
training reached 93.5 % for samples of 1second duration, and 95.6% for 4
second samples. Most problematics was the classification of gravel, which
was, not surprisingly confused with sand or pavement. These are promising
results indicating that acoustic features are useful for terrain perception of
a tracked robot. Details of the work done, the experiments and the results
are presented in [73] (Annex Overview 2.7).

Metric mapping Next, we describe the advances within the mapping
systems for the TRADR robots. The contributions address specific func-
tionalities in the context of TRADR, such as map merging, efficient node
sampling and multi-modality. A description of the general SLAM frame-
work is given in [D 2.2]. Techniques for performing change detection are
still under development and results cannot yet be reported at the time of
this submission (January 2016). In this deliverable, we provide an overview

EU FP7 TRADR (ICT-60963) 13
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of the current design phase of a change detection module aimed at providing
this feature.

Advancements in simultaneous robot localization and mapping:
Non-uniform sampling of trajectory control points over a sliding
window In order to enable recognition of scene parts and objects of in-
terest, a point cloud representation which faithfully represents the robot’s
environment is required. For achieving such quality representation in real-
time, the mapping system needs to be able to process the incoming laser
and odometry measurements efficiently. Developing techniques for comput-
ing accurate maps during real-time operation was a core focus in the second
year of the TRADR project.

A common approach to the simultaneous localization and mapping prob-
lem is to consider, at each optimization step, a sliding window over the latest
measurements. Within the current framework, this means that only the lat-
est section of the robot trajectory is being optimized. The longer this sliding
window is, the more measurements need to be processed, and therefore the
longer the optimization requires. Nonetheless, longer sliding windows usu-
ally yields better results.

In order to determine an optimal sliding window size, we looked at its
influence on the solution optimality, an analysis described in [20] (Annex
Overview 2.10). We determined that, when operating the robot at normal
driving speed, a sliding window of roughly 90 seconds (equivalent to 30 laser
demi-rotations) contains most of the new information and yields a near to
optimal solution. We have therefore chosen this sliding window size for the
TRADR project.

As a second step to maximize the mapping efficiency, we asked ourselves
whether the optimization correction power was uniformly distributed over
that sliding window. Our intuition was that segments of the trajectory which
have been optimized several times and have converged to a solution would
need fewer correction than newer trajectory segments. The corresponding
analysis, detailed in [20] (Annex Overview 2.10), shows that the most recent
part of the estimated trajectory is very dynamic and indeed requires more
correction to represent the real robot trajectory.

In TRADR, we built on this finding by developing an efficient algorithm
for processing that sliding window. Compared to the commonly used uni-
form sampling of control points over the sliding window, this algorithm en-
ables to produce a point cloud of same accuracy in less computational time,
which is relevant for real-time operation. For more information on this al-
gorithm, the reader is encouraged to consult section [20] (Annex Overview
2.10).

Fig. 8 shows a point cloud representation which was produced in real-
time based on the previously mentioned algorithm. One can easily identify
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Figure 8: Point cloud generated in real time with non-uniform sampling of
trajectory control points.

key elements such as buildings, vehicles, bushes and bins which represents
a good basis for developing an object recognition system.

Offline merging of metrical maps We have developed the mapping
framework so that it is both suitable for online operation and global offline
optimization. The framework is flexible as it permits to select which section
of the trajectory one wishes to optimize and is capable of co-optimizing
trajectories resulting from different sorties. Good results are obtained as
long as the robots are close in space and observe the same section of the
environment. However, when different environment sections are explored
during different sorties, the estimated trajectories experience a drift which
is difficult to account for. When the estimated trajectories cross each other
again, the robots might actually be in different sections of the environment.
Without higher level input, it is not possible to determine that these two
different parts should not be matched together. This justifies the need for
detecting loop closures by looking closer into the map structural elements,
which is an ongoing work.

Change detection We are in the process of developing change detection
techniques to account for dynamics in maps over several sorties, potentially
also within single sorties. This is important for both safe robot operation and
map maintenance, two extremely relevant aspects for autonomous robots.

This module is being developed within a student project with a goal to
identify and implement strategies for robots to detect changes in maps and
update maps accordingly. The developed technologies should be general and
as platforms independent as possible. However, to the date of the submission
of this report we cannot report on results yet.

Terrain contact modeling and classification The contact between the
sub-tracks of the TRADR UGV and the underlying surface is an important

EU FP7 TRADR (ICT-60963) 15
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feedback for autonomous safe navigation [31, 58]. For example, during stair-
climbing, ensuring the contact of the sub-tracks with the ridges of the stairs
favours preventing tip-over situations thus improving the stability of the
robot [32]. However, due to the lack of a proximity sensor on the sub-tracks
of UGV platform, this feedback is not available for the control. In Year
1 we proposed an approach for estimating both the touch and the detach
of the sub-tracks with the traversed surface [32]. This approach was based
on a non-linear classifier [58]. Through this classifier we effectively learned
the tolerance threshold of the sub-tracks torque undergoing the contact. In
Year 2 we extended this work by developing a contact sensor that, given the
measure of the residual at the sub-track motors, discriminates, on the basis
of its trend, whether it has been determined by a disturbance due to the
robot motion on the surrounding or it has been generated by a collision. The
contact sensor extends the well-known Fault Detection and Isolation (FDI)
schema [14, 18] to tracked vehicles and it relies on to a multi-resolution
decomposition technique to extract from the residual local properties of
the input signals, such as edges, spikes or transient [11]. Then, a sparse
SVM classifier has been used to select those local properties, meaningful
for the contact [71]. Experiments have revealed that the sensor is able to
discriminate a contact on the basis of both the intensities and the frequency
sub-bands occupied by the residual signal under consideration, reaching an
accuracy of 84.31%. More details about this work can be found in Annexes,
Section 2.12.

1.3.2 Task T1.4 (Robot centric metrical maps and models storage
II – Dynamic scene)

Layered visual SLAM for multi-density mapping In TRADR, mul-
tiple aerial robots are to be used. An efficient visual SLAM architecture
consisting of multiple independent layers is proposed [48] (Annex Overview
2.8). The fastest algorithm builds the basic layer and models the envi-
ronment as a non-dense map to serve for urgent tasks such as localization
and tracking. An even lower layer can be realized using sensor data as
IMU measurements. Computationally more expensive algorithms build the
middle layers, which provides semi-dense models of the environment for pur-
poses, reaching from acute navigation planning to medium-urgent tasks as
dynamics detection and graph optimization. The next higher layer builds
full maps which are to be used for scene understanding of the entire sor-
tie and for multi-map graph optimization. The highest layer is built by
an algorithm which serves for long-term understanding of dynamic scene.
This layer represents the persistency level and does graph optimization for
maps gathered over time. In [47] (Annex Overview 2.9), three layers are
implemented. A system overview is given by Fig. 9. The layers have differ-
ent abstraction grades and different speed and benefit from each other and
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Figure 9: Overview of layered visual perception architecture

enhance the quality and the efficiency.

• An IMU provides 3D motion priors for the visual SLAM. We use ve-
locity feedback from the vision-based next higher layer to close the
open loop process of double integration and correct the velocity every
time when a image frame is tracked. Estimating between two image
frames, the position drift is sufficiently small.

• A slower keypoint based monocular method builds the intermediate
layer. It uses IMU estimation as motion prior to better initialize the
image-alignment-based direct tracking and reduce its computational
cost for tracking. On the other side, this layer provides more accurately
estimated velocity feedback to the IMU layer every time when a frame
is tracked. This layer provides initialization for the tracking algorithm
of the top layer.

• The top layer, the slowest one, provides semi-dense maps of the en-
vironment. Using two cameras and moving the camera pair so that
the baseline of the pair lies orthogonal to the translational motion, we
obtain stereo matches in two directions - one at a single time step and
another over time. The map is then represented in metric scale and
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provides continuously a rescale factor to the intermediate layer, whose
motion prior is thus also in metric scale.

With IMU-aided pre-estimation of motion, higher robustness against
quick motions is expected. In our method, information flows not only from
the faster to the slower levels, but also from the slower to the faster levels,
what is novel to our best knowledge. The layers are individually comple-
mented modules which can run on different computers.

Full description of the algorithm is given in the draft paper [47] (An-
nex Overview 2.9). We are now in the process of code optimization and
experimental results are not available yet.

Multi-modal map merging One challenge in TRADR is the merging of
mapping data gathered from different robots. For merging maps of same
modalities, e.g. laser-laser or vision-vision, state-of-the-art modules were
tested. Furthermore, a technique was developed to also merge vision and
laser maps in the absence of further prior registration [29] (Annex Overview
2.11).

The researched technique is based on finding similar structural segments
in vision and laser maps and reporting back the transformation between
matching map elements. The full processing pipeline is depicted in Fig. 10
and described in full detail in [29] (Annex Overview 2.11). Therefore, indi-
vidual maps are independently built from laser sensory data and vision data.
The laser maps are constructed using the technique described in [Deliverable
2.2, ref to general description of mapper]. Vision maps are constructed facil-
itating a similar pose-graph-based pipeline with an additional densification
step using Patch-based Multi-View Stereo algorithms (PMVS) [28].

Having two point-cloud candidates of equal densities, structural descrip-
tors are calculated on a subset of the points. Structural descriptors capture
the local neighbourhood around a chosen keypoint using a combination of
a binning shape and a descriptor paradigm. Simple occupancy-based and
binary density-comparing descriptors offer the best performances amongst
all evaluated descriptors.

In a next step the descriptor dimensionality is drastically reduced by
performing a projection to the most expressive dimensions. This can be
achieved by assessing artificial noisy matches between nearby keypoints and
observing the robust descriptor dimensions. This functionality was inspired
by [1]. A reduced descriptor dimensionality significantly accelerates the
following feature matching step.

A subsequent k-nearest-neighbour search between the two keypoint-feature
maps results in the matching matrix. The densest regions of the matching
matrix are then segmented into place matching candidates using the place-
less approach by [55].
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Figure 10: System diagram of the approach for matching and fusing vision-
laser maps.
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Before finally feeding the place matching candidates for map merging
back into the map, a geometric verification is performed. The verification
step assesses the individual feature matching candidates of a place match
for a common transformation between the places.

Ultimately, the place matching candidates are added as constraints be-
tween the vision and laser map and can be optimized within the pose-graph
framework.

1.4 Relation to the state-of-the-art

Controlling robot morphology from incomplete measurements To
deal with incomplete data, the Q function values have to be marginalized
over the missing features. Such marginalization is often tackled by sam-
pling [51, 72] or EM algorithm [30]. Especially for the Gaussian Processed
(GPs) with Squared Exponential kernel, the moment matching marginal-
ization method was proposed by Deisenroth et al. [16]. Different marginal-
ization methods for GPs and Piecewise Constant functions were evaluated
in [84].

We are not aware of any real mobile platform which would use arm
as an active sensor for inspecting unknown terrain. Most of the efforts
in active inference are directed towards active classification [19, 4, 42] or
active 3D reconstruction. Doumanoglou et al. [19] use two robotic arms for
folding an unknown piece of cloth whose type is recognized from RGB-D
data (Kinect). One view is usually insufficient, therefore the cloth needs
to be turned around to generate an alternative view. The turning action is
implicitly learned with Decision Forests. Bjorkman et al. [4] also recognize
objects from RGB-D data. In contrast to [19], Bjorkman et al. use the
robotic arm as an active sensor, to touch the self-occluded part of the object
in order to reconstruct the invisible 3D shape. While all these classification
approaches actively evaluate features in order to discriminate the true object
class from other possible classes as fast as possible, the Q-learning–based
inference used in [83] evaluates the features in order to find some of the
suitable flipper configurations that allow for a safe traversal.

Terrain perception in sensory deprived environments The problem
of terrain characterization primarily using proprioceptive sensors, but also
by sonar/infra-red range-finders and by a microphone is discussed in [62].
The authors exploit neural networks trained for each sensor and demonstrate
that they are able to recognize different categories: gravel, grass, sand,
pavement and dirt surface. Furthermore, they present a concept of terrain-
characteristic curves that establish relationship between currents in motors
driving the main wheels and resulting angular rate of the robot. In [66] we
took a similar approach to train a regression function that maps from a space
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of features extracted from inertial sensors to parameters that compensate
slippage in track odometry. In both cases the aim was to improve localization
and control of the robot. Our current work focuses more on the actual terrain
profile prediction, necessary for successful traversal.

Lack of sufficient visual information related to danger of collision with
obstacles is addressed in [2]: decision whether it is safe to navigate through
vegetation is based on wide-band radar measurements since it is impossible
to detect solid obstacle behind vegetation from laser range-finder or visual
data. Artificial whiskers offer an alternative solution; they mimic facial
whiskers of animals and using them as a tactile sensor is a promising way
to explore areas, which are prohibitive to standard exteroceptive sensors.
Work of [69] presents a way to use array of actively actuated whiskers to
discriminate various surface textures. In [63], similar sensor is used for a
SLAM task. Two sensing modalities—the whisker sensor array and the
wheel odometry are used to build a 2D occupancy map. Robot localization
is then performed using particle filter with particles representing one second
long ”whisk periods”. During these periods, the sensor actively builds local
model of the obstacle it touches. Unfortunately, design of our platform does
not allow using such whiskers due to rotating laser range-finder.

Relation between shape of terrain that we are interested in and con-
figuration of the flippers is investigated in [61]. The authors exploit the
knowledge about robot configuration and torques in joints to define a set of
rules for climbing and descending obstacles not observed by exteroceptive
sensors. We investigated this problem in [83, 84] by introducing the adaptive
traversability algorithm based on machine learning. We collected features
from both proprioceptive and exteroceptive sensors to learn a policy that
ensures safe traversal over obstacles by adjusting robot morphology. Our
motivation coincided with [61], aiming primarily to lower the cognitive load
of the operator.

On contrary to the approaches exploiting only simple contact sensors,
we extend our sensory suite with a robotic arm for further active perception
for cases if necessary. Related to the active perception, relevant ideas and
techniques come from the field of haptics. The work of [4] proposes to
create models of objects in order to be able to grasp them. The idea is to
complement visual measurements by tactile ones by strategically touching
the object in areas with high shape uncertainty. For this purpose they use
Gaussian processes (GP, [60, 81]) to express the shape of the object. We
take a similar approach: we choose parts of terrain to be explored by the
robotic arm based on uncertainty of the estimate resulting from the sampling
process Probabilistic approach to express uncertainty in touched points is
also described in [57], where only tactile sensors of a robotic hand are used
to reconstruct the shape of an unknown object.
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Terrain classification using acoustic features There are several ap-
proaches to terrain detection in the robotics literature based on a variety
of sensors, such as motor slip measurement [67], velocity and acceleration
features ([75], [12]), visual detection ([38], [65] and [54]), vibration ([7], [79],
[78]), sound [50], or a mixture of several sensors ([40], [39]). Many of the
aforementioned approaches are unsupervised and aim at automatically ac-
quiring models to improve, e.g., the accurate navigation of the robot, or
its autonomy. We use a supervised approach with human-labelled data for
training the classifiers. Similarly to [50], we use acoustics data only to dis-
tinguish robot terrain interaction. However, the data collection methods,
the robot, the feature extraction techniques and the classification schemes
we used are different.

The choices we made for our approach were motivated by the primary
purpose of the module for the generation of human-readable reports. While
this may limit the use of the method for sensor fusion or the avoidance of
hazardous terrain, the results suggest that the acoustic features may also be
useful for other applications.

Sensor-less contact detection for articulated tracked robots Real-
time detection of collisions has been widely studied in the literature, in
particular in the context of robotic manipulators [70, 33, 45, 15, 35, 14].
Several approaches have been proposed, based either on comparison with
nominal torques on desired motion of the robotic arm, or on the parallel
simulation of robot dynamics, and on fault detection and isolation. These
approaches are typically based on an accurate dynamic model of the manip-
ulator, and in most systems this is complemented with a sensory apparatus
measuring the presence of collision forces that produce work at the contact.
Moreover, these approaches have three main limitations: (1) it is hard to
add details about couplings, elasticity, friction and other nonlinear dynam-
ics, which are required for high accuracy; (2) the performance of procedures
for the identification of the parameters of the dynamic model strongly de-
pends on both the experimental setting (e.g., with or without contacts) and
the exciting trajectories; (3) they make strong assumptions to handle con-
tacts. An alternative and appealing approach to detecting contacts is to use
machine learning methods to learn a function assessing the occurrence of
collisions on the robotic links. In this regard, Calandra et al. [9] proposed
a mixtures-of-experts based on Gaussian Processes (GP) to learn the non-
linear system dynamics of the humanoid robot iCub [41]. In this work, each
of GP experts models a single contact type. Moreover, by using a gating
network that activates and deactivates the individual GP experts the model
can switch between contact types, thus generalizing to changing contact
locations. However, although this approach does not require a spatially cal-
ibrated model of the skin, thus disregarding the information about the exact
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position of the contact, it still relies on the raw data of the tactile sensors
placed on the robot skin for estimating the contact. Nevertheless, to the
best of our knowledge there is no work that cope with contact detection, in
particular without the support of any tactile sensor, for actively articulated
tracked vehicles, as TRADR UGV. A first demonstration of how a machine
learning technique can be applied for contact identification as been proposed
by us in [58]. Our current work improves the statistical learning framework
in [58]. Indeed, it also relies on a multi-resolution decomposition technique
for extracting the features from the residual signal, computed according to
the well-known Fault Detection and Isolation (FDI) schema [14, 18], in or-
der to discriminate the contact on the basis of both the intensities and the
frequency sub-bands occupied by this signal.

SLAM using visual sensors Known SLAM methods can be categorized
by different density levels of the resulting maps. In point-based SLAM meth-
ods, features corners and blobs are used to find correspondences between
images. Via triangulation, the distance of the points can be found, which is
integrated into the map. Although a lot of such approaches such as [13, 46]
are fast and efficient, the sparse representation of the environment is often
not sufficient for navigation purpose. Here, sufficient existence of features
is the essential condition. Semi-Direct Monocular Visual Odometry (SVO)
[26] however works directly on image pixel intensities of interest areas, which
allows high tracking accuracy without feature description. Despite higher
density, the inherent sparsity of point-based maps remains.

To exploit full information of visual sensor data, dense SLAM methods
models the environment by fully dense surfaces without relying on features.
Also these type of methods operate directly on pixel intensities. Examples
of dense methods are [56, 80]. A further development of dense methods
proposes to use RGB-D cameras to directly obtain scene geometry. Although
the environment structure is very well represented, this type of algorithms
is computationally highly expensive.

A novel approach called Large-Scale Direct SLAM (LSD-SLAM) [23, 21]
proposes an algorithm also working directly on pixel intensities without any
need of interest points for mapping and tracking. LSD-SLAM however uses
only image regions with sufficient large gradients and sufficient large angle
to the stereo baseline. This result in a semi-dense maps, which are built
more efficiently than dense methods and are more informative than point-
based maps. Semi-dense method is very parameter-sensitive and suffers
from inaccurate measurements in absence of specific camera motion ensuring
sufficient translations with large angle to the baseline.

More and more researchers develop multimodal methods using visual
sensors in combination with inertial sensors. Recent researches try to show
that graph-based methods, which integrates redundant constraints and op-
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timizes the graph, are more accurate than estimation fusion methods using
filtering. A recent work, IMU Preintegraion on Manifold for Efficient visual
Maximum-a- Posteriori Estimation [25] for example, proposes to preinte-
grate multiple inertial measurements between subsequent keyframes reduc-
ing the computational complexity. The preintegration theory addresses the
manifold structure of the rotation group and suggests how to propagate the
uncertainty through the measurements. The preintegrated IMU model is
than integrated to a factor graph based visual-inertial framework and can
be realized with any visual SLAM method.

Our recent work [47] (Annex Overview 2.9) and [48] (Annex Overview
2.8) aim at two main contributions:

• Development of a camera-based SLAM system which is divided into
multiple mutually supported modeling levels that efficiently map the
dynamic environment and provide different forms of environment rep-
resentation for robots and humans

• Development of a multi-camera system for SLAM purpose that oper-
ates with baselines in multiple directions, thus increasing the robust-
ness and the accuracy compared to the monocular solutions. While
working on this concept, the authors of [23, 21] introduced a similar
concept in IROS 2015 [22].

Simultaneous Localization and Mapping (SLAM) The SLAM prob-
lem has been addressed with several major approaches, e.g. Kalman-Filter,
Particle-Filter, graph-based and their various variants [68] [74].

Graph-SLAM also pioneered by [53] and [24] treats the problem as an
optimization task. It has become increasingly popular in recent years and
an active community is performing research in this direction: [17] [43] [5] [6]
[3] [10] [8].

In a classic graph-SLAM approach a map is represented as a graph.
Nodes depict discrete states xi of the system, i.e. robot poses and landmark
locations, i denoting the index of the node. Edges represent measurements
zij between the nodes i and j, i.e. the state variables. Graph-SLAM treats
the SLAM-problem as an minimization of the error eij(x) between mea-
surements zij and dynamic models f ij(x) of the state xi resulting in the
updated states x∗i facilitating the Gaussian assumption and information ma-
trix Ωij . The predictions are often derived from wheel odometry or IMU
integration, whereas measurement updates may come from scan-matching
or key-point-tracking.

eij(x) = zij − f ij(x) (5)

x∗i = argmin
∑
ij

eij(xi)
TΩijeij(xi) (6)
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The graph can be optimized by minimizing the error using non-linear least-
squares optimization, e.g. the Gauss-Newton algorithm. However, in a naive
implementation the optimization problem grows with the size of the map
with the accumulation of states and measurements, increasing the computa-
tional time [49]. Several strategies have been proposed to limit the growing
complexity, such as the work on iSAM by [44] [43] and the work on Zebedee
[6].

Work [5] treats the SLAM problem in a continuous fashion, i.e. have
a continuous state space xij(t) of a robot trajectory interpolating between
state coefficients xi and the continuous time index t. The technique was
later formalized by [27]. Here, predictions fk,l(x) and measurements zk,l,
can be continuously registered on the interpolated continuous-time state,
with k denoting a list of affected nodes and l being an index.

The approach [6] extends the idea of continuous-time graph-SLAM to
having a decoupled state-representation of a fixed-frequency correction tra-
jectory composed with a constant high-frequency baseline trajectory gen-
erated from high-rate measurements. Therewith high fidelity of the mea-
surements is preserved while keeping the state space size decoupled. The
approach however has not yet investigated the concept of corrections in
further detail, e.g. different correction curve representations or sampling
strategies.

The recent work [3] uses the standard continuous-time approach with
lidars facilitating insights from previous work with rolling shutter cameras.
They treat lidar intensity imagery like slow rolling shutter cameras for trajec-
tory estimation of a single robot. Continuous-time SLAM has the potential
to limit state space size and enables advanced knot-placement strategies.

Multi modal map merging Multi-modality is closely related to het-
erogeneity addressing the heterogeneous robot sensor outfits. In mapping
applications it is desirable to facilitate representations which express as
many invariances as possible, i.e. scale, lighting, orientation. The fusion
of lidar and vision data has received some attention in the recent years in
the areas of place recognition.

The approach of [36, 37] for place recognition requires prior calibration
between visual and lidar data. The authors define unique signatures for
places consisting of both visual appearance and structural features.

[76] consecutively use visual and structural data. The authors con-
sider a multi-sensor system with pre-registered lidar and vision. Applying
appearance-based visual keypoint descriptors, a subset of place match can-
didates are found and consecutively checked via geometric verification.

[82] achieve visual localization within prerecorded high quality 3D lidar
maps, augmented with reflectivity measures. Images from monocular cam-
eras are matched against predicted views from the lidar reflectivity map.

[59] perform dense scene reconstruction by fusing lidar point-clouds with
key-points from stereo-matching outside the lidar’s field of view. They fa-
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cilitate Conditional Random Fields (CRFs) and Delauney triangulation to
infer the reconstruction assuming piecewise planarity of surfaces.

However, all existing approaches require either prior registration of sen-
sor data or features which hold additional appearance-based dimensions,
such as intensity values. Furthermore are most appearance-based features
viewpoint- and lighting-dependant. Fusion of multi-modal features solely
relying on structure has not yet been presented.

A means of fast fusion between the modalities is desirable for achieving
an initial alignment for place recognition. Furthermore, the selection of
structure based rather than appearance based features is desirable for robust
fusion.
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2 Annexes

2.1 Pecka-TIE2016, “Controlling Robot Morphology from
Incomplete Measurements”

Bibliography Martin Pecka, Karel Zimmermann, Michal Reinstein, and
Tomáš Svoboda. Controlling Robot Morphology from Incomplete Measure-
ments. Submitted to IEEE Transactions on Industrial Electronics, special
section Motion Control for Novel Emerging Robotic Devices and Systems.

Abstract Mobile robots with complex morphology are essential for travers-
ing rough terrains in Urban Search & Rescue (USAR) missions. Since tele-
operation of the complex morphology causes high cognitive load of the oper-
ator, the morphology is controlled autonomously. The autonomous control
measures the robot state and surrounding terrain which is usually only par-
tially observable and thus the data are often incomplete. We marginalize
the control over the missing measurements and explicitly evaluate a safety
condition. If the safety condition is violated, a tactile terrain exploration by
the body-mounted robotic arm gathers the missing data.

Relation to WP It directly contributes to T1.3 – essential sensing and
UGV control functionality.

Availability Restricted, paper under review. Not included in the public
version of this deliverable.
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2.2 Kubelka-RAS2016, “Improving Multimodal Data Fusion
for Mobile Robots by Trajectory Smoothing”

Bibliography Vladimı́r Kubelka, Michal Reinstein, and Tomáš Svoboda.
Improving Multimodal Data Fusion for Mobile Robots by Trajectory Smooth-
ing. Submitted to Robotics and Autonomous Systems.

Abstract Localization of mobile robots is still an important topic, espe-
cially in case of dynamically changing, complex environments such as in
Urban Search & Rescue (USAR). In this paper we aim for improving the
reliability and precision of localization of our multimodal data fusion al-
gorithm. Multimodal data fusion requires resolving several issues such as
significantly different sampling frequencies of the individual modalities. We
compare our proposed solution with the well-proven and popular Rauch-
Tung-Striebel smoother for the Extended Kalman filter. Furthermore, we
improve the precision of our data fusion by incorporating scale estimation
for the visual modality.

Relation to WP The methods smoothes past trajectory estimate. It con-
tributes to both tasks T1.3 – essential sensing and UGV control functionality
and T1.4 Robot centric metrical maps and models storage.

Availability Restricted, paper under review. Not included in the public
version of this deliverable.

EU FP7 TRADR (ICT-60963) 35



DR 1.2: Sensing, mapping and low-level memory II T. Svoboda et al.

2.3 Salansky-ICRA2016, “Touching without vision: terrain
perception in sensory deprived environments”

Bibliography Vojtěch Šalanský, Vladimı́r Kubelka, Karel Zimmermann,
Michal Reinstein, and Tomáš Svoboda. Touching without vision: terrain
perception in sensory deprived environments. Submitted to IEEE Interna-
tional Conference on Robotics and Automation (ICRA) 2016.

Abstract In this paper we demonstrate a combined hardware and soft-
ware solution that enhances sensor suite and perception capabilities of a
mobile robot intended for real Urban Search & Rescue missions. A com-
mon fail-case, when exploring unknown environment of a disaster site, is
the outage or deterioration of exteroceptive sensory measurements that the
robot heavily relies on—especially for localization and navigation purposes.
Deprivation of visual and laser modalities caused by dense smoke motivated
us to develop a novel solution comprised of force sensor arrays embedded
into tracks of our platform. Furthermore, we also exploit a robotic arm for
active perception in cases when the prediction based on force sensors is too
uncertain. Beside the integration of hardware, we also propose a framework
exploiting Gaussian processes followed by Gibb’s sampling to process raw
sensor measurements and provide probabilistic interpretation of the under-
lying terrain profile. The profile is perceived by proprioceptive means only
and successfully substitutes for the lack of exteroceptive measurements in
the close vicinity of the robot, when traversing unknown and unseen obsta-
cles. We evaluated our solution on real world terrains.

Relation to WP It directly contributes to T1.3 – essential sensing and
UGV control functionality.

Availability Restricted, paper under review. Not included in the public
version of this deliverable.
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2.4 Chmel-BT2015, “SW and HW Integration of an IP PTZ
Camera onto a Mobile Outdoor Robot”

Bibliography Jakub Chmel. SW and HW Integration of an IP PTZ
Camera onto a Mobile Outdoor Robot. Bachelor thesis, Czech Technical
University in Prague, Faculty of Electrical Engineering. 2015.

Abstract The outdoor robot for urban search and rescue (USAR) missions
lacks a high quality pan-tilt-zoom (PTZ) video stream. PTZ function can be
simulated using an existing virtual camera, which uses data from LadyBug
3 (LB3). However, the LB3 camera may only use a digital zoom. This work
is focused on SW and HW integration of a network (IP) PTZ camera onto
the mobile outdoor robot. These types of cameras can add the optical zoom
function to the robotic system. IP PTZ camera (Axis 214 PTZ) is the best
choice for described problem in current situation. The goal of the thesis was
to develop Robot Operating System (ROS) package that allows to use the
camera on the TRADR robot. Most of source codes were written in Python
and some in C++. In the thesis were performed several experiments that
define the possibilities and limits of the developed solution.

Relation to WP It directly contributes to T1.3 – essential sensing and
UGV control functionality.

Availability Public. Available at https://dspace.cvut.cz/handle/10467/
61991, pdf document at https://dspace.cvut.cz/bitstream/handle/10467/
61991/F3-BP-2015-Chmel-Jakub-SW_and_HW_Integration_of_an_IP_PTZ_

Camera_onto_a_Mobile_Outdoor_Robot.pdf
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2.5 Mares-MT2015, “Safe Obstacle Traversal with Incom-
plete Data”

Bibliography Jakub Mareš. Safe Obstacle Traversal with Incomplete
Data. Master thesis, Czech Technical University in Prague, Faculty of Elec-
trical Engineering. 2015.

Abstract This thesis deals with terrain traversability for an unmanned
ground vehicle (UGV) based on Niftibot platform. This mobile robot, which
is dedicated for Urban Search and Rescue (USAR) missions, is equipped
with auxiliary articulated tracks, so-called flippers. Flippers enhance robots
ability to traverse complicated terrain, however they bring more degrees of
freedom to control. Semi-autonomous control system which selects optimal
flippers configuration with respect to traversed terrain is being developed
at FEE, CTU. A system based on reinforcement learning and decision trees
had been previously implemented. This system, however, required complete
data from sensors. As model of environment was built using solely data from
laser scanner, this condition was violated in some scenarios, e.g. in case of
reflective surfaces. Therefore a partial reimplementation and an extension
of the former system is introduced in this work. A new mode which utilizes
JACO robotic arm for tactile exploration of terrain has been incorporated
to the system. This helps to explore terrain invisible to laser scanner. The
experiments with aluminium foil were performed to demonstrate that the
arm helps the robot to complete information in robots map and furtherly
use it to safely traverse terrain.

Relation to WP It directly contributes to T1.3 – essential sensing and
UGV control functionality.

Availability Public. Available at https://dspace.cvut.cz/handle/10467/
61738, pdf document at https://dspace.cvut.cz/bitstream/handle/10467/
61738/F3-DP-2015-Mares-Jakub-Safe_Obstacle_Traversal_with_Incomplete_

Data.pdf
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2.6 Salansky-MT2015, “Contact Terrain Exploration for Mo-
bile Robot”

Bibliography Vojtěch Šalanský. Contact Terrain Exploration for Mo-
bile Robot. Mater thesis, Czech Technical University in Prague, Faculty of
Electrical Engineering. 2015.

Abstract For mobile robots, it is important to know the surrounding ter-
rain. The goal of this diploma thesis is to provide a design and prototypical
implementation of the method for terrain exploration via contact of robotic
manipulator Kinova Jaco Arm with the terrain. There are more subgoals to
be done within the implementation of contact exploration. This thesis deals
with the contact detection of the robotic arm and the terrain, choosing the
place from workspace for exploration, and the estimation of unknown places
and mapping. The contact of the manipulator with the terrain is detected by
using joint torques of actuators. The place that should be explored next is
chosen to increase the expected usefulness for future estimation of the other
unknown places. The places that are not explored are estimated by using
proprioceptive sensors (tilt, currents in actuators). A method that saves
and process the map from measured and estimated places is also provided
in this thesis.

Relation to WP It directly contributes to T1.3 – essential sensing and
UGV control functionality.

Availability Public. Available at https://dspace.cvut.cz/handle/10467/
62094, pdf document at https://dspace.cvut.cz/bitstream/handle/10467/
62094/F3-DP-2015-Salansky-Vojtech-Kontaktni%20pruzkum%20terenu%

20pro%20mobilniho%20robota.pdf
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2.7 Tesfay (2015), “Terrain Type Classification Based on
Sound”

Bibliography Tesfay Gebru, Abraham. “Terrain Type Classification Based
on Sound.” Master Thesis, Saarland University, July 2015.

Abstract The autonomous mobility of robots has great benefits to human
exploring hazardous terrains. The motivation of this thesis is to detect
different types of terrains traversed by a robot based on acoustic data from
the robot-terrain interaction thereby helping to make the mobile robots more
autonomous. The acoustic data was collected using a microphone mounted
on our robot. Then, these recorded datasets were used to train classifiers so
as to distinguish different terrain types from one another. Different acoustic
features and classifiers were investigated, such as Mel-frequency cepstral
coefficient and Gamma-tone frequency cepstral coefficient for the feature
extraction, and Gaussian mixture model and Feed forward neural network
for the classification. We analyse the system’s performance by comparing our
proposed techniques with some other features surveyed from distinct related
works. Thus, we demonstrate the effectiveness of our approach using five
different terrain classes which are trained using real data sets gathered from
different ground surfaces. The experimental result indicates the average
accuracy obtained is approximately 93.6% and it is enhanced to 95.2% with
an increase in audio duration. In real applications, it is better to decrease
the detection time and our system still has satisfactory performance using
human-like terrain labelling even for smaller audio duration. These are very
promising results which show that acoustics is an interesting domain that
needs to be extensively explored to improve the autonomy of tracked robots.

Relation to WP This master thesis explores the use of acoustic features
to characterise different terrain-types. Sound is a potentially interesting al-
ternative environment perception modality and these features could provide
useful complementary input to modelling the environment in WP1.

Availability Unrestricted. The PDF is downloadable at http://www.

dfki.de/web/forschung/publikationen?pubid=8232.

EU FP7 TRADR (ICT-60963) 40

http://www.dfki.de/web/forschung/publikationen?pubid=8232
http://www.dfki.de/web/forschung/publikationen?pubid=8232


DR 1.2: Sensing, mapping and low-level memory II T. Svoboda et al.

2.8 Kong, Dong-Uck (2015), “Persistent Mapping of Dy-
namic Environments By Multiple Aerial Robots With
Multi-Camera Systems”

Bibliography Dong-Uck Kong. “Persistent Mapping of Dynamic Envi-
ronments By Multiple Aerial Robots With Multi-Camera Systems“. Un-
published Dissertation Proposal, full document, January 2015.

Abstract Based on the requirements for the TRADR scenario, the central
research question is formulated: How can particularly efficient mapping and
localization methods be developed with respect to measurement quality,
sensor data quantity and long-term data analysis for both robot and human
action forces? This work proposes to use visual sensors, extensively reviews
the state of the art methods in relevant domains, and conceptualizes an
efficient system architecture for persistent map building. An overall system
is suggested that provides multiple individual mapping levels which run with
different speed on different platforms but use uniform methods to benefit
from each other. Detailed concepts for basic mapping, map fusion in a single
sortie, and map fusion for persistency over time are introduced.

Relation to WP This Proposal conceptualizes an efficient overall archi-
tecture for persistent mapping by visual sensors. It contributes to the tasks
T1.4 Robot centric metrical maps and models storage.

Availability Restricted. Not included in the public version of this deliv-
erable.

EU FP7 TRADR (ICT-60963) 41



DR 1.2: Sensing, mapping and low-level memory II T. Svoboda et al.

2.9 Kong, Dong-Uck (2015), “Layered Visual Perception Ar-
chitecture for Efficient Multi-Density Environment Map-
ping and Localization”

Bibliography Dong-Uck Kong. “Layered Visual Perception Architecture
for Efficient Multi-Density Environment Mapping and Localization“. Un-
published Draft Paper, December 2015.

Abstract In this work, efficient multi-density environment mapping method
is proposed that is realized by multiple visual perception methods hierar-
chically working together. We propose to use two rigidly connected visual
sensors in combination with inertial sensors. A non-visual estimation layer
based on IMU, a vision-based layer representing point-based world model,
and a vision-based module representing edge-based world model are imple-
mented. The suggested levels are individually complemented modules which
are firstly algorithms independent from each other, but benefit from each
other. Our main contributions are design of novel layered system archi-
tecture with bi-directional information flow, enhancement of map quality
despite of low sensor rate, and robustness against fast camera motion.

Relation to WP This draft paper proposes multi-layer visual SLAM al-
gorithm aided by inertial sensor. It contributes to the task T1.4 Robot
centric metrical maps and models storage.

Availability Restricted. Not included in the public version of this deliv-
erable.
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2.10 Dube-ICRA2016, “Non-uniform sampling strategies for
continuous correction based trajectory optimization”

Bibliography Renaud Dubé, Hannes Sommer, Abel Gawel, Michael Bosse
and Roland Siegwart. Non-uniform sampling strategies for continuous cor-
rection based trajectory optimization. Submitted to IEEE International
Conference on Robotics and Automation (ICRA) 2016.

Abstract Sliding window estimation is widely used for online simulta-
neous localization and mapping. While increasing the sliding window size
generally yields improved accuracy, it also comes at an increase in compu-
tational cost. In order to reduce this cost, we propose smarter non-uniform
sampling of the trajectory representation over the sliding window. This
non-uniform distribution is possible with continuous-time representations
that allow freely adjustable control vertex locations. We present two strate-
gies for selecting the control vertices locations and evaluate them based on
a real data laser-odometry SLAM problem. Our results clearly show that
non-uniform distributions of control vertices can be superior to uniform dis-
tribution in terms of accuracy per computation time.

Relation to WP It directly contributes to T1.3 – essential sensing and
UGV control functionality.

Availability Restricted, paper under review. Not included in the public
version of this deliverable.

EU FP7 TRADR (ICT-60963) 43



DR 1.2: Sensing, mapping and low-level memory II T. Svoboda et al.

2.11 Gawel-ICRA2016, “Structure based Vision-Laser Match-
ing”

Bibliography Abel Gawel, Titus Cieslewski, Renaud Dubé, Michael Bosse,
Juan Nieto and Roland Siegwart. Structure based Vision-Laser Matching.
Submitted to IEEE International Conference on Robotics and Automation
(ICRA) 2016.

Abstract In multi-robot applications not every agent is equipped with
the same sensor outfit. Registering maps created by different sensor modal-
ities is a relevant step towards collaborative mapping. This work presents
an approach for matching dense LIDAR point-cloud maps to densely recon-
structed vision point-cloud maps using structural descriptors. The matching
algorithm works independently of the sensors’ viewpoint and lighting. We
then present a novel approach for laser-vision place-recognition. We analyse
a range of structural descriptors and present results of the method integrated
in a larger pose-graph based mapping framework. Despite the fact that we
match between the visual and laser domains, we can successfully identify
place-matches using structural descriptors at a moderate precision of 72 %
at 46 % recall at the best MCC scores and before geometric verification.

Relation to WP It directly contributes to T1.4 – Robotic centric metrical
maps and models storage.

Availability Restricted, paper under review. Not included in the public
version of this deliverable.
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2.12 Gianni, Ruiz, Ferri, Pirri (2015), “Terrain contact mod-
eling and classification for ATVs”

Bibliography M. Gianni, M. A. Ruiz Garcia, F. Ferri, F. Pirri. “Terrain
contact modeling and classification for ATVs”. Accepted to the IEEE In-
ternational Conference on Robotics and Automation (ICRA’2016), January
2016.

Abstract We consider some specific ATV robot model in which the active
parts of the tracks are flippers, and present a method that models the flippers
terrain contact. The main idea is to extract the residual component, as
formed by a disturbance due to the non modeled dynamics of the moving
base link and an unexpected disturbance. We extend the FDI approach to
comply with ATVs dynamics and, in particular, their flippers component.
Under the hypothesis that the residual signal presents disturbance patterns
that can be discriminated by those generated by unexpected high-frequency
collisions of the flippers with the ground, we apply a classification method
to recover the flipper contact. The wavelet packet transform is used to
decompose the signal and generate from the different subbands a feature
space. Finally, sparse SVM, based on feature selection discriminates the
contact signal.

Relation to WP It directly contributes to T1.3 – essential sensing and
UGV control functionality.

Availablity Restricted. Not included in the public version of this deliv-
erable.
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