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Executive Summary

The key objective of WP1 is to provide sensory data from all involved robots
registered in space and time, to keep creating and updating robot centric
representations, and ground them into the world coordinate frame. The
obtained representations are furnished to other WPs, which maintain higher
level situation awareness.

In Year1 one we concentrated on essential UGV perception functional-
ities. Adaptive traversability changes robot morphology as the robot tra-
verses various obstacles. We introduced a concept of safe exploration in
order to assure the robot stays operational. We were working on a multi-
modal victim detector that should overcomes problems when temperature
of the environment is similar to the human body temperature. In order to
assure persistence of metrical maps we advance our mapping and robot lo-
calization for both UGV and UAV. During a longer mission there are almost
always some anomalies in data. We explicitly detect these anomalies in a
multimodal fusion scheme for robot localization. If needed we can also run
two independent visual odometry algorithms.

Role of robot perception and metrical mapping in
TRADR

The robot perception means the robot is able to analyze its neighborhood
and act accordingly. Terrain recognition is essential for robot locomotion
regardless whether the robot is teleoperated or moves autonomously. It is
desirable the robot overcomes obstacles in a reasonable way - fast, safe,
consuming less power, reducing cognitive load of a human operator. Auto-
matic victim detection is important for many search and rescue scenarios.
A human operator may provide final decision however, robots, when crawl-
ing through a disaster site should provide warning about possible victim
locations.

The metrical mapping serves as the very basis for modeling the world.
It is also the basis for sharing informations between robots and also among
several sorties even missions.

Contribution to the TRADR scenarios and proto-
types

The learnable adaptive traversability contributes to the models for acting
(WP2) and also supports the human-robot teaming (WP5). As the met-
rical mapping establishes a common ground for sharing data it naturally
supports almost all packages. Multi-robot mission will employ the robots
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in various roles. We implemented several software packages support flexible
deployment of the UGVs, e.g. lidar-camera calibration and IP PTZ camera
interagration. During the TRADR Joint Excercise (TJEx) event in 2014
we deployed and tested multimodal data fusion and adaptive traversability
algorithm.
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1 Tasks, objectives, results

1.1 Planned work

In Year 1, WP1 planned to investigate “Essential sensing, mapping and
low-level memory” (Milestone MS1.1). The work was divide into two WP1
tasks:

• Essential sensing functionality (T1.1)

• Robot centric metrical maps and models storage (T1.2)

Essential sensing concetrates on data fusion for making the localization and
mapping more robust. As the UGVs were planned to be singificantly up-
graded (WP6) significant part of the effort was allocated for transferring the
background knowledge/codes to the upgraded robots.

The metrical maps are planned to be the core for sharing “knowledge”
between robots, sorties, missions and human operators. In Year1, the main
effort was planned for creating maps for one robot and in a robot-centric
view.

1.2 Actual work performed

1.2.1 Task1.1 (Essential sensing functionality)

Our work on essential sensing functionalities can be roughly categorized into
three pieces. We worked on fusing multiple sensory data for more persis-
tent localizaiton and mapping. Adaptive traversability and safe exploration
are the steps toward autonomy and smooth teleoperation on very difficult
terrains. Fusing sensory data should also make a victim detector robust.

Data fusion for localization and mapping During our work in urban
search and rescue (USAR) scenario, we encountered frequent abnormal pat-
terns in the visual odometry attitude (VO), laser range finder attitude and
position estimates. These usually occurred as a consequence of unexpected
environmental effects or modality failures (e.g., dynamically changing condi-
tions, terrain obstacles, limited range of view, low visibility), see Figure 1 for
few examples. Such anomalies would significantly deteriorate estimates of
attitude and position of the UGV and consequently propagate to higher-level
functions depending on localization functionality. This finding motivated us
to focus on those special conditions that would interfere with localization
and task execution during the intended long-term missions. To correctly
identify the actual anomalies which were to be rejected we went beyond
the standard statistical tests by exploring different state-of-the-art machine
learning approaches. We demonstrated the implications of our research both
indoor (with precise reference from a Vicon system) as well as in challenging
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Figure 1: Few examples of challenging environments causing anomalies.
From left: limited field of view, dynamically changing conditions, low visi-
bility. The cases often combine.

outdoor environment on a set of experiments designed to imitate search and
rescue mission conditions (significant part of the dataset consists of exper-
iments recorded during the joint exercise with end-users). The results are
presented in [32] (Annex Overview 2.11). The anomaly detection handled
serious local disturbances and vastly improved the overall performance, even
in case of driving inside a pipe or through a dense forest.

A robust reliable robot perception essentially forces exploiting/fusing
all available sensory data. Multimodal data fusion requires resolving sev-
eral problems, significantly different sampling frequencies of the individual
modalities being one of them. Our contribution [16] (Annex Overview 2.12)
lies in the development of a model for such multi-modal data fusion using
the Extended Kalman Filter (EKF), especially in the way we incorporated
sensors with slow and fast measurement update rates (e.g. the IMU sam-
pling rate is 90 Hz compared to the laser rangefinder output at 0.3 Hz). For
this purpose, we proposed and investigated three different possible methods
- one of them, the trajectory approach, is our contribution that we compared
to a common state-of-the- art practice. We showed that a standard EKF
designed with the velocity approach does not cope well with such signifi-
cant differences in the frequency, whereas our proposed trajectory approach
does. We compared our proposed solution with the well-proven and popular
Rauch- Tung-Striebel smoother for the Extended Kalman filter. Further-
more, we improved the precision of our data fusion by incorporating scale
estimation for the visual modality. We tested our algorithm on approx-
imately 4.4 km of field tests (over more than 9 hours of data) both in-
and outdoors. In order to have precise quantitative analysis, we recorded
ground truth using either a Vicon motion capture system (indoors) or a
Leica theodolite tracker (outdoors). This way we proved that our scheme
is a significant improvement upon standard approaches. Combining all four
modalities: IMU, tracks odometry, visual odometry and ICP-based localiza-
tion, we achieved precision in the total distance driven of 1.2% error in the
indoor environment and 1.4% error in the outdoor environment.
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Figure 2: Fusing modalities/measurements that vary in multiple aspects,
e.g. sampling frequency, robustness.

Adaptive traversability, exploration We were working on various as-
pects of adaptive traversability (AT). By adaptive traversability we under-
stand autonomous motion control adapting the robot morphology configura-
tion of articulated parts together with their compliance to traverse unknown
complex terrain with obstacles in an optimal way see Figure 3. We verify
this concept by proposing a reinforcement learning based AT algorithm for
mobile robots operating in such conditions. We demonstrate the functional-
ity by training the AT algorithm under lab conditions on simple EUR-pallet
obstacles and then testing it successfully on natural obstacles in a forest. For
quantitative evaluation we define a metric based on comparison with expert
operator. Exploiting the proposed AT algorithm significantly decreases the
cognitive load of the operator. The approach and the results are presented
in [36] (Annex Overview 2.2) and [37] (Annex Overview 2.3), and also [22]
(Annex Overview 2.6).

The robot is typically required to operate in an unknown environment
and with imprecise sensory data. However, it is highly desired that the robot
only act in a safe manner and do not perform actions that could probably
make damage to them. To train some tasks with the robot, we utilize rein-
forcement learning (RL) [36] (Annex Overview 2.2). The machine learning
method however requires the robot to perform actions leading to unknown
states, which may be dangerous. We suggest to train a safety function which
constrains possible actions to a subset of really safe actions. Our approach
utilizes two basic concepts. First, a core of the safety function is given by a
cautious simulator and possibly also by manually given examples. Second, a

EU FP7 TRADR (ICT-60963) 7



DR 1.1: Essential sensing and mapping T. Svoboda et al.

(a) mode 1 (b) mode 2

(c) mode 3 (d) mode 5

Figure 2.3: Robot configuration modes. Mode 4 is reversed mode 3. Images taken
from [1].

2.3 Software

In this section the third party software used in this work is described. It is mainly
the open source software developed for the Robot Operating System (ROS) [15]
by researches from all around the world including my colleges on CTU in Prague.

2.3.1 Robot Operating System

ROS is the state-of-the-art collection of tools, libraries and conventions that aim
to simplify the task of creating complex and robust robot behavior across a wide
variety of robotic platforms. It is maintained by the Open Source Robotics Foun-
dation (OSRF) [16] which is an independent non-profit organization founded by
members of the global robotics community. ROS provides an automatic manage-
ment system for message-passing between nodes [17] using TCP/IP protocol.
A node is an executable that uses the ROS to communicate with other nodes using
topics [18]. Topics are named buses through which nodes exchange their data in
a form of messages.

2.3.2 Octomap Server

Octomap server [19] is a ROS package based on the OctoMap library [20]. It
builds and distributes volumetric 3D occupancy maps in various ROS-compatible
formats. Created multi-resolution map represents occupied areas as well as free
space. It is updatable with new sensor readings in a probabilistic fashion and dy-
namically expands if needed. Detailed information can be found in [21]. In this

6

Figure 3.2: Stairs as seen from the robot omnicamera in a spherical projection.

Figure 3.3: Robot on the similar stairs as in the Fig 3.1. Green voxels are obtained
from the octomap server, red line is a border of the constructed DEM.

3.2 Features Extraction

DEM is processed in a similar way as the images in the machine learning. Instead
of using pixels intensity values (heights of the DEM cells), computed Haar-like
features are taken into account. The reason is that they are more general and ro-
bust to the noise. Finally, they reduce the dimension of the problem which leads to
a faster algorithm operation. Computed feature vector contains Haar-like features
computed from elevation of each DEM cell also as from the variance of detections
inside each cell.

10

Figure 3: Traversability modes (left) and Robot on the terrain digital eleva-
tion model (right). Robot traversing difficult obstacles (bottom). Note that
the DEM is often only partially observable.

Figure 4: Examples of a safe state (left) and a critical state (right).
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Figure 5: Dataset for training the victim detector. From left: RGB data,
depth, and thermal data. Data were collected in a controlled environment
and merged real data. As the scene depth is also known, person is put
correctly lying on the floor.

classifier training phase is performed (using Neyman-Pearson SVMs), which
extends the safety function to the states where the simulator fails to recog-
nize safe states, see [23] (Annex Overview 2.4) and [24] (Annex Overview
2.5).

Visual localization In order to support the performance of the main
fusion scheme [16] (Annex Overview 2.12) we significantly improved the
already integrated visual odometry [35] (Annex Overview 2.8) and also de-
veloped and integrated and alternative approach based on FastSLAM 2.0
approach [29] (Annex Overview 2.7).

We also started working on an algorithm that would recognize previously
visited places. We tested holistic approaches based on using GIST descrip-
tors and descriptors computed a deep neural network [7] (Annex Overview
2.9).

Victim detector Many supervised learning methods requires huge train-
ing data. Since obtaining a large number (i.e., millions) of multimodal im-
ages of victims, with accurate ground truth needed for applying supervised
learning methods, seems infeasible in near future, we decided to generate
and use a partially synthetic dataset to train the classifier. First, a set
of positive training examples was recorded in controlled environment, with
the ground-truth segmentation obtained via a chroma key compositing tech-
nique. Then, these were combined with separately recorded background data
to generate synthetic examples with known segmentation masks. Motivated
by recent promising results in pedestrian detection, preliminary experiments
with decision trees were carried out with a rich feature set covering all the
modalities (i.e., color, depth, and temperature) and taking into consider-
ation their specifics. An efficient method was developed for learning the
structure of decision trees on large datasets with exact probability criterion
for selecting split-node features.

EU FP7 TRADR (ICT-60963) 9
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Figure 6: Screenshot of an experiment applying the semi-dense mapping
method. The image potraits an accumulated point cloud. The semi-dense
method processes only image regions with sufficiently large gradients.

1.2.2 Task1.2 (Robot centric metrical maps and models storage
I)

UAV-based mapping One of the key aspects of WP1 is to extract useful
metric environment models from multiple robots’ perceptional experience
and to make the models persistent. Based on the requirements for the
TRADR multi-robot system, the central question was formulated:

How can particularly efficient mapping and localization methods be devel-
oped with respect to measurement quality, sensor data quantity and long-term
data analysis for both robot and human action forces?

It is an explicit goal to exploit the advantages of visual sensors in en-
vironment perception and mapping (SLAM) because of their richness of
information, light weight and availability. With the common goal to en-
able robots to work in arbitrary environments by visual sensors, several
possible concepts have been investigated. Keypoint-based SLAM methods,
dense surface-based modeling methods, semi-dense mapping method and
their combinations were thoroughly investigated (Figure 6). Also, we inves-
tigated several image acquisition systems. More survey details can be found
in the technical report [15] (Annex Overview 2.13).

UGV mapping We continued in the work done within the NIFTi project
on aligning 3D pointclouds [27, 28, 25]. The main motivation is to go beyond
the usual iterative scheme that requires the point clouds to be closely related.
This may suffice for sequential map building in a one robot mission. We

EU FP7 TRADR (ICT-60963) 10
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used the large data collections assembled within the NIFTi project and
added few new datasets. We experimentally compared the Iterative Closest
Point (ICP) method with approaches based on matching local features. We
also experimented with newly defined color features [12] (Annex Overview
2.10). The main conclusion is that, providing sufficient overlap of the point
clouds, performance of the feature based method is largely independent of
the transformation between point clouds. This may be valuable in case when
multiple robots are mapping common terrain but from different viewpoints
(perspectives).

Model storage In TRADR we also adressed the persistence of our world
model, esp. the maps created by the robots. We are able to store and load
maps. We succeeded in continuing mapping on a map loaded from another
mission. With our storing mechanism, we are also able to travel ’back in
time’, which is very useful for the end users in longer running missions.

At the moment the world model is stored as a single big pointcloud,
which is not meant to be refined, but rather to be used as a starting point
for the new map. In order to utilize the stored maps even more, we will have
to save the informations which were used to create the map rather than the
map itself. We already identified the key topics, which have to be considered
while designing the database schema.

location of objects If we split up the map, we will have to decide, in which
submap an object will be located. A moving object might ’jump’ to
another map.

non rigid transformations How do we store non rigid transformations
(between two maps) in the database.

versioning and time As the scene will change over time, we will have to
cope with that in our representation.

peformance Since we are only saving the data used to create the map,
rather than the map itself, there will be always some effort needed to
reconstruct the map. We are trying to minimize this effort by using a
suitable representation (e.g. saving already transformed pointclouds).

synchronization As we will need to map on the robots (at least in a small
area), we will have to integrate that into the global map stored in the
central database.

1.2.3 Various auxiliary tasks

Since representation of the environment in form of a triangular mesh is better
suited for simulation e.g., in order to assess robot safety during a planned
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Figure 7: Camera to lidar calibration. A sw tool for automated calibration.

obstacle traversal or visualization purposes, a module (a ROS node) for
automatic conversion of point clouds to triangular meshes was developed.

While seeing the mobile robot itself in its cameras is beneficial for tele-
operation, it is typically undesirable for computer vision methods such as
object detection or visual odometry. Being able to distinguish the parts of
image covered by the robot would presumably improve performance of these
methods. As this becomes particularly important with the Kinova manip-
ulator being mounted on the UGV, as the arm may operate in the entire
field of view, we developed a module masking out the robot in calibrated
cameras which uses a known model and current state of the joints.

New drivers for Optris infrared cameras were developed which are bet-
ter suited for capturing synchronized video streams from multiple devices.
These were used in capturing the multimodal victim datasets, see Figure 5.

The newly upgraded UGV allows flexible mounting of additional cam-
eras directly on the upper board. Foreseeing this flexibility we prepared
an automated tool for camera-lidar calibration [3] (Annex Overview 2.1).
As the mounting point of the swiveling Lidar is fixed it may well serve as
the calibration basis. The tool reads a standard bag-file and guides a user
when assigning the necessary point-to-point correspondences, see Figure 7.
Various point cloud visualizations are implemented.

We listen to the end-users and they sometimes complain about limited
zoom possibility when using the standard Ladybug3 omnidirectional camera.
We developed ROS nodes for operating an IP PTZ camera and we will
integrate it onto the UGV board during the Year2 of the project.

An auxiliary library for ROS-Matlab interaction were developed to allow
fast prototyping of ROS nodes in Matlab.

EU FP7 TRADR (ICT-60963) 12
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1.3 Relation to the state-of-the-art

We progressed our work on multimodal data fusion [16] (Annex Overview
2.12) towards detecting anomalies in data. We go beyond the standard statis-
tical tests by exploring different state-of-the-art machine learning approaches
and exploiting our rich dataset that we share with the robotics community.
Failures in the exteroceptive perception systems are one of many sources of
uncertainty in mobile robot localization. Anomaly detection addresses the
task of finding patterns that do not conform to expected behavior [5].

There has been a lot of effort put into rejection of such disturbances in
a broad range of different applications [8]. Within the field of robotics the
problem of system failures identification is often referred to as fault detection
and isolation (FDI) [26]. Fault is defined as an anomaly in behavior of
the monitored system and can be detected, isolated (locating the faulty
component) and identified (determination of magnitude of the fault) [9].
A reliable robotic system must deal with many uncertainties that can be
handled by FDI, e.g., by quality inspection of the provided information [4],
comparing information providers [33], using information flow between the
control and actuation [6], monitoring the reliability of resources [20], or
proper recognition and modeling of the sensor and mechanical failures [11].

We advanced our work on adaptive traversability [36] (Annex Overview
2.2) towards robust handling of uncomplete or partially observed data.
Many authors estimate terrain traversability only from exteroceptive mea-
surements (e.g. laser scans). For example Kim et al. [14] estimate whether
the terrain is traversable or not and plan the trajectory over the traversable
terrain. In our experience, when the robot is teleoperated in the real environ-
ment, it is not possible to plan the flipper motion in advance only from the
exteroceptive measurements. When the terrain collapses unexpectedly, cap-
tured terrain profile must be updated without exteroceptive measurements.
Reactive control has been successfully used for learning the acrobatic tricks
with an RC helicopter [1, 2]. Since it is possible to model the helicopter-
air interactions well, one can use the model to improve the reinforcement
learning. In our case, analytical modeling of the robot-terrain interaction is
very difficult. Contrary to [1] we rather focus on a model-free reinforcement
learning technique. The idea of inference from incomplete data via some
kind of sampling [18, 34] or EM algorithm [10] has been known for several
decades. In contrast to others, we demonstrate the proposed approach on a
real robotic platform equipped with many different sensors.

Many robotic tasks are tackled by RL with iterative state-action space
exploration (RC helicopter acrobacy [1], adaptive traversability [36] (Annex
Overview 2.2), etc.). RL essentially needs to exhaustively sample the state-
action space (which is called “exploration”), and the exploration strategy
is represented by a stochastic policy. While manually-driven exploration is
often prohibitively time consuming, autonomous exploration is usually only
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applied to inherently safe systems (pendulum) or to simulators [30]. We
propose a framework for making autonomous exploration even for general
systems, [24] (Annex Overview 2.5).

The upgraded visual odometry codes are based on the state of the art
approaches [19, 31, 17]. Our ongoing work on visual place recognition ex-
periments with GIST descriptors [21] and a deep learning network [13].
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2 Annexes

2.1 Brabec-bc2014, “Automated camera calibration from laser
scanning data in natural environments”

Bibliography Jan Brabec. Automated camera calibration from laser
scanning data in natural environments, Bachelor Thesis, June 2014. Czech
Technical University in Prague.

Abstract We have developed an application for extrinsic camera calibra-
tion from the data acquired by the LIDAR scanner. Since the raw range
images from the LIDAR scanner do not possess enough detail, we processed
the range images to highlight edges and corners and allow the operator to
create correspondences between the world points and the image points. We
have also developed a technique for local correction of the correspondences in
case the operator makes a slight mistake. The application is implemented as
a node in Robot Operating System (ROS). We have performed experiments
on a mobile robot intended for urban search and rescue. We experimentally
show that the application can be used outside the laboratory to quickly cal-
ibrate a new camera in the system or recalibrate an already present camera.
That is a big advantage compared to the present tools available in ROS that
usually require the use of special calibration patterns and are restricted to
the laboratory environment only.

Relation to WP A ROS node for mutual camera to Lidar calibration. A
friendly GUI for an untrained user.

Availability Unrestricted. A public document https://cyber.felk.cvut.
cz/research/theses/papers/494.pdf or https://dspace.cvut.cz/handle/
10467/24152
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2.2 Zimmermann-ICRA2014, “Adaptive Traversability of Un-
known Complex Terrain with Obstacles for Mobile Robots”

Bibliography Karel Zimmermann, Petr Zuzanek, Michal Reinstein, and
Vaclav Hlavac. Adaptive traversability of unknown complex terrain with ob-
stacles for mobile robots. In Lynne Parker, editor, ICRA2014: Proceedings
of 2014 IEEE International Conference on Robotics and Automation, pages
5177-5182, Piscataway, USA, June 2014. IEEE Robotics and Automation
Society, IEEE.

Abstract In this paper we introduce the concept of Adaptive Traversabil-
ity (AT), which we define as means of autonomous motion control adapting
the robot morphology config uration of articulated parts and their compli-
ances to traverse unknown complex terrain with obstacles in an optimal
way. We verify this concept by proposing a reinforcement learning based
AT algorithm for mobile robots operating in such conditions. We demon-
strate the functionality by training the AT algorithm under lab conditions
on simple EUR-pallet obstacles and then testing it successfully on natural
obstacles in a forest. For quantitative evaluation we define a metrics based
on comparison with expert operator. Exploiting the proposed AT algorithm
significantly decreases the cognitive load of the operator.

Relation to WP It directly contributes to Task1.1 - essential robot per-
ception.

Availability Unrestricted. Included in the public version of this deliver-
able.
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2.3 Zuzanek-MESAS2014, “Accepted Autonomy for Search
and Rescue Robotics”

Bibliography Petr Zuzánek, Karel Zimmermann, and Václav Hlaváč.
Accepted Autonomy for Search and Rescue Robotics. In Jan Hodicky, edi-
tor, Modelling and Simulation for Autonomous Systems, volume 1 of Lecture
Notes in Computer Science, pages 357-375. Springer.

Abstract Since exploration of unknown disaster areas during Search and
Rescue missions is often dangerous, teleoperated robotic platforms are usu-
ally used as a suitable replacement for a human rescuer. Advanced robotic
platforms have usually many degrees of freedom to be controlled, e.g. speed,
azimuth, camera view or articulated sub- tracks angles. Manual control of
all available degrees of freedom often leads to unwanted cognitive overload of
the operator whose attention should be mainly focused on reaching the mis-
sion goals. On the other hand, there are fully autonomous systems requiring
minimal attention but allowing almost no interaction which is usually not
acceptable for the operator. Operator-accepted level of autonomy is usually
a trade-off between fully teleoperated and completely autonomous robots.
The main contribution of our paper is extensive survey on accepted auton-
omy solutions for Search and Rescue robots with special focus on traversing
unstructured terrain, however brief summary of our system is also provided.
Since, integral part of any Search and Rescue robot is the ability to tra-
verse a complex terrain, we describe a system for teleoperated skid-steer
robot with articulated sub-tracks (flippers), in which the operator controls
robot speed and azimuth, while flipper posture and stiffness are controlled
autonomously. The system for autonomous flipper control is trained from
semi-autonomously collected training samples to maximize the platform sta-
bility and motion smoothness on challenging obstacles.

Relation to WP It directly contributes to Task1.1 - essential robot per-
ception.

Availability Unrestricted. Included in the public version of this deliver-
able.
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2.4 Pecka-MESAS2014, “Safe Exploration Techniques for Re-
inforcement Learning – An Overview”

Bibliography Martin Pecka and Tomáš Svoboda. Safe exploration tech-
niques for reinforcement learning - an overview. In Jan Hodicky, editor,
Modelling and Simulation for Autonomous Systems, volume 1 of Lecture
Notes in Computer Science, pages 357-375. Springer.

Abstract We overview different approaches to safety in (semi)autonomous
robotics. Particularly, we focus on how to achieve safe behavior of a robot if
it is requested to perform exploration of unknown states. Presented meth-
ods are studied from the viewpoint of reinforcement learning, a partially-
supervised machine learning method. To collect training data for this algo-
rithm, the robot is required to freely explore the state space - which can lead
to possibly dangerous situations. The role of safe exploration is to provide
a framework allowing exploration while preserving safety. The examined
methods range from simple algorithms to sophisticated methods based on
previous experience or state prediction. Our overview also addresses the
issues of how to define safety in the real-world applications (apparently ab-
solute safety is un achievable in the continuous and random real world). In
the conclusion we also suggest several ways that are worth researching more
thoroughly.

Relation to WP It directly contributes to Task1.1 - essential robot per-
ception.

Availability Unrestricted. Included in the public version of this deliver-
able.

EU FP7 TRADR (ICT-60963) 21



DR 1.1: Essential sensing and mapping T. Svoboda et al.

2.5 Pecka-CVWW2015, “Safe Exploration for Reinforcement
Learning in Real Unstructured Environments”

Bibliography Martin Pecka, Karel Zimmermann, and Tomáš Svoboda.
Safe Exploration for Reinforcement Learning in Real Unstructured Envi-
ronments. In Computer Vision Winter Workshop 2015.

Abstract In USAR (Urban Search and Rescue) missions, robots are of-
ten required to operate in an unknown environment and with imprecise data
coming from their sensors. However, it is highly desired that the robots only
act in a safe manner and do not perform actions that could probably make
damage to them. To train some tasks with the robot, we utilize reinforce-
ment learning (RL). This machine learning method however requires the
robot to perform actions leading to unknown states, which may be danger-
ous. We develop a framework for training a safety function which constrains
possible actions to a subset of really safe actions. Our approach utilizes two
basic concepts. First, a “core” of the safety function is given by a cautious
simulator and possibly also by manually given examples. Second, a classifier
training phase is performed (using Neyman-Pearson SVMs), which extends
the safety function to the states where the simulator fails to recognize safe
states.

Relation to WP It directly contributes to the Task1.1 - Robot percep-
tion.

Availability Unrestricted. Included in the public version of this deliver-
able.
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2.6 Nouza-ms2014, “Safe adaptive traversability learning for
mobile robots”

Bibliography Tomáš Nouza. Safe adaptive traversability learning for mo-
bile robots. June 2014, Master Thesis, Czech Technical University in Prague.

Abstract In mobile robotics it is necessary to predict a robot pose on a
terrain to guarantee its stability when traversing an obstacle. Usual meth-
ods are based on an exact sim- ulation of a robot-surface interaction, but
this requires a precise physical model, which can be hard to solve or can be
too much complex. The aim of this thesis is to propose and experimentally
evaluate an algorithm, based on machine learning methods, which predicts
attitude of the robot (roll and pitch angles) in natural environment. The
main contribution of this work lies in development and eval- uation of mod-
els, which can be used for predicting the safety of robot states and actions
while interacting with the environment. Three models based on different
multidimensional regression methods (linear, piecewise constant and Gaus-
sian process) were trained and compared. As a part of this work, testing
dataset was created and will be relased for the robotic community.

Relation to WP It contributes to the Task1.1 - Essential robot percep-
tion.

Availability Unrestricted. A public document https://dspace.cvut.

cz/handle/10467/24431 or https://cyber.felk.cvut.cz/research/theses/
detail.phtml?id=479
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2.7 Potocek-bc2014, “Probabilistic Approach to Landmark
Management in Visual Odometry”

Bibliography Pavel Potoček. Probabilistic approach to landmark man-
agement in visual odometry, June 2014. Bachelor Thesis, Czech Technical
University in Prague.

Abstract We implemented a FastSLAM 2.0-based algorithm for visual
trajectory estimation and applied it to the NIFTi robot. We performed mul-
tiple experiments to validate the algorithm and measured its performance
in various settings. We showed that our algorithm outperforms the existing
solution in many of them. We proposed future changes to the algorithm
that have a potential to further increase the performance.

Relation to WP It contributes to the problem of robot localization which
is a one of the crucial steps when creating a metrical map.

Availability Unrestricted. A public document https://cyber.felk.cvut.
cz/research/theses/detail.phtml?id=503 or https://dspace.cvut.cz/
handle/10467/24249
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2.8 Vakula-ms2015, “Keypoint localization and matching in
difficult scenes for visual odometry”

Bibliography Jan Vakula. Keypoint localization and matching in difficult
scenes for visual odometry, January 2015, Master Thesis, Czech Technical
University in Prague.

Abstract In the thesis we tested and improved an algorithm developed by
Jiri Divis. Initially, the previous algorithm was carefully tested and after as-
sessment the main imperfections also improved. The biggest improvements
was achieved by a pairing improving so-called key-points. After the modi-
fications we tested the algorithm in various types of environments in which
the USAR robot can get. The best results of the algorithm was observed
in an outdoor environments where there was sufficient amount of a visible
edges in the scene. In an indoor environments we encoun- tered a problem
with the lack of lighting, this has led to recording of blurry images. There-
fore we added a detection of blurry images to the algorithm under which the
blurry images were deleted. By the testing of the previous and the improved
algorithms was found out a significant improvement in its behaviour.

Relation to WP It contributes to the problem of robot localization which
is a one of the crucial steps when creating a metrical map.
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2.9 Derner-TR-2014-25, “Indexing Images for Visual Mem-
ory by Using DNN Descriptors – Preliminary Experi-
ments”

Bibliography Erik Derner and Tomáš Svoboda. Indexing Images for Vi-
sual Memory by Using DNN Descriptors – Preliminary Experiments. Tech-
nical Report CTU–CMP–2014–25. Czech Technical University in Prague.

Abstract Visual memory in mobile robotics is important to make the
local- ization of a robot robust to situations, when GPS or similar localiza-
tion methods are not available. Unlike many conventional approaches us- ing
local features, we use a holistic method that employs deep neural networks
(DNNs) to calculate a global descriptor of the whole image. We consider a
scenario in which a robot equipped with an omni- directional camera calcu-
lates and stores DNN descriptors of images together with the positions as
it moves in the environment. When the position is unknown to the robot,
the algorithm estimates it for a given omnidirectional image by matching it
with the most similar database image. We compared our approach with a
recently tested GIST-based ap- proach on the same dataset and we found
out that the DNN-based approach yields better results. The experiments
also show that the DNN-based algorithm is quite robust to partial occlusion,
rotation and changes in lighting conditions.

Relation to WP It contributes to the problem of robot localization,
Task1.1

Availability Unrestricted. A public document ftp://cmp.felk.cvut.

cz/pub/cmp/articles/svoboda/Derner-TR-2014-25.pdf

EU FP7 TRADR (ICT-60963) 26

ftp://cmp.felk.cvut.cz/pub/cmp/articles/svoboda/Derner-TR-2014-25.pdf
ftp://cmp.felk.cvut.cz/pub/cmp/articles/svoboda/Derner-TR-2014-25.pdf


DR 1.1: Essential sensing and mapping T. Svoboda et al.

2.10 Hrabalik-bc2014, “3D Point Cloud Registration, Ex-
perimental Comparison and Fusing Range and Visual
Data”

Bibliography Aleš Hrabaĺık. 3D point cloud registration, experimental
comparison and fusing range and visual data, June 2014. Bachelor Thesis,
Czech Technical University in Prague.

Abstract Point cloud registration is an important process in mobile robotics,
serving as the cornerstone of simultaneous localization and mapping. The
contribution of our work is twofold: firstly, we compare local registration
methods using high-quality datasets and a custom protocol. In terms of
precision and robustness to initial pose displacement, the capabilities of the
methods are explored in an unprecedented detail, overcoming any previous
work that we know of. Secondly, we propose enhancements to a global,
feature-based registration method that take advantage of visual informa-
tion, specifically camera imagery. Proposed changes include an extension of
the feature descriptor, and a modification of reference frame determination.
To investigate the modified methods, a dataset containing visual data is
created. Experimental results indicate a significant improvement over the
original method.

Relation to WP It contributes to the Task1.2 - Metrical mapping.

Availability Unrestricted. A public document https://cyber.felk.cvut.
cz/research/theses/detail.phtml?id=508 or https://dspace.cvut.cz/
handle/10467/24268
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2.11 Kubelka-AURO2015, “Improving multi-modal data fu-
sion by anomaly detection”

Bibliography Jakub Šimánek, Vladimı́r Kubelka and Michal Reinštein.
Imroving multi-modal data fusion by anomaly detection. In Autonomous
Robots. 2015. Accepted, to appear.

Abstract If we aim for autonomous navigation of a mobile robot, it is
crucial and essential to have proper state estimation of its position and ori-
entation. We already designed a multi-modal data fusion algorithm that
combines visual, laser-based, inertial, and odometric modalities in order
to achieve robust solution to a general localization problem in challenging
Urban Search and Rescue environment. Since different sensory modalities
are prone to different nature of errors, and their reliability varies vastly as
the environment changes dynamically, we investigated further means of im-
proving the localization. The common practice related to the EKF-based
solutions such as ours is a standard statistical test of the observations—or of
its corresponding filter residuals—performed to reject anomalous data that
deteriorate the filter performance. In this paper we show how important
it is to treat well visual and laser anomalous residuals, especially in multi-
modal data fusion systems where the frequency of incoming observations
varies significantly across the modalities. In practice, the most complicated
part is to correctly identify the actual anomalies, which are to be rejected,
and therefore here lies our major contribution. We go beyond the standard
statistical tests by exploring different state-of-the-art machine learning ap-
proaches and exploiting our rich dataset that we share with the robotics
community. We demonstrate the implications of our research both indoor
(with precise reference from a Vicon system) as well as in challenging out-
door environment. In the final, we prove that monitoring the health of
the observations in Kalman filtering is something, that is often overlooked,
however, it definitively should not be.

Relation to WP It contributes to the Task1.1 - Essential robot percep-
tion.

Availability Unrestricted. Included in the public version of this deliver-
able.
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2.12 Kubelka-JFR2015, “Robust Data Fusion of Multi-modal
Sensory Information for Mobile Robots”

Bibliography Vladimı́r Kubelka, Lorenz Oswald, François Pomerleau,
Francis Colas, Tomáš Svoboda, and Michal Reinštein. Robust Data Fu-
sion of Multi-modal Sensory Information for Mobile Robots. In Journal of
Field Robotics, to appear, accepted in 2014.

Abstract Urban Search and Rescue missions for mobile robots require
reliable state estimation systems resilient to conditions given by the dynam-
ically changing environment. We design and evaluate a data fusion system
for localization of a mobile skid-steer robot intended for USAR missions. We
exploit a rich sensor suite including both proprioceptive (inertial measure-
ment unit and tracks odometry) and exteroceptive sensors (omnidirectional
camera and rotating laser rangefinder). To cope with the specificities of each
sensing modality (such as significantly differing sampling frequencies), we in-
troduce a novel fusion scheme based on Extended Kalman filter for 6DOF
orientation and position estimation. We demonstrate the performance on
field tests of more than 4.4km driven under standard USAR conditions.
Part of our datasets include ground truth positioning; indoor with a Vicon
motion capture system and outdoor with a Leica theodolite tracker. The
overall median accuracy of localization - achieved by combining all the four
modalities - was 1.2% and 1.4% of the total distance traveled, for indoor and
outdoor environments respectively. To identify the true limits of the pro-
posed data fusion we propose and employ a novel experimental evaluation
procedure based on failure case scenarios. This way we address the common
issues like: slippage, reduced camera field of view, limited laser rangefinder
range, together with moving obstacles spoiling the metric map. We believe
such characterization of the failure cases is a first step towards identifying
the behavior of state estimation under such conditions. We release all our
datasets to the robotics community for possible benchmarking.

Relation to WP It contributes to the Taks1.2 - Building metrical maps.

Availability Unrestricted. Available in the public version of this deliver-
able.
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2.13 Kong, Dong-Uck (2015), “Persistent mapping of dy-
namic environments by multiple aerial robots with multi-
camera systems.”

Bibliography Dong-Uck Kong. “Persistent mapping of dynamic environ-
ments by multiple aerial robots with multi-camera systems.” Unpublished
Technical Report, January 2015.

Abstract One of the key aspects of WP1 is to extract useful metric envi-
ronment models from multiple robots perceptional experience and to make
the models persistent. Based on the requirements for the TRADR multi-
robot system, the central question was formulated: How can particularly
efficient mapping and localization methods be developed with respect to
measurement quality, sensor data quantity and long-term data analysis for
both robot and human action forces?

Relation to WP This technical report presents the current state and
detailed roadmap of the work on metrical maps in T1.2, in particular related
to the UAV.

Availability Restricted. Not included in the public version of this deliv-
erable.
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Adaptive Traversability of Unknown Complex Terrain with Obstacles
for Mobile Robots

Karel Zimmermann1, Petr Zuzanek2, Michal Reinstein3, and Vaclav Hlavac4

Abstract— In this paper we introduce the concept of Adaptive
Traversability (AT), which we define as means of autonomous
motion control adapting the robot morphology—configuration
of articulated parts and their compliance—to traverse unknown
complex terrain with obstacles in an optimal way. We verify
this concept by proposing a reinforcement learning based AT
algorithm for mobile robots operating in such conditions. We
demonstrate the functionality by training the AT algorithm
under lab conditions on simple EUR-pallet obstacles and then
testing it successfully on natural obstacles in a forest. For
quantitative evaluation we define a metrics based on comparison
with expert operator. Exploiting the proposed AT algorithm
significantly decreases the cognitive load of the operator.

I. INTRODUCTION

Tracked robots with several articulated parts such as legs
or subtracks—referred to as flippers, see Fig. 1—have been
studied intensively since the design of robot morphology
directly influences the ability to traverse complex terrain,
especially with natural unstructured obstacles. Possessing
a high number of articulated parts inevitably yields more
degrees of freedom that have to be controlled. To reach a suit-
able pose to traverse such terrain in a safe way may become
easily intractable, even for an expert operator. Controlling
such many degrees of freedom also requires more time and
poses a significant cognitive load onto the human operator.
This may have crucial effect on the success of any Search
& Rescue mission, that we primarily aim for [1], as well as
influence on the robot safety.

We call this task Adaptive Traversability (AT), which we
define as means of autonomous motion control adapting the
robot morphology (configuration of flippers and their com-
pliance) to traverse unknown complex terrain with obstacles
in an optimal way. Our metrics for optimality is based on
comparison of the AT autonomous regime to the control of
an expert operator with respect to time taken for traversal,
robot safety and smoothness of transitions. Beside having an
edge in these criteria, the ultimate merit of using AT lies in
minimal cognitive load for the operator.

Many approaches focus on optimal robot motion control
in an environment with a known map, leading rather to

The authors were supported as follows: 1K.Z. by the Czech Science
Foundation Project 14-13876S, 2P.Z. by the SGS13/142/OHK3/2T/13 of
the CTU in Prague, 3M.R. by the EU-FP7-ICT-609763 TRADR, and 4V.H.
by the Project TE01020197 of Technology Agency of the Czech Republic.

K.Z. and P.Z. are with the Center for Machine Perception, Dep. of Cy-
bernetics, Faculty of Electrical Engineering, Czech Technical University in
Prague (e-mails: {zimmerk,zuzanp1}@cmp.felk.cvut.cz).
M.R. and V.H. are with the Czech Institute of Informatics, Robotics,
and Cybernetics, Czech Technical University in Prague (e-mails:
{michal.reinstein,hlavac}@ciirc.cvut.cz).

Fig. 1. Adaptive traversability: Robot configuration of the 4 flippers
(subtracks) and their compliance is controlled autonomously in order to
adapt to the terrain and traverse it in an optimal way. The robot is equipped
with rotating laser scanner SICK LMS-151, Ladybug 3 omnicam, Xsens
MTi-G IMU, and independent flipper stiffness control for each subtrack.

the research field of trajectory planning. In contrary to
planning [2] [3], the AT can easily be exploited in unknown
environment and hence provide a crucial support to the actual
procedure of map creation. From the conceptual point of
view, the AT is intended to run one level below any SLAM
or trajectory planning algorithms and its input commands
can either be directly from the operator (usually unknown-
map case) or from a planner. We would like to emphasize to
perceive AT rather as independent complement to trajectory
planning and in no way a substitution. If the task of AT
was to be solved by means of trajectory planning, a reliable
map is required, providing detailed information on Robot-
Terrain Interaction (RTI) (e.g. estimation of stability, slippage
coefficient, power consumption, robots full 3D pose etc).
Such RTI can be theoretically estimated from the terrain
shape and a physical model of the robot and used to
build traversability maps [4] [5]. However this modeling is
analytically very complex, computationally demanding and
in specific cases such as high slippage or aerial motion
phases often inaccurate and unreliable. This is not viable
solution for many applications, especially when the robot
is controlled in an unknown environment. Therefore, in
our approach to AT we rather propose to process only the
instantaneous RTI properties locally as the robot traverses
and explores the environment. The only way to obtain such
RTI properties is prediction online using machine learning
techniques [6], [7], [8]. We adopted this approach to RTI
already in applications such as predicting correction coeffi-
cients of robot odometry [9] or estimating stride length of
a legged robot while slipping [10] [11]. Since the RTI is
predicted only locally, greedy optimization of inaccurately
estimated RTI criterion can easily lead the robot into the
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dangerous state. Therefore, we propose to rather compute
the RTI criterion directly during the training phase and learn
to predict the expected sum of RTI criterion values, which
can be obtained with the robot from its current state for
different controlling strategies. This formulation naturally
leads to the reinforcement learning task, where the RTI
criterion corresponds to the reward.

Our main contributions lie in (i) defining the concept of
AT for mobile robots, and (ii) proposing a reinforcement
learning based AT algorithm for autonomous morphology
adaptation that improves the motion control even in complex
unknown environment. We (iii) demonstrate the functionality
by training the AT under lab conditions on simple EUR-
pallet obstacles and testing it on natural obstacles in a forest.
For quantitative evaluation we (iv) define a metrics based on
comparison with expert operator.

The paper is structured as follows: Section II introduces
the related work, Section III describes our proposed solution,
Section IV summarizes the experimental evaluation and
Section V concludes the implications of our work.

II. RELATED WORK

An ample amount of work has been devoted to the field
of Robot Terrain Classification (RTC) [12], [13], [14], [15]
where terrain features are mapped on discrete classes of
given properties. On the conceptual level, this is relevant to
extracting the terrain properties for the RTI. However, these
RTC defined classes are often weakly connected with the
way the robot can actually interact with the terrain or the
connection is lacking. Few papers describe the estimation of
RTI directly, for example, Kim et al. [7] estimate whether
the terrain is traversable or not, and Ojeda et al. [8] esti-
mate power consumption on a specific terrain type. In the
literature, the RTI properties can be specified explicitly (e.g.
robot consumption [8]) or implicitly (e.g. state estimation
correction coefficient [9]). The problem of the AT in the
way we approach it using reinforcement learning is a road
less traveled in robotics, but though the target application
differs, highly relevant is the work of Abbeel et al. [16],
[17]. There are also alternative solutions, based for instance
on kinematic model of the robot [18], [19], or by achieved
learning a direct mapping between terrain features and robot
actions [20], [21]. However, analytical modeling of the RTI
is in general very difficult and simplifications cannot be
avoided. On contrary to [16] we omit this modeling since
it is not needed in our approach and instead of using Value-
based algorithms, we rather focus on Q-learning technique.

III. ADAPTIVE TRAVERSABILITY BY
REINFORCEMENT LEARNING

We solve the adaptive traversability problem for a tracked
robot1 equipped with four flippers, see Fig. 1. The sensor
suite of the robot consists of a rotating 2D laser scanner
(SICK LMS-151) mounted in front of the robot (the rotation
of the scanner provides the 3D scans), a Point Grey Ladybug

1Developed as part of NIFTi project http://www.nifti.eu

3 omni-directional camera, and a Xsens MTi-G inertial
measurement unit (IMU) with GPS.

It is expected that the speed and azimuth of the robot is
controlled by the operator (or provided by a path planner),
and the task is to control the configuration of the four flippers
and their compliance. Compliance of flippers is obtained by
measuring the actual current in flipper drives and setting a
threshold on the maximum allowed current. This threshold
is called the compliance threshold.

To simplify such 8-dimensional task, we defined five
discrete flipper modes specifying the angle and the com-
pliance threshold for all four flippers. The task is to switch
between these flipper modes (denoted by c ∈ Z) in order
to collect maximum sum of rewards over the obstacle being
traversed. We define reward function r(c, s) : (Z×Rn)→ R,
which assigns a real valued reward for achieving state s
while using mode c. We experimented with several types
of the reward function, which are described and evaluated
in Section IV. For now, we define the reward function
as a weighted sum of (i) user denoted penalty (reward)
specifying that the state is (not) dangerous, (ii) high pitch
angle penalty (considering robot safety from flip-over), (iii)
excessive flipper mode change penalty, (iv) robot forward
speed reward (for making progress in traversing), and (v)
motion roughness (smoothness) penalty (reward).

A. Reinforcement learning algorithm

To tackle this problem, the reinforcement learning tech-
nique is used. We define function Q(c, s) : (Z× Rn) → R,
which estimates expected sum of discounted rewards, when
the robot is in state s and flippers are set to mode c and the
robot will be controlled optimally from the following state
onward. Such function allows for the following recursive
definition:

Q(c, s) =
∑
s′

p(s′|c, s)
[
r(c, s) + γmax

c′
Q(c′, s′)

]
(1)

where p(s′|c, s) is transition probability that the robot, which
is in state s with flippers set to mode c will get to the
following state s′. Discount factor γ ∈ {0, 1} is used
to reduce the influence of distant future rewards. If such
function is known, the optimal flipper mode c∗ for the robot
in the state s is chosen as follows

c∗ = arg max
c
Q(c, s) (2)

Since we want to avoid the learning of p(s′|c, s), function
Q(c, s) is learned using modification of the fitted Q-iteration
algorithm summarized in Alg. 1. The proposed algorithm re-
peats the Q-learning procedure for several episodes. Training
data collected for the first episode (line: 3) are obtained by
an expert operator. To speed up the learning process, also
reasonably negative training samples (with negative rewards)
are provided. Once we are satisfied with the performance
on validation data (also collected and annotated by the
expert operator), we start to collect the training data with
autonomously chosen flipper modes, i.e. chosen according to
Eq. (2). When a batch of the training data is collected, the
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Q(c, s) function is trained in lines 4-7. Since we defined the
Q(c, s) as a collection of piecewise constant functions, the
solution of the problem from line 6 is detailed in Section III-
B. Section III-C describes features representing the state and
the feature selection method we used.

//Initialization
1: Q(c, s) = 0 ∀c,s
2: while (adaptive traversability is not good) do
3: Drive the robot over training obstacles and assign

rewards. Captured training data consists of sequences
[(s1, c1, r1), (s2, c2, r2), . . . ].
// Train Q(c, s)

4: repeat
5: yi = ri + γ

[
maxc′ Q(c′, si+1)

]
∀i

6: Q(c, s) = arg minQ
∑N
i=1 ‖Q(ci, si)− yi‖22

7: until (convergence reached)
8: end while

Algorithm 1: Procedure of learning of the Q-function.

B. Piecewise constant function learning
In our approach, the Q(c, s) is collection of mode specific

functions Qc(s) corresponding to the number of flipper
configuration modes. Since the procedure of learning is same
for all functions Qc(s), we omit index c and focus on the
learning of a regression function Q(s) for N training samples
(s1, y1) . . . (sN , yN ) prepared in the line 5 of Alg. 1. The
upper index i is used to denote training samples, the lower
index k is used to denote features. Concatenation is denoted
by square brackets.

We define Q(s) =
∑K
k=1 qk(sk) as the sum of piecewise

constant functions qk(sk) of features sk ∈ R, where K
denotes the number of features. Features sk are normalized
to have zero mean and unit covariance. Feature values are
divided into U equally sized bins 2. To simplify the notation,
we define a bin assigning function Ω(sk) : R → N which
assigns corresponding bin u to feature value sk.

Response of the regression function Q(s) is then computed
as follows:

Q(s) =
K∑
k=1

qk(sk) =
K∑
k=1

Λk,Ω(sk), (3)

where Λk,Ω(sk) ∈ R is the constant response of feature
function qk on feature value sk.

Substituting Eq. (3) into the problem in Alg. 1, line: 6,
we obtain the corresponding least squares problem:

Λ = arg min
Λ∈ RK×U

N∑
i=1

∥∥∥ k∑
j=1

Λj,δ(sij) − yi
∥∥∥2

. (4)

To write the solution of (4) in a compact form, we further
introduce a binary matrix

[A]i,(ku) =

〈
1 if Ω(sik) = u
0 otherwise (5)

2except the size of border bins which are [−∞, min value] and
[max value,+∞]

where index i determines the row and indices (ku)3 de-
termine the column. We also introduce a vector λ =
[Λ1,1 . . .ΛK,U ]>, which is concatenation of all unknown
lambdas from all bins and all features. Finally, we form the
vector y = [y1 . . . yN ]> with all desired values. The solution
of problem (4) is then

λ = arg min
λ

∥∥∥Aλ− y
∥∥∥2

= A+y, (6)

where A+ denotes Moore-Penrose pseudo-inverse of ma-
trix A.

C. State representation and feature selection

We represent the mutual state of the robot and the local
neighboring terrain as N-dimensional feature vector s ∈ RN .
Features are selected from a feature pool, which consists
of: Terrain shape features: Since the robot is equipped
with the laser scanner, we merge individual scans into a
point cloud 3D map exploiting the ICP algorithm [22]. The
point cloud map in the local neighborhood of the robot is
further transformed into the Digital Elevation Map (DEM),
see Fig. 2, capturing the local spatio-temporal representation
of the terrain. To represent the terrain shape in a compact
form, Haar-like features are computed using the DEM values.
In addition to that parameters of the plane fitted into the
neighboring terrain are used.

Robot state and configuration features: Robot speed
(both actual and requested by the operator), pose (pitch, roll,
yaw), flipper angles, compliance thresholds and actual flipper
mode. To estimate the velocity of the robot, terrain adaptive
odometry method [9] is used and combined with IMU data
and information provided by the ICP using the Extended
Kalman filter (EKF). The precise and stable pitch and roll
angles are obtained using a complementary filter [23]. In
addition to this information, currents in the flipper and the
main track drives are used to provide the knowledge about
the weight distribution and ground contacts.

We select a set of suitable features from the feature pool S
by a forward stage-wise feature selection strategy [24] based
on Gram-Schmidt orthogonalization process. More formally,
we are given a training set {(S1, y1), . . . (SN , yN )} consist-
ing of N training samples, where Si are M -dimensional
vectors containing values of all features from the feature
pool. Especially, we denote Sik as the k-th feature value of
the i-th training sample.

This proposed feature selection method is summarized in
Alg. 2. It successively builds the feature set from the features
minimizing residuals ∆yi of all training samples i = 1 . . . N .
Initially we equal residual of the i-th training sample ∆yi =
yi. In each training stage, the algorithm estimates coefficients
for all features k = 1 . . .M and greedily selects the feature
with the lowest residual error. Such feature is added to the
list of selected features and the algorithm continues while
the validation error is decreasing.

3(ku) denotes a linear combination of indices k and u corresponding to
the vectorization of Λ.
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Fig. 3. Defined flipper modes: Definition of five flipper modes corresponding to different morphological configurations of varying properties.

//Initialization
1: ∆yk = yk, K = 1
2: while (validation error is decreasing) do

// Select the feature k∗ with the lowest residual error
// from the feature pool.

3: k∗ = argmin(k,ΛK)

∑N
i=1 ‖Q([si1 . . . s

i
K−1S

i
k])− yi‖22

// Add the selected feature Sk∗ into s.
4: s = [s Sk∗ ]

// Update residuals
5: ∆yi = yi −Q(si) ∀i
6: K = K + 1
7: end while

Algorithm 2: Feature selection procedure

IV. EXPERIMENTAL EVALUATION

Our proposed solution to the AT was tested on five
challenging obstacles created from woods and stones in an
outdoor forest environment4; see the examples in Fig. 1,
Fig. 4b and the digital elevation maps (DEM) of testing
obstacles computed online by the robot Fig. 2. Each obstacle
was traversed multiple times with autonomous flipper control
(AC) following the Eq. (2).; obstacles 1, 2 and 5 were
also traversed with manual flipper control (MC) by the
expert operator for the purpose of quantitative comparison.
We emphasize that the complexity of testing obstacles was
selected in order to challenge robots hardware capabilities.
One of the testing obstacles even proved to be too complex
to be traversed neither with the AC nor MC.

The rest of this section is organized as follows: Section IV-
A describes training procedure, Section IV-B summarize the
testing procedure. Section IV-C provides the comparison and
evaluation.

A. Training Procedure

We define five morphological configurations—five differ-
ent flipper modes (Fig. 3) (i) I-shape with unfolded flippers
(useful for traversing holes or stairs), (ii) V-shape with
flippers folded in order to provide the best observation

4For better comprehension, see the attached multimedia showing one
testing drive over obstacle 2 from Fig. 2.

5
6
0

3
9
0

420

(a) Training objects (b) Testing objects
Fig. 4. Obstacles: (a) Three EUR pallets with one non standard pallet and
concrete shoal used for training part. (b) Natural obstacles in an outdoor
forest environment used for testing part.

capabilities to the robot, (iii) L-shape with front flippers
raised (suitable for climbing up), (iv) U-shape soft, pushing
the flippers down with low pressure—low compliance thresh-
old (suitable for smooth climbing down), and (v) U-shape
hard, pushing the flippers down with high pressure—high
compliance threshold.

Our proposed approach to AT was trained in controlled
lab conditions using only two artificial obstacles created from
EUR pallets 5. First training obstacle was just a single pallet,
the second consisted of stairs created from three pallets (see
Fig. 4a).

We trained the Q-function according to the Alg. 1 in
three episodes, i.e. three iterations of the while-loop. In
the first two episodes, the training data were collected with
manual flipper control. To speed up the learning procedure
reasonably negative (but not dangerous) training samples
were provided. In the last episode, the training data were
collected autonomously by the robot. Each training sample
was accompanied by its reward. The best results were
achieved for the reward function defined as a weighted
sum of (i) manually annotated labels reflecting success of
the operator’s goal (either positive equal to 1 or negative
equal to −1), (ii) thresholded exponential penalty for pitch
angle, and (iii) roughness of motion penalty defined as√
v2
y + v2

z . In order to reduce oscillations between modes

5type EUR 1: 800mm× 1200mm× 140mm
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Fig. 5. Pitch, roll, and flipper modes along the obstacle traversal: All graphs show used flipper modes and pitch+roll angles reached by the robot
during the obstacle traversal. Graphs (a) and (b) correspond to the obstacle 1, graphs (c) and (d) to the obstacle 2. Autonomous control (AC) is depicted
by the blue color and manual control (MC) by the red color. Autonomously selected modes are shown in the first color bar and manual in the second.

with similar Q-values we (i) introduce additional penalty
for changing the mode and (ii) evaluate the Q-values over
1 second long time interval. In each episode, the training
of the Q-functions was iterated 30 times. The number of
iterations was experimentally determined as sufficient for the
convergence of the Q-values with γ = 0.8. To achieve a
well conditioned training dataset, the training samples were
artificially perturbed several times.

B. Testing Procedure

We tested the AC method on five challenging natural
obstacles in a forest. Both the AC and MC allowed to traverse
obstacles 1 − 4 (see Fig. 2). Obstacle 5 consisted of two
woods located in parallel with the mutual distance equaled
approximately to the length of robot with folded flippers.
Such obstacle turned out to be not traversable neither with
the autonomous nor with the manual flipper control. For
obstacles 1 and 2 quantitative comparison of the autonomous
and manual flipper control is provided in Tab. I, II. To
compare AC and MC traversability quality, five different
metrics were proposed and evaluated: (i) average pitch angle
(sum of absolute values of the pitch angle divided by the
number of samples), (ii) average roll angle, (iii) traversal
time (start and end points are defined spatially), (iv) average
current in flipper engines (corresponds to flipper torque), (v)
overall power consumption during the whole experiment, and
(vi) number of mode changes.

C. Results

Tab. I shows that the average pitch, roll and the number of
changes of the AC and MC on the obstacle 1 are comparable.
However, the power consumption and the average current are
both lower for the AC. This is achieved by more efficient
mode selection—such as using the U-shape soft mode for
going down from the obstacle—, see the flipper modes, pitch
and roll angle plots of AC and MC in Fig. 5a,b.

Tab. II clearly demonstrates that the AC outperformed MC
in most of evaluated metrics. The most significant difference
can be seen in the actual time taken. While MC often
required to stop the robot and wait for the end of the mode
change procedure, the AC was continuous and proceeded as
the robot was driven forward. Therefore, the traversal time
of the AC is almost twice as short. In addition to that, since

TABLE I
COMPARISON OF AUTONOMOUS AND MANUAL ROBOT CONTROL ON THE

OBSTACLE 1 (SIMPLE OBSTACLE).

Pitch Roll Time Current Changes Consumption
[◦] [◦] [s] [A] [−] [Ah]

AC 11.2 1.8 35.7 3.4 3 0.07
MC 11.3 2.8 36.8 5.4 2 0.10

TABLE II
COMPARISON OF AUTONOMOUS AND MANUAL ROBOT CONTROL ON THE

OBSTACLE 2 (CONTAINS SOFT-TERRAIN AND SIDE-ROLL).

Pitch Roll Time Current Changes Consumption
[◦] [◦] [s] [A] [−] [Ah]

AC 10.2 10.6 75.3 3.9 10 0.17
MC 17.1 17.1 132.1 4.6 4 0.33

our definition of the reward function also contains penalty for
being in extreme angles (accounting for robot safety), the AC
achieved smaller pitch, roll, as well as flipper current—the
ground/obstacle contacts were less frequent and less intense.
The power consumption of AC compared to MC was hence
much lower, enabling the robot to last longer while carrying
out the mission.

On the other hand, the number of mode changes of AC is
higher. To explain it, we need to analyze the actual motion
trajectory and corresponding obstacle in detail (see also
Fig. 5 c,d): The first part of the obstacle is created from many
flexible sticks behaving as a soft terrain–and thus deforming
under the robot weight. Since we used only the EUR pallets,
this RTI property was not represented in the training set at
all. The robot correctly starts in the L-shape mode to climb
on the obstacle.Then it switches to the U-shape hard mode
to lift its body on the obstacle. However, the soft terrain
collapses under the body weight and L-shape must be used
again to traverse the remaining hard part of the obstacle.
Similar scenario repeats, when traversing the middle part
of the obstacles and can be in general expected on similar
terrain.

V. CONCLUSION

In this paper we have concentrated our efforts on defin-
ing the task of Adaptive Traversability (AT) as means of
autonomous motion control adapting the robot morphology
(configuration of flippers and their compliance) in order to
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traverse unknown complex terrain with obstacles. Similar
approaches have been deployed using trajectory planning
for scenarios, where a map of the environment was avail-
able, hence providing an easy way to compute the Robot-
Terrain Interaction. However, we propose a solution based
on reinforcement learning that exploits only the informa-
tion from local RTI and does it online, hence no map is
needed—solution ideal for exploring unknown environments
with obstacles. Having experience from real deployment of
robots in Search & Rescue scenarios, we are aware of the
crucial impact of cognitive load on the operator. Therefore,
we define a metrics allowing us to compare our solution
to an expert operator driving the robot manually. Beside
outperforming the manual control in a number of criteria
(time taken for traversal, power consumption, smoothness
and safety of the robot), the main accomplishment lies in the
minimal cognitive load required for the robot control while
using our AT solution. Moreover, our approach can easily
be used together with any trajectory planning algorithm in
general in a complementary way. We would like to also
point out, that for the actual training, only simple obstacles
made of EUR pallets were used, but the actually testing was
successfully performed using challenging natural obstacles
in a forest environment.

To conclude, on the testing dataset, the proposed AT algo-
rithm exhibited very stable behavior such as: (i) Repeatabil-
ity: consistent flipper control over multiple traversals of the
same obstacle, (ii) Robustness: training with similar param-
eters and similar training data yields similar behavior (iii)
Generalization: reasonable and explainable flipper control
on the challenging testing data—no deformable obstacles in
the training dataset, yet surprisingly good performance on
such deformable terrain during testing.

As a future work, we clearly see the opportunity in
expanding all of our assumptions made: we can define more
different modes, exploit more compliance thresholds, we can
allow the robot to train by itself on much larger scale of
obstacles, as well as to push the challenge of the testing
environments. We also intend to integrate the AT algorithm
with our SLAM solution and trajectory planner to expand
the range of field applications and possibilities.

REFERENCES

[1] G.-J. Kruijff, M. Janicek, S. Keshavdas, B. Larochelle, H. Zender,
N. Smets, T. Mioch, M. Neerincx, J. van Diggelen, F. Colas, M. Liu,
F. Pomerleau, R. Siegwart, V. Hlavac, T. Svoboda, T. Petricek, M. Re-
instein, K. Zimmermann, F. Pirri, M. Gianni, P. Papadakis, A. Sinha,
P. Balmer, N. Tomatis, R. Worst, T. Linder, H. Surmann, V. Tretyakov,
S. Corrao, and S. Pratzler-Wanczura, “Experience in system design for
human-robot teaming in urban search & rescue,” in Field and Service
Robotics (FSR), 2012 8th International Conference on, July 2012.

[2] F. Colas, S. Mahesh, F. Pomerleau, M. Liu, and R. Siegwart, “3d
path planning and execution for search and rescue ground robots,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pp. 722–727, Nov 2013.

[3] M. Brunner, B. Bruggemann, and D. Schulz, “Towards autonomously
traversing complex obstacles with mobile robots with adjustable
chassis,” in Carpathian Control Conference (ICCC), 2012 13th In-
ternational, pp. 63 –68, may 2012.

[4] S. Martin, L. Murphy, and P. Corke, “Building large scale traversability
maps using vehicle experience,” in Internation Symposium on Exper-
imental Robotics, 2012.

[5] B. Cafaro, M. Gianni, F. Pirri, M. Ruiz, and A. Sinha, “Terrain
traversability in rescue environments,” in Safety, Security, and Rescue
Robotics (SSRR), 2013 IEEE Int. Symposium on, pp. 1–8, Oct 2013.

[6] K. Ho, T. Peynot, and S. S. Sukkarich, “Traversability estimation for a
planetary rover via experimental kernel learning in a gaussian process
framework.,” in Internation Conference on Robotics and Automation
(ICRA), 2013.

[7] D. Kim, J. Sun, S. Min, O. James, M. Rehg, and A. F. Bobick,
“Traversability classification using unsupervised on-line visual learn-
ing for outdoor robot navigation,” in In Proc. of International Confer-
ence on Robotics and Automation (ICRA), pp. 518–525, 2006.

[8] L. Ojeda, J. Borenstein, G. Witus, and R. Karlsen, “Terrain charac-
terization and classification with a mobile robot,” Journal of Field
Robotics, vol. 23, pp. 103–122, 2006.

[9] M. Reinstein, V. Kubelka, and K. Zimmermann, “Terrain adaptive
odometry for mobile skid-steer robots,” in Proc. IEEE Int Robotics
and Automation (ICRA) Conf, 2013. accepted—to appear.

[10] M. Reinstein and M. Hoffmann, “Dead reckoning in a dynamic
quadruped robot: Inertial navigation system aided by a legged odome-
ter,” in Proc. IEEE Int Robotics and Automation (ICRA) Conf, pp. 617–
624, 2011.

[11] M. Reinstein and M. Hoffmann, “Dead reckoning in a dynamic
quadruped robot based on multimodal proprioceptive sensory infor-
mation,” IEEE Trans. on Robotics, vol. 29, pp. 563–571, April 2013.

[12] C. Weiss, H. Frohlich, and A. Zell, “Vibration-based terrain classifica-
tion using support vector machines,” in Proc. IEEE/RSJ Int Intelligent
Robots and Systems Conf, pp. 4429–4434, 2006.

[13] K. Kim, K. Ko, W. Kim, S. Yu, and C. Han, “Performance comparison
between neural network and SVM for terrain classification of legged
robot,” in Proc. SICE Annual Conf. 2010, pp. 1343–1348, 2010.

[14] E. M. DuPont, C. A. Moore, and R. G. Roberts, “Terrain classification
for mobile robots traveling at various speeds: An eigenspace manifold
approach,” in Proc. IEEE Int. Conf. Robotics and Automation ICRA
2008, pp. 3284–3289, 2008.

[15] P. Komma, C. Weiss, and A. Zell, “Adaptive bayesian filtering
for vibration-based terrain classification,” in Proc. IEEE Int. Conf.
Robotics and Automation ICRA ’09, pp. 3307–3313, 2009.

[16] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in In Advances
in Neural Information Processing Systems 19, p. 2007, MIT Press,
2007.

[17] P. Abbeel and A. Y. Ng, “Exploration and apprenticeship learning in
reinforcement learning,” in Proc. of the 22nd int. conf. on Machine
learning, ICML ’05, (New York, NY, USA), pp. 1–8, ACM, 2005.

[18] Y. Okada, K. Nagatani, K. Yoshida, S. Tadokoro, T. Yoshida, and
E. Koyanagi, “Shared autonomy system for tracked vehicles on rough
terrain based on continuous three-dimensional terrain scanning,” J.
Field Robot., vol. 28, no. 6, pp. 875–893, 2011.

[19] K. Ohno, S. Morimura, S. Tadokoro, E. Koyanagi, and T. Yoshida,
“Semi-autonomous control system of rescue crawler robot having
flippers for getting over unknown-steps,” in Intelligent Robots and
Systems (IROS), 2007. IEEE/RSJ Int. Conf. on, pp. 3012–3018, 2007.

[20] R. Sheh, B. Hengst, and C. Sammut, “Behavioural cloning for driving
robots over rough terrain,” in Intelligent Robots and Systems (IROS),
2011 IEEE/RSJ International Conference on, pp. 732–737, 2011.
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Abstract

Since exploration of unknown disaster areas during Search and Rescue missions is often dangerous, teleoperated
robotic platforms are usually used as a suitable replacement for a human rescuer. Advanced robotic platforms
have usually many degrees of freedom to be controlled, e.g. speed, azimuth, camera view or articulated sub-
tracks angles. Manual control of all available degrees of freedom often leads to unwanted cognitive overload
of the operator whose attention should be mainly focused on reaching the mission goals. On the other hand,
there are fully autonomous systems requiring minimal attention but allowing almost no interaction which is
usually not acceptable for the operator. Operator-accepted level of autonomy is usually a trade-off between fully
teleoperated and completely autonomous robots.
The main contribution of our paper is extensive survey on accepted autonomy solutions for Search and Rescue
robots with special focus on traversing unstructured terrain, however brief summary of our system is also
provided.
Since, integral part of any Search and Rescue robot is the ability to traverse a complex terrain, we describe a
system for teleoperated skid-steer robot with articulated sub-tracks (flippers), in which the operator controls
robot speed and azimuth, while flipper posture and stiffness are controlled autonomously. The system for
autonomous flipper control is trained from semi-autonomously collected training samples to maximize the
platform stability and motion smoothness on challenging obstacles.

Keywords: Autonomy, Robot-terrain interaction, Search and Rescue, Traversability

1 Introduction

Figure 1: Search and Rescue mission: NIFTi UGV
platform operating in simulated deployment. Earth-
quake disaster training field, Vigili del Fuoco Prato,
Italy

Ground robotics systems offer huge potential for its
utilization in Search and Rescue (SaR) missions. SaR
robots may be used as suitable replacement for res-
cuers during investigation of poorly accessible loca-

tions or dangerous areas, and thus reduce the risk
of injuries in target environments—Fig. 1 gives an
example of NIFTi UGV deployment in SaR mission.
Advanced robotic platforms consist of many degrees
of freedom (DoF) that have to be controlled in time
either manually or autonomously.

While the teleoperated platforms allow their full con-
trol, many DoF in such system might lead to unwanted
cognitive overload of the operator. Even more in SaR
scenarios. Rescuers operate under extreme cognitive
load and stress as a consequent of dangerous environ-
ment they are deployed in, and their attention should
be primarily paid for reaching the mission goals—
such as victim search and rescue, analyzing risk of
secondary disaster, etc. So, what can be done to im-
prove such behavior? An ideal scenario is to use only
artificial intelligence (AI) and let the robots follow
the commands. So far, AI has not capabilities to be
deployed in robots operating in complex dynamic envi-
ronments and thus systems based on human-robot in-
teraction still outperforms the autonomous solutions.
The amount of cooperation and task-sharing can vary



depending on the scenario as well as platform construc-
tion and capability. If such human-robot cooperation
should bring a benefit into search and rescue field, it
is necessary to find an accepted level of autonomy,
suitable for the SaR, which is usually trade-off between
teleoperation and full autonomy.

The aim of this paper is: (i) summarize related solu-
tions in motion control suitable for Search and Res-
cue missions and (ii) briefly introduce our solution
to operator-accepted autonomy designed for skid-steer
NIFTi UGV robot with articulated flippers.

Rest of the paper is organized as follows: Sec. 2
provides survey on motion control by considering both:
(i) related works—see Sec. 2.1 and (ii) our solution—
outlined in Sec. 2. Conclusion is given in Sec. 3.

2 Survey on motion control

Figure 2: General design of motion control ap-
proaches: The mapping between robot state s coming
as input and optimal action a to be taken can be
done in several ways: (i) learning direct state-action
association—policy (ii) reasoning about action qual-
ity based on the modeled robot-terrain interaction
(RTI) or (iii) learning the state-action quality based
on RTI—RTI-reasoning.

Over the last few years, there were published several
motion control approaches whose solutions varied sig-
nificantly depending on the application (target envi-
ronment, autonomy level), platform capabilities, on-
board computation power, etc. Instead of focusing on
comparison of methods outcomes (which is nonsense
due to above described differences), we provide com-
parison of motion control approaches on design level
based on the framework depicted in Fig. 2.

The aim is to find a mapping (policy) between state
described by sensory data and optimal motion control
action. Since finding direct mapping might be difficult
it is common to decompose the task into modeling
and reasoning functions. While the modeling function
aims in discovering robot-terrain interaction (RTI)
based on the current state and possible action to take,
reasoning function evaluates quality of the interaction
and decides which action should be taken in order to
ensure optimal behavior on terrain. Reasoning might

be decomposed into evaluating and optimizing, but
not every approach aims in such decomposition and
rather design complex reasoning functions where both
are hidden.

Note that retrieving real RTI is not feasible due to
terrain and/or platform complexity and following can
be considered as suitable replacement: (i) approximate
models of interacting objects (often robot Kinematic
model (KM) and simplified terrain representation—
Terrain model (TM)), (ii) description substituted by
knowledge—Machine learning (ML). In this motion
control framework, ML is a suitable method not only
for learning RTI, but also for learning evaluator re-
sponse (RTI-reasoning) or whole policy (as depicted
in Fig. 2 by red and blue rectangles).

The above introduced terms can be formalized as
follows:

• State . . . x ∈ S ⊂ RD ,
• Action. . . a ∈ A ⊂ Rd ,
• Policy. . .π : S → A ,
• RTI . . .⊕ : A× S → Rn ,
• Reasoning . . .R : Rn → A ,
• Evaluating. . . E : Rn → Rm ,
• Optimizing. . . ∗ : Rm → A ,
• RTI-reasoning . . . Ê : A× S → Rm ,

where S is set of states, A set of actions, Rx denotes
x−dimensional vector of real numbers. This notation
is especially used in Tab. 1 for sake of compactness.

Tab. 1 do the categorization based on Fig. 2 including
the description of expected motion control outcome
for given task. The rest of this section is focused on
detailed description of approaches lying in Tab. 1.
Related work is described in Sec. 2.1 while our solution
(Zimmermann et al. [24]) is described in Sec. 2.2.

2.1 Related work

Dube [6] modeled flipper-ground contact points us-
ing kinematic robot description and terrain slope to
estimate flippers and manipulator poses of PackBot
robot in order to enhance its stability in complex
terrain. Ohno et al. [17] aimed in development of a
semi-autonomous active control system for the res-
cue crawler Aladdin. The reasoning about optimal
control is made using judgment based rules designed
in advance by experience. Such judgment considers
flipper-ground contact points determined reactively
using KM and proprioceptive measurements. Nagatani
et al.[16] and Okada et al. [18] were targeting in de-
velopment of active flipper control for their tracked
robots Kenaf and its second generation Quince. These
works resulted in development of shared autonomy
system [19] which already had real deployment [15].
RTI is described by means of kinematic model and
local terrain properties gathered along the main tracks.
Kinematic model and terrain properties are used for



Author Platform RTI model Reasoning Output

Brunner et al. [1] Telerob Telemax robot KM⊕TM
E : motion cost

∗ : arg min
robot conf., heading

Caforo et al. [3] Nifti UGV KM⊕TM
E : traversability cost

∗ : arg min

4x flipper angle,

heading, velocity

Colas et al. [4] NiftiBot KM⊕TM
E : motion cost

∗ : arg min

4x flipper angle,

heading, velocity

Dornhege and

Kleiner [5]
Lurker KM⊕TM⊕ML R : behavior maps heading, skill

Dube [6] PackBot KM⊕TM
E :stability index

∗ : arg max

manipulator and

2xflipper angle.

Ho et al. [9, 8] Mawson rover KM⊕TM⊕ML R :modeling + GPR attitude,chassis conf.

Iagnemma and

Dubowsky [10]
Wheeled planar rover KM

E : traction, power

consumption,

∗ : arg min

wheel velocities

Kolter et al. [12] LittleDog KM⊕TM
E : motion cost

∗ arg min
desired contact points

Mathur and

Pandian[13]
targeted to Mars rover ML

E : navigability

∗ arg max
heading

Nagatani et al.[16, 15] Kenaf, Quince KM⊕TM
E :NESM stability

∗ : arg max
4xflipper angle

Ohno et al. [17] Aladdin KM R : control rules

4xflipper angle.,

4xflipper ang. vel.,

moving velocity

Okada et al.[18, 19] Kenaf, Quince KM⊕TM
E :NESM stability

∗ : arg max
4xflipper angle

Papadakis and

Pirri [20]
TALOS KM⊕TM

E : ground clearance,

robot orientation,

angle stability

∗ : arg max

attitude, 4xflipper

angle

Sheh [21] Emu ML⊕TM
Ê : probability p(a|s)

∗ : arg max
atomic action

Zimmermann et.al [24] NIFTi UGV robot ML⊕TM Ê : Q(a, s) , ∗ : arg max
4xflipper angle,

4xflipper stiffness

Table 1: Overview (alphabetical order) of the related work on motion control including our solution of AT. Table
corresponds to the motion control design framework depicted in Fig. 2. The system outputs are summarized
also.

initial robot posture computation and then, flipper
angles are determined so as they touch the ground.
The optimal reasoning is based on NESM stability
criteria [7], which implies minimization of the risk of
rolling over.

Papadakis and Pirri [20] introduced RTI model for
quantifying the static 3D traversability cost for tracked
robot NIFTi in known terrain map. The motion qual-
ity is expressed as combination of intrinsic robot char-
acteristics and articulating capabilities (robot orien-
tation and angle stability), in combination with the
terrain surface (ground clearance). The approach is
limited by the necessity to have the terrain map in
prior which is not often possible due to either lim-
ited sensor capabilities or object occlusions. This issue
tackled Ho et al. [9] who proposed solution for predict-
ing the complete configuration map from incomplete
terrain map for Mawson rover using Gaussian Pro-
cess Regression (GPR). RTI is modeled by kinematic
model in visible areas and then, RTI is interpolated
using GPR in occluded parts of the map. Even more
not only the rigid terrain assumption, but also with

considering deformation caused by robot movement
over deformable terrain [8]. Despite of the traversabil-
ity has been assigned through the estimated robot
configuration, it is not further discussed how to turn
out complete configuration map into motion control
plans. Kolter et al. [12] used experience based database
for assigning the terrain characteristics in the missing
regions and used complete RTI description (using kin.
model and terrain shape) for creating the cost map
and appropriate motion plan for the quadruped robot
LittleDog whose joints are PD controlled. Limited ca-
pabilities of the sensors (not uniform sample distribu-
tion) overcame Colas et al. [4] by using distance filter
and tensor voting procedure [14] for robust terrain
representation that is further used by path planner
for NiftiBot. Novel map representation, able to deal
with unknown structure (assume earthquake scenario)
were introduced by Caforo et al. [3]. The map is
build inductively from raw point cloud and at the end
provides information about the traversable regions.
These are used for generating the motion plan of Nifti
UGV robot. Brunner et al. [1], in order to overcome



the exhaustive search in full configuration space of 4
tracked robot, divided terrain map into difficult and
easy to traverse regions. Whereas motion planning
within easy regions considers partial robot configu-
ration, planning through the difficult areas reflects
complete robot configuration already available. RTI
and traversability (robot configuration) is simulated
(kinematic model-terrain interaction). Dornhege and
Kleiner [5] expressed the traversability by concept of
Behavior maps where terrain properties are directly
mapped to specific robot skill using Fuzzy rules (con-
sidering kinematic constraints on robot climbing capa-
bilities) and Markov Random Field classification. The
paths found in Behavior maps can be turned into robot
motion plans.

Sheh [21] with a four wheel robot Emu used high
dimensional terrain description for designing the con-
troller by learning RTI-reasoning based on the deci-
sion tree that at the end, decided which one of eight
atomic actions a (forward-left-turn, straight- forward-
move, etc.) should be used in given high dimensional
robot-terrain state s based on the posterior probability
p(a|s). Iagnemma and Dubowsky [10] presented a con-
trol methodology based on wheel-ground contact angle
(computed from kinematic model and proprioceptive
data) for improved traction (on uneven terrain) or
reduced power consumption (on relatively flat terrain)
for wheeled mobile robot on Mars-like soil. Mathur and
Pandian[13] classified terrain using textural analysis of
visual imagery into Navigable and Not navigable re-
gions and used them for planning through the assessed
terrain.

2.2 Our approach to motion control

Figure 3: NIFTi UGV Robot climbing capability:
Articulated flippers and passive differential increase
the platform stability on uneven terrain and enlarge
its operability space.

We aimed in development of semi-autonomous mo-
tion control system for NIFTi UGV skid-steer robot 1

(technical specifications provide Sec. 2.2.2) whose pur-
pose is to control the flipper configuration (angle and
stiffness) autonomously while the moving velocity and
azimuth will be controlled manually by the operator.

1 developed within NIFTi/TRADR project—see http://www.

tradr-project.eu

2.2.1 Methodology and design

Reinforcement learning (RL) technique (survey on RL
in robotics provided Kober et al. [11]) was used to learn
RTI-reasoning response through the use of collected
data during the manual control.

The current RTIs were expressed as scalar rewards
combining several terms: (i) too-low pitch and roll
reward, (ii) smoothness reward (iii) speed reward (iv)
user denoted reward (penalty) indicating the success
(failure) of the particular maneuver. The reasoning in
RL is based on (discounted) sum of such rewards. We
choose to learn action-state value Ê(a, s) = Q(a, s)
representing sum of discounted rewards when taking
action a at state s and behaving optimally onwards.
Since the exteroceptive part of the state s includes only
locally available terrain information, such concept can
support map creation which is crucial for exploration
during search and rescue missions—of course precise
localization is still required [22].

Since handling all possible Q values covering real
high dimensional action-state space is not feasible,
we adopted following simplifications: (i) finite number
of possible morphological adjustments—each config-
ures angle and stiffness per flipper, and (ii) Q values
approximation (least-squares fitted Q-iteration with
parametric approximation algorithm [2]) caused by
high dimensional state s representation.

As experimentally shown in the challenging outdoor
forest environment (see Fig. 4), proposed concept
outperformed the manual control in terms of time
and smoothness of traversal, which might be seen as
quantitative measure of operator’s cognitive load.

2.2.2 Robot Specification

NIFTi UGV robot (see Fig. 1, 3, 4) consists of two
main tracks, equipped with passive differential, and
four articulated subtracks (so called flippers). Al-
though such construction has many DoF and ac-
cepted autonomy has to be considered in real de-
ployment, the design has following foundations: (i)
increased platform stability on rough or unstructured
terrain and (ii) enlarged operability space (climbing
up/down the obstacles)—both situations are depicted
in Fig. 3. Platform is equipped with SICK LMS-151
range finder, Ladybug 3 omnicam and Xsens MTi-G
IMU.

3 Conclusion

In this paper, we provided survey on motion control
approaches with focus on robot-terrain representation
which helps to reveal advantages or limitations of
individual solutions.



Figure 4: Motion control example in challenging outdoor forest environment: The sequence goes from left to
right, from top to bottom. In the upper parts of the images, there are real scenes captured by external camera,
in the bottom parts there are visualization of digital map sensed by robot.

Methods based on robot models, often considering only
its kinematics, are able to achieve satisfactory good
performance using robot-terrain contact properties.
Some of them use just proprioceptive data [10, 17],
others do combination with exteroceptive data result-
ing in simple terrain representation [6, 15, 16, 18, 19].
Such autonomy is accepted in an unknown complex
terrain or running on platforms suited with poor exte-
roceptive sensors.

Once the environment is explored, more autonomy
is accepted since there is no threat of failure caused
by incomplete information and thus motion plan-
ning [1, 3, 4, 12, 20] can be executed. Such approaches
are more demanding, require reliable sensor suite,
enough computation power onboard, they are more
complex which might go against its generalization and
robustness.

Since there are a lot of difficulties to model, not only
in such a complex SaR world, several simplifications
are considered. To overcome these imperfection in
modeling, machine learning technique are used to re-
place the description by the knowledge, as for exam-
ple [5, 8, 9, 13].

Machine learning can also replace classical feedback
control loop design and instead of modeling system
dynamics by differential equations, which is difficult
in case of nonlinear system, learn the mapping be-
tween states and actions from the collected training
samples [21, 24]. Widely used is Reinforcement learn-
ing [23], since it guarantee optimal behavior from any
state onwards [11].
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Abstract. We overview different approaches to safety in (semi)auto-
nomous robotics. Particularly, we focus on how to achieve safe behavior
of a robot if it is requested to perform exploration of unknown states. Pre-
sented methods are studied from the viewpoint of reinforcement learning,
a partially-supervised machine learning method. To collect training data
for this algorithm, the robot is required to freely explore the state space
– which can lead to possibly dangerous situations. The role of safe explo-
ration is to provide a framework allowing exploration while preserving
safety. The examined methods range from simple algorithms to sophis-
ticated methods based on previous experience or state prediction. Our
overview also addresses the issues of how to define safety in the real-world
applications (apparently absolute safety is unachievable in the continu-
ous and random real world). In the conclusion we also suggest several
ways that are worth researching more thoroughly.

Keywords: Safe exploration, policy search, reinforcement learning

1 Introduction

Reinforcement learning (RL) as a machine learning method has been thoroughly
examined since 80’s. In 1981, Sutton and Barto [3] inspired themselves in the
reinforcement learning discoveries in behavioral psychology and devised the Tem-
poral Difference machine learning algorithm that had to simulate psychological
classical conditioning. In contrast with supervised learning, reinforcement learn-
ing does not need a teacher’s classification for every sample presented. Instead, it
just collects rewards (or punishment) on-the-go and optimizes for the expected
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2 LNCS: Safe Exploration for Reinforcement Learning

long-term reward (whereas supervised learning optimizes for the immediate re-
ward). The key advantage is that the design of the rewards is often much simpler
and straight-forward than classifying all data samples.

Reinforcement learning proved to be extremely useful in the case of state-
space exploration – the long-term reward corresponds to the value of each
state [17]. From such values, we can compose a policy which tells the agent
to always take the action leading to the state with the highest value. As an
addition, state values are easily interpretable for humans.

Since the early years, a lot of advanced methods were devised in the area of
reinforcement learning. To name one, Q-learning [25] is often used in connection
with safe exploration. Instead of computing the values of states, it computes
the values of state–action pairs, which has some simplifying consequences. For
example, Q-learning doesn’t need any transition model (i.e. dynamics model) of
the examined system.

A completely different approach is policy iteration. This algorithm starts with
a (more or less random) policy and tries to improve it step-by-step [16]. This
case is very valuable if there already exists a good policy and we only want to
improve it [11].

What do all of these methods have in common, is the need for rather large
training data sets. For simulated environments it is usually not a problem. But
with real robotic hardware, the collection of training samples is not only lengthy,
but also dangerous (be it mechanical wear or other effects). Another common
feature of RL algorithms is the need to enter unknown states, which is inherently
unsafe.

As can be seen from the previous paragraph, safety is an important issue
connected with reinforcement learning. However, the first articles focused on
maintaining safety during exploration started to appear much later after the “dis-
covery” of RL. Among the first, Heger [15] “borrowed” the concept of a worst-
case criterion from control theory community. In 1994 he created a variant of
Q-learning where maximization of long-term reward is replaced with maximiza-
tion of minimum of the possible rewards. That basically means his algorithm
prefers to never encounter a bad state (or, at least to choose the best of the bad
states). This approach has one substantial drawback – the resulting policies are
far from being optimal in the long-term–reward sense [10].

In this paper we show the various approaches to safe exploration that have
emerged so far. We classify the methods by various criteria and suggest suitable
use cases for them. To better illustrate some of the practical details, we use
the UGV (Unmanned Ground Vehicle) robotic platform from EU FP7 project
NIFTi [6] (see Figure 1) as a reference agent. It may happen that in these
practical details we assume some advantages of UGVs over UAVs (Unmanned
Aerial Vehicles), like the ability to stand still without much effort, but it is
mostly easy to convert these assumptions to UAVs, too.

Further organization of this paper is the following: in Section 2 we discuss
some basics of reinforcement learning (the reader may skip it if he is familiar
with reinforcement learning); Section 3 is an overview of the safety definitions
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Fig. 1. NIFTi UGV robotic platform

used in literature; Section 4 is the main part concerning the various approaches
to safe exploration, and in Section 5 we conclude the findings and we suggest
some further areas of possible research.

2 Reinforcement learning basics

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) are the standard model for deliberating
about reinforcement learning problems. They provide a lot of simplifications,
but are sufficiently robust to describe a large set of real-world problems.

The simplest discrete stochastic MDP comprises of: [17]

– a finite set of states S

– a finite set of actions A

– a stochastic transition model P : Pt(s, a, s
′) = Pr(st+1 = s′ | st = s, at = a)

for each s, s′ ∈ S, a ∈ A, where Pr stands for probability

– and the immediate reward function R : S×A → R (or R : S×A× S → R
if the reward depends on the stochastic action result)
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To interpret this definition, we say that the at every time instant t the agent is
in a state s, and by executing action a it gets to a new state s′. Furthermore,
executing a particular action in a particular state may bring a reward to the
agent (defined by R).

The most important and interesting property of MDPs is the Markov prop-
erty. If you have a look at the definition of the transition model, the next state
only depends on the current state and the chosen action. Particularly, the next
state is independent of all the previous states and actions but the current one.
To give an example, the robot’s battery level cannot be treated implicitly by
counting the elapsed time, but rather it has to be modeled as a part of the
robot’s state.

Once the model is set up, everything is ready for utilizing an MDP. “The
agent’s job is to find a policy π mapping states to actions, that maximizes
some long-run measure of reinforcement” [17]. The “long-run” may have different
meanings, but there are two favorite optimality models: the first one is the finite
horizon model, where the term J =

∑h
t=0 rt is maximized (h is a predefined time

horizon and rt is the reward obtained in time instant t while executing policy π).
The dependency of rt on the policy is no longer obvious from this notation, but
this is the convention used in literature when it is clear which policy is used. This
model represents the behavior of the robot which only depends on a predefined
number of future states and actions.

The other optimality model is called discounted infinite horizon, which means
we maximize the discounted sum J =

∑∞
t=0 γ

trt with γ ∈ (0, 1) being the
discount factor. The infinite horizon tries to find a policy that is the best one
taking into account the whole future. Please note the hidden dependency on the
policy π (and the starting state s0) – it is the policy that decides on which action
to take, which in turn specifies what will the reward be.

Other extensions of MDPs to continuous states, time or actions are beyond
the scope of this overview. However, some of the referenced papers make use of
these continuous extensions, which proved to be useful for practical applications.

2.2 Value iteration

Value iteration is one of the basic methods for finding the optimal policy. To
describe this algorithm, it is first needed to define the essential notion of the
optimal value of a state. In this whole subsection we suppose the discounted
infinite horizon model, but analogous results can be shown for finite horizon,
too. “The optimal value of a state is the expected infinite discounted sum of
reward that the agent will gain if it starts in that state and executes the optimal
policy.” [17] Given a policy π, the induced value function is therefore defined as

Vπ(s) = E

[ ∞∑

t=0

rkγ
k

]
, (1)

where E denotes the expected value and rk are the rewards for executing policy
π. Taking the best value function over all policies then yields the optimal value
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function V∗: [17]
V∗(s) = max

π
Vπ(s) . (2)

Inversely, if we have the value function given, we can derive a policy from
that. It is a simple policy that always takes the action leading to the most
profitable neighbor state (with the highest value).

One useful formulation of the properties of the optimal value function is
the formulation using the recurrent Bellman equations which define a dynamic
system that is stable for the optimal value function. We can say a state’s optimal
value is the best immediate reward plus its best neighbor’s optimal value: [17]

V∗(s) = max
a

(
R(s, a) + γ

∑

s′∈S
P(s, a, s′)V∗(s′)

)
. (3)

Analogously, we can find the optimal policy using the same Bellman equation:

π∗(s) = argmax
a

(
R(s, a) + γ

∑

s′∈S
P(s, a, s′)V∗(s′)

)
. (4)

The Value iteration algorithm is based on trying to compute the solution
of Equation 4 using iterative Bellman updates (refer to Algorithm 1). In the
algorithm, we use a structure called Q to store the “value” of state-action pairs.
In Value iteration it is just a structure to save intermediate results, but it is the
core of the Q-learning algorithm (described in Section 2.3). The stopping crite-
rion of the Value iteration algorithm is not obvious, but Williams and Baird [26]
derived an easily applicable upper bound on the error of the computed value
function.

That said, after a sufficient number of those simple iterations, we can compute
the almost optimal value function. The number of iterations needed for Value
iteration to converge may be impractically high, but it is shown that the optimal
policy converges faster [4], thus making Value iteration practical.

2.3 Q-learning

Just a small change to the Value iteration algorithm results in Q-learning. The
basic algorithm is the same as Value iteration, just the update step is done
differently (refer to Algorithm 2). The consequence of this change is that no
model of the system (transition function P) is needed. It is sufficient to execute
all actions in all states equally often, and Watkins [25] proved that if Q-learning
were run for an infinite time, the computed Q would converge to the optimal
Q∗ (an analogue of V∗).

2.4 Policy iteration

Policy iteration is a completely different approach to computing the optimal pol-
icy. Instead of deriving the policy from the Value or Q function, Policy iteration
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Algorithm 1 The Value iteration algorithm [17]

Input: an MDP (states S, actions A, rewards R, transition model P)

Output: the optimal value function V∗, resp. the optimal policy π∗

derived from the value function

1. V(s) := arbitrary function

2. π := the policy derived from V
3. while π is not good enough do

4. for all s ∈ S do

5. for all a ∈ A do

Update:

6. Q(s, a) := R(s, a) + γ
∑
s′∈S

P(s, a, s′)V(s′)

7. end for

8. V(s) := max
a

Q(s, a)

9. end for

10. π := the policy derived from V
11. end while

12. V∗ := V, π∗ := π

Algorithm 2 The Q-learning algorithm (only the parts that differ from Value
iteration when V is substituted with Q) [17]

Input: an MDP (states S, actions A, rewards R, transition model may be

unknown)

Output: the optimal state-value function Q∗, resp. the optimal policy π∗

derived from the state-value function

6. Q(s, a) := Q(s, a)+

α
[
R(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]

8. line left out
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works directly with policies. In the first step, a random policy is chosen. Then
a loop consisting of policy evaluation and policy improvement repeats as long as
the policy can be improved [17] (refer to Algorithm 3 for details). Since in every
step the policy gets better, and there is a finite number of different policies, it
is apparent that the algorithm converges [23].

Policy iteration can be initialized by a known, but suboptimal policy. Such
policy can be obtained e.g. by a human operator driving the UGV. If the initial
policy is good, Policy iteration has to search much smaller subspace and thus
should converge more quickly than with a random initial policy [11].

Algorithm 3 The Policy iteration algorithm [17]

1. π′ = arbitrary policy

2. repeat

3. π := π′

Policy evaluation: (system of linear equations)

4. Vπ(s) = R(s, π(s)) + γ
∑
s′∈S

P(s, π(s), s′)Vπ(s′)

Policy improvement:

5.

π′(s) := argmax
a∈A

[

R(s, a) + γ
∑

s′∈S
P(s, a, s′)Vπ(s′)

]

6. until π = π′

3 Defining safety

To examine the problems of safe exploration, it is first needed to define what
exactly is the safety we want to maintain. Unfortunately, there is no unified
definition that would satisfy all use cases; thus, several different approaches are
found in the literature. An intuitive (but vague) definition could be e.g.: “State-
space exploration is considered safe if it doesn’t lead the agent to unrecoverable
and unwanted states.” It is worth noticing here that unwanted doesn’t necessarily
mean low-reward. In the next subsections we present the main interpretations
of this vague definition.

3.1 Safety through labeling

The largely most used definition of safety is labeling the states/actions with one
of several labels indicating the level of safety in that state/action. What varies
from author to author is the number and names of these labels.

To start with, Hans [14] has the most granular division of state/action space.
His definitions are as follows (slightly reformulated):
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– an (s, a, r, s′) tuple (transition) is fatal if the reward r is less than a certain
threshold (s is the original state, a is an action and s′ is the state obtained
after executing a in state s, yielding the reward r),

– an action a is fatal in state s if there is non-zero probability of leading to
a fatal transition,

– state s is called supercritical if there exists no policy that would guarantee
no fatal transition occurs when the agent starts in state s,

– action a is supercritical in state s if it can lead to a supercritical state,
– state s is called critical if there is a supercritical or fatal action in that state

(and the state itself is not supercritical),
– action a is critical in state s if it leads to a critical state (and the action

itself is neither supercritical nor fatal in s),
– state s is called safe if it is neither critical nor supercritical,
– action a is safe in state s if it is neither critical, nor supercritical, nor fatal

in state s,
– and finally a policy is safe if for all critical states it leads to a safe state in

a finite number of non-fatal transitions (and if it only executes safe actions
in safe states).

Since we will compare other definitions the the Hans’, it is needed to define
one more category. A state s is called fatal if it is an undesired or unrecoverable
state, e.g. if the robot is considered broken in that state. The fatal transition
can then be redefined as a transition ending in a fatal state. Opposite to the
precisely defined terms in Hans’ definition, the meaning of words “undesired”
and “unrecoverable” here is vague and strongly task-dependent.

Continuing on, Geibel [12] defines only two categories – fatal and goal states.
“Fatal states are terminal states. This means, that the existence of the agent ends
when it reaches a fatal state” [12]. This roughly corresponds to our defined set of
fatal states. Goal states are the rest of final states that correspond to successful
termination. Since Geibel only considers terminal states for safety, his goal states
correspond to a subset of safe states. The other Hans’ categories need not be
represented, since they are meaningless for final states.

An extension of Geibel’s fatal and goal states is a division presented by
Garćıa [10]. His error and non-error states correspond to fatal and goal states,
but Garćıa adds another division of the space – the known and unknown states,
where known states are those already visited (and known have empty intersection
with error). He then mentions a prerequisite on the MDP that if an action leads
to a known error/non-error state, then its slight modification must also lead to
an error/non-error state (a metric over the state space is required).

In Ertle’s work [9], again the two basic regions are considered – they are
called desired and hazardous (corresponding to safe and fatal). However, due
to the used learning technique, one more region emerges – the undesired region.
It contains the whole hazardous region and a “small span” comprising of desired
states, and denotes the set of states where no training (safe) samples are avail-
able, because it would be dangerous to acquire those samples. In particular, he
says that “The hazards must be ‘encircled’ by the indications of the undesired
approaching so that it becomes clear which area [. . . ] is undesired” [9].
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A summary of the labeling-based definitions is shown in Figure 3. We ex-
amined the apparent imbalance between the number of categories Hans defines,
and the other definitions, and that led us to the following observations.

The first observation is that creating labels for actions or transitions is un-
necessary. If we need to talk about the “level of safety” of an action, we can
use the worst label out of all possible results of that action (which retains com-
patibility with Hans’ definitions). Moreover, as “it is impossible to completely
avoid error states” [22], we can ignore the effects of the action which have only
small probability (lower than a safety threshold) – we will call such effects the
negligible effects.

A second remark is that the fatal and supercritical sets can be merged.
In Hans’ work we haven’t found any situation where distinguishing between su-
percritical and fatal would bring any benefit. Specifically, in his work Hans
states that: “Our objective is to never observe supercritical states” [14], which
effectively involves avoiding fatal transitions, too. And since we avoid both su-
percritical and fatal, we can as well avoid their union.

Third, safety of a state does not necessarily depend on the reward for getting
to that state. E.g. when the UGV performs a victim detection task, going away
from the target area may be perfectly safe, but the reward for such action should
be small or even negative.

Putting these observations together, we propose a novelty definition of safety
for stochastic MDPs, which is a simplification of Hans’ model and a generaliza-
tion of the other models:

– A state is unsafe if it means the agent is damaged/destroyed/stuck. . . or it
is highly probable that it will get to such state regardless of further actions
taken.

– A state is critical if there is a not negligible action leading to an unsafe
state from it.

– A state is safe if no available action leads to an unsafe state (however, there
may be an action leading to a critical state).

To illustrate the definition on a real example, please refer to Figure 2. In 2(a),
the UGV is in a safe state, because all actions it can take lead again to safe
states (supposing that actions for movement do not move the robot for more
than a few centimeters). On the other hand, the robot as depicted in 2(b) is
in a critical state, because going forward would make the robot fall over and
break. If the robot executed action “go forward” once more, it would come to
an unsafe state. Right after executing the action it would still not be broken;
however, it would start falling and that is unsafe, because it is not equipped to
withstand such fall and therefore it is almost sure it will break when it meets
the ground.

3.2 Safety through ergodicity

An MDP is called ergodic iff for every state there exists a policy that gets the
agent to any other state [20]. In other words, every mistake can be remedied in
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(a) A safe state.

(b) A critical state – if the robot went still forward, it would fall down and probably
break.

Fig. 2. An illustration of safe and critical states.
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Garćıa

Ertle

ACTIONS
STATES

DOUS

SAFE
CRI-

TICAL
UNSAFE

DESIRED

Our

Fig. 3. A summary of the definitions of safety. The basic division is taken from Hans
[14] and fatal states are added. States are drawn with solid background and white-
headed arrows (_) denote the possible actions in the states. Actions are rendered with
striped background and black-headed arrows ( ) end in states where it is possible to
end up using the action.
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such MDP. Moldovan [20] then defines δ-safe policies as policies guaranteeing
that from any state the agent can get to the starting state with probability at
least δ (using a return policy, which is different from the δ-safe one). Stated
this way, the safety constraint may seem intractable, or at least impractical –
it is even proved, that expressing the set of δ-safe policies is NP-hard [20]. An
approximation of the constraint can be expressed in the terms of two other MDP
problems which are easily solved [20]; that still leads to δ-safe policies, but the
exploration performance may be suboptimal.

In our view, safety through ergodicity imposes too much constraints on the
problems the agent can learn. It sometimes happens that a robot has to learn
some task after which it is not able to return to the initial state (e.g. drive down
a hill it cannot go upwards; a human operator then carries the robot back to the
starting position). But the inability to “return home” in no means indicates the
robot is in an unsafe state.

3.3 Safety through costs

Another definition of safety is to define a cost for taking an action/being in
a state and minimize the worst-case cost of the generated policies (up to some
failure probability). Such approach is presented in [15].

However, unless a threshold is set, this definition leads only to the safest pos-
sible policies, which are not necessarily safe. Expressing the safety using costs
is natural for some RL tasks (e.g. when learning the function of a dynamic
controller of an engine, the engine’s temperature can be treated as a cost). Un-
fortunately, not all unsafe states can be described using such costs in general.
In addition, specifying the right costs may be a difficult task.

3.4 Safety as variance of the expected return

An alternative to safety as minimization of a cost (either worst-case or expected)
is minimizing both the cost and its variance. This approach is called expected
value-variance criterion [15] and is used mainly in works prior 2000, e.g. [7].
A safe policy by this criterion can be viewed as a policy that minimizes the
number of critical actions (because fatal transitions are expected to yield much
larger costs than safe transitions, increasing the variance significantly).

As stated in [10], the worst-case approach is too restrictive and cautious.
The other expected value-variance criteria suffer from the same disadvantages
as safety through costs – mainly from the general difficulty to tune up the costs.

4 Safe exploration approaches

Finally, when the theoretical concepts have been shown and the various safety
definitions have been presented, we can focus on the main part of this overview.
Our categorization of safe exploration techniques is based on the work of Garćıa
[10]. The basic division is as follows: approaches utilizing the expected return
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or its variance (Sec. 4.1), labeling-based approaches (Sec. 4.2) and approaches
benefiting from prior knowledge (Sec. 4.3).

4.1 Optimal control approaches

Techniques in this category utilize variations of the expected value-variance safety
criterion. The most basic one is treating the rewards as costs (when a reward is
denoted by rt, the corresponding cost is denoted by ct). Standard RL methods
can then be used to solve the safe exploration task, as described e.g. in [7] for
discounted infinite horizon.

The RL objective function

J = E

[ ∞∑

t=0

γtct

]
(5)

is called the risk-neutral objective. To make this objective risk-sensitive, we spec-
ify a risk factor α and rewrite the objective as: [15]

J = 1
α logE [exp (αγt

∑∞
t=0 ct)] (6)

' E [
∑∞
t=0 γ

tct] + α
2 V ar [

∑∞
t=0 γ

tct] ,

which is also called the expected value-variance criterion. This approach is a part
of theory using exponential utility functions, which is popular in optimal con-
trol [19]. To complete this section, the worst-case objective function (also called
the minimax objective) is defined as

J = sup

[ ∞∑

t=0

γtct

]
. (7)

As can be seen, the objective functions containing expectations cannot in fact
assure that no unsafe state will be encountered. On the other hand, the minimax
objective provides absolute certainty of the safety. However, it may happen that
some of the unsafe states can only be reached with a negligible probability. In
such cases, the α-value criterion defined by [15] can be used – it only takes
into account rewards that can be reached with probability greater than α. In
the work of Mihatsch [19], a scheme is presented that allows to “interpolate”
between risk-neutral and worst-case behavior by changing a single parameter.

Delage’s work [8] takes into account the uncertainty of parameters of the
MDP. It is often the case that the parameters of the MDP are only estimated
from a limited number of samples, causing the parameter uncertainty. He then
proposes a possibility that the agent may “invest” some cost to lower the uncer-
tainty in the parameters (by receiving some observations from other sources than
exploration). A completely new research area then appears – to decide whether
it is more valuable to pay the cost for observations, or to perform exploration
by itself.
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An approximation scheme for dealing with transition matrix uncertainty is
presented in [21]. It considers a robust MDP problem and provides a worst-case,
but also robust policy (with respect to the transition matrix uncertainty).

A theory generalizing these approaches can be found in [24]. The theory states
that the optimal control decision is based on three terms – the deterministic,
cautionary and probing terms.

The deterministic term assumes the model is perfect and attempts
to control for the best performance. Clearly, this may lead to disaster
if the model is inaccurate. Adding a cautionary term yields a controller
that considers the uncertainty in the model and chooses a control for
the best expected performance. Finally, if the system learns while it
is operating, there may be some benefit to choosing controls that are
suboptimal and/or risky in order to obtain better data for the model
and ultimately achieve better long-term performance. The addition of
the probing term does this and gives a controller that yields the best
long-term performance.[24]

To conclude this section, we think that these methods are not well suited for
safe exploration – the expected value-variance and similar criteria provide no
warranties on the actual safety. On the other hand, the worst-case approaches
seem to be too strict.

4.2 Labeling-based approaches

The approaches utilizing some kind of state/action labeling (refer to Section 3.1
for the various labeling types) usually make use of two basic components – a risk
function and a backup policy. The task of the safety function is to estimate the
safety of a state or action. In the simplest case, the safety function can just
provide the labeling of the given action; or it can return a likelihood that the
action is safe; and in the best case, it would answer with a likelihood to be safe
plus a variance (certainty) of its answer. The backup policy is a policy that is
able to lead the agent out of the critical states back to the safe area. It is not
obvious how to get such a policy, but the authors show some ways how to get
one.

In the work of Hans [14], the most granular labeling is used, where fatal
transitions are said to be the transitions with reward less than a given threshold.
The safety function is learned during the exploration by collecting the so-called
min-reward samples – this is the minimum reward ever obtained for executing
a particular action in a particular state. The backup policy is then told to either
exist naturally (e.g. a known safe, but suboptimal controller), or it can also be
learned. To learn the backup policy, an RL task with altered Bellman equations
is used:

Q∗min(s, a) = max
s′

min
[
R(s, a, s′),max

a′
Q∗min(s′, a′)

]
.

A policy derived from the computed Q∗min function is then taken as the backup
policy (as it maximizes the minimum reward obtained, and the fatal transitions
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are defined by low reward). He defines a policy to be safe, if it executes only safe
actions in safe states and produces non-fatal transitions in critical states. To learn
such safe policy, he then suggests a level-based exploration scheme (although he
gives no proofs why it should be better than any other exploration scheme).
This scheme is based on the idea that it is better to be always near the known
safe space when exploring. All unknown actions from one “level” are explored,
and their resulting states are queued to the next “level”. For exploration of
unknown actions he proposes that the action should be considered critical until
proved otherwise, so the exploration scheme uses the backup policy after every
unknown action execution. A disadvantage of this approach is that the agent
needs some kind of “path planning” to be able to get to the queued states and
continue exploration from them.

Garćıa’s PI-SRL algorithm [10] is a way to safeguard the classical policy
iteration algorithm. Since the labels error/non-error are only for final states,
the risk function here is extended by a so called Case-based memory, which is
in short a constant-sized memory for storing the historical (s, a, V(s)) samples
and is able to find nearest neighbors for a given query (using e.g. the Euclidean
distance). In addition to the error and non-error states, he adds the definition of
known and unknown states, where known states are those that have a neighbor
in the case-based memory closer than a threshold. A safe policy is then said to be
a policy that always leads to known non-error final states. To find such policy,
the policy iteration is initialized with the safe backup policy and exploration is
done via adding a small amount of Gaussian noise to the actions. This approach
is suitable for continuous state- and action-spaces.

Another approach is presented in the work of Geibel [12], where the risk and
objective functions are treated separately. So the risk function only classifies the
states (again only final states) as either fatal or goal, and the risk of a policy
(risk function) is then computed as the expected risk following the policy (where
fatal states have risk 1 and goal states have risk 0). The task is then said to be
to maximize the objective function (e.g. discounted infinite horizon) w.r.t. the
condition that the risk of the considered policies is less than a safety threshold.
The optimization itself is done using modified Q-learning, and the optimized ob-
jective function is a linear combination of the original objective function and the
risk function. By changing the weights in the linear combination the algorithm
can be controlled to behave more safely or in a more risk-neutral way.

A generalization of Geibel’s idea to take the risk and reward functions sep-
arately can be found in the work of Kim [18]. In this work, the constrained RL
task is treated as a Constrained MDP and the algorithm CBEETLE for solving
the Constrained MDPs is shown. The advantage of this work is that it allows
for several independent risk (cost) functions and doesn’t need to convert them
to the same scale.

A similar approach of using constrained MDP to solve the problem can be
found in the work of Moldovan [20]. He does, however, use the ergodicity condi-
tion to tell safe and unsafe states apart (that is, safe are only those states from
which the agent can get back to the initial state). Moreover, this approach is only
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shown to work for toy examples like the grid world with only several thousands
of discrete states, which may not be sufficient for real robotics tasks.

The idea of having several risk functions is further developed by Ertle [9].
The agent is told to have several behaviors and a separate safety function is
learned for each behavior. This approach allows for modularity and sharing of
the learned safety functions among different types of agents. More details on this
work will be provided in the next section, because it belongs to learning with
teachers.

An approach slightly different from the previously mentioned in this section
is using the methods of reachability analysis to solve safe exploration. Gillula
in his work [13] defines a set of keep-out states (corresponding to unsafe in our
labeling) and then a set called Pre(τ) is defined as a set of all states from which
it is possible to get to a keep-out state in less than τ steps. Reachability analysis
is used to compute the Pre(τ) set. Safe states are then all states not in Pre(τ)
for a desired τ . This approach, however, doesn’t utilize reinforcement learning,
it computes the optimal policy using standard supervised learning methods with
one additional constraint – that the system must use safe actions near the Pre(τ)
set. On the other hand, the system is free to use whatever action desired when
it is not near Pre(τ).

As was presented in this section, the labeling-based approaches provide a num-
ber of different ways to reach safety in exploration. They are, however, limited in
several ways – some of them make use of the (usually hard-to-obtain) transition
matrix, the others may need to visit the unsafe states in order to learn how to
avoid them, or need the state-space to be metric.

4.3 Approaches benefiting from prior knowledge

The last large group of safe exploration techniques are the ones benefiting from
various kinds of prior knowledge (other than the parameters of the MDP). We
consider this group the most promising for safe exploration, because “it is impos-
sible to avoid undesirable situations in high-risk environments without a certain
amount of prior knowledge about the task”[10].

The first option how to incorporate prior knowledge into exploration is to
initialize the search using the prior knowledge. In fact, several works already
mentioned in previous sections use prior knowledge – namely the approaches
with a backup policy (Hans [14], Garćıa [10]). Also, Garćıa suggests that the
initial estimate of the value function can be done by providing prior knowledge,
which results in much faster convergence (since the agent does no more have to
explore really random actions, the estimate of the value function already “leads
it” the right way) [10].

Another option how to incorporate prior knowledge is by using Learning from
Demonstration (LfD) methods. Due to the limited space, we will not give the
basics of LfD – a good overview of the state-of-the-art methods is for example
in [2]. For our overview, it is sufficient to state that LfD methods can derive
a policy from a set of demonstrations provided by a teacher. What is important,
is that the teacher does not necessarily have to have the same geometrical and
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physical properties as the trainee (although it helps the process if possible). It is
therefore possible to use LfD to teach a 5-joint arm to play tennis, while using
3-joint human arm as the source of demonstrations (but the learned policy may
be suboptimal; RL should then be used to optimize the policy).

In Apprenticeship Learning [1], the reward function is learned using LfD.
The human pilot flies a helicopter at his best, and both system dynamics and
the reward function are learned from the demonstrations. It is however apparent
that the performance of the agent is no longer objectively optimal, but that it
depends on the abilities of the human pilot.

Another way of incorporating prior knowledge into the learning process is
to manually select which demonstrations will be provided, as in the work of
Ertle [9]. In the work it is suggested that more teacher demonstrations should
come from the areas near the unsafe set, in order to teach the agent precisely
where the border between safe and unsafe is located.

The last technique described in our overview is interleaving autonomous ex-
ploration with teacher demonstrations. As in the previous case, some teacher
demonstrations are provided in advance, and then the exploration part starts
utilizing the teacher-provided information. After some time, or in states very
different from all other known states, the agent requests the teacher to provide
more examples [2,5]. The idea behind this algorithm is that it is impossible to
think out in advance what all demonstrations will the agent need in order to
learn the optimal policy.

Finishing this section, the algorithms utilizing prior knowledge seem to be the
most promising out of all the presented approaches. They provide both a speedup
of the learning process (by discarding the low-reward areas) and a reasonable
way to specify the safety conditions (via LfD or interleaving).

5 Conclusion

In our work we have given a short introduction on the basics of Markov Decision
Processes as well as the basic Reinforcement Learning methods like Value Iter-
ation, Q-learning and Policy Iteration. In Section 3 we have summarized many
recent approaches on how to define safety in the framework of optimal control
and reinforcement learning. We have also proposed a novelty definition of safety,
which divides the state space to safe, critical and unsafe states. We have shown
that all other labeling-based safety definitions are covered by our new definition.

In Section 4 many different safe exploration methods are categorized into
three basic groups – algorithms from optimal control theory, reinforcement learn-
ing algorithms based on state labeling, and algorithms utilizing extra prior
knowledge. We have shortly summarized the advantages and disadvantages of the
particular approaches. We have also stated that at least for difficult real-world
problems, safe exploration without prior knowledge is practically impossible,
and prior knowledge almost always helps to achieve faster convergence. Another
observation has been that some of the safe exploration algorithms need to visit
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unsafe states to correctly classify them later, which might discard them from
some usage scenarios where the unsafe states are really fatal.

It seems to us that the field of safe exploration in reinforcement learning has
been very fragmented and lacks an all-embracing theory. However, the question
is, if it is even possible to find such theory – the main problem may be the
fragmentation and differences of various RL methods themselves. At least, the
safe exploration community would benefit from a unification of the terminology
(and our proposal of the novelty safety labeling would like to help that).

Other ways of possible future research are for example the following. New
ways of incorporating prior knowledge into methods not utilizing it yet could
bring interesting speed-up of those algorithms. There is also a bottleneck in the
estimation of the results of unknown actions – some advanced function approx-
imation methods should be explored (we aim to investigate Gaussian Processes
this way). There are not enough experiments from difficult continuous real-world
environments, which would show for example how large problems can be solved
using safe exploration. The interleaved learning needs some guidelines on how
to cluster the queries for the teacher to some larger “packs” and “ask” them
together, possibly increasing the fully autonomous operating time. Last, but
not least, the possibility to share some learned safety functions among different
kinds of robots seems to be an unexplored area with many practical applications
(maybe robot-to-robot LfD could be used).
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Abstract. In USAR (Urban Search and Rescue) mis-
sions, robots are often required to operate in an un-
known environment and with imprecise data coming
from their sensors. However, it is highly desired that
the robots only act in a safe manner and do not per-
form actions that could probably make damage to
them. To train some tasks with the robot, we utilize
reinforcement learning (RL). This machine learning
method however requires the robot to perform ac-
tions leading to unknown states, which may be dan-
gerous. We develop a framework for training a safety
function which constrains possible actions to a sub-
set of really safe actions. Our approach utilizes two
basic concepts. First, a “core” of the safety function
is given by a cautious simulator and possibly also
by manually given examples. Second, a classifier
training phase is performed (using Neyman-Pearson
SVMs), which extends the safety function to the states
where the simulator fails to recognize safe states.

1. Introduction

Many robotic tasks are tackled by RL with iter-
ative state-action space exploration (RC helicopter
acrobacy [1], adaptive traversability [17], etc.). RL
essentially needs to exhaustively sample the state-
action space (which is called “exploration”), and the
exploration strategy is represented by a stochastic
policy.

While manually-driven exploration is often pro-
hibitively time consuming, autonomous exploration
is usually only applied to inherently safe systems
(pendulum) or to simulators [16]. We propose a
framework for making autonomous exploration safe
even for general systems, and we test it on the task
of autonomous control of articulated subtracks (flip-
pers) of the USAR mobile robotic platform depicted
in Figure 1.

1.1. Task description

The objective of our algorithm is to train a safety
function that will allow to select only those explo-
ration policies, that do not lead to unsafe states. Find-
ing an efficient way to optimize the RL objective
while using only safe policies is left for an upcom-
ing research (a relevant approach for policy iteration
is shown in [14]).

1.2. Contributions

The contributions of our paper can be summed up
as follows. We introduce a novel term “cautious sim-
ulator” and show it is both simple to construct and
useful in machine learning tasks. Next, we present
a safe exploration algorithm based on NP-SVM that
gradually discovers the safe region without visiting
unsafe states or needing too much prior knowledge.



2. Limits of other safe exploration methods

2.1. Visiting of unsafe states

Many proposed safe exploration techniques re-
quire that the robot can visit unsafe states in or-
der to get data with “negative” labels. This may
be justifiable only if there is a precise model of the
world where the dangerous steps can be simulated
(e.g. [11, 10]), or if there is an unlimited number of
robots to try with. In our work, the robot is never
required to visit an unsafe state.

2.2. Coupling safety with rewards

Many safe exploration approaches try to utilize the
existing RL methods to achieve safety. This is usu-
ally connected with some consequences unaccept-
able in USAR cases.

Either they claim a state is safe based on the min-
imum achievable reward – if it is high enough, the
state should be safe [12]. This was proved to be
highly non-optimal [8]. Or they just set negative re-
wards to unsafe states and run standard RL (e.g. [5]).
However, no guarantees can be given this way, since
RL only optimizes the expected outcome.

Tying safety with rewards seems to be unnecessar-
ily constraining. Especially in the field of safe explo-
ration, it does not hold that what is safe is also good
from the task point of view (and vice versa, what is
good for the task, is not necessarily safe).

We propose to decouple the terms safety and re-
ward completely, as it is done in [9] (where, how-
ever, the safety and reward functions get combined
together during learning using a weighted sum). In
our work, the safety and reward functions are trained
as independently as possible.

2.3. Too optimistic expectations

Our last remark is on what can be achieved at best
by any safe exploration algorithm. Geibel mentioned
that we can never achieve absolute safety [9]. Not
only that the safety guarantees can be often only pro-
vided as an estimate (which can be erroneous), but
we can also “protect” the robot only against some
specified classes of risk.

This issue is covered in Ertle’s system paper [7],
along with the description of methodology and a gen-
eral view on how the learning algorithms should look
like. One implication of his work is that the safety
implemented in robots should be behavior-based –
e.g. each class of risk should include its own safety
function and its own policy to avoid the danger. In

our experiment, we only concentrate to the “behav-
ior” of climbing down a step.

3. Precise formulation

We optimize a RL task given in the gradient pol-
icy search paradigm presented e.g. in [3]. The robot
“lives” in a state space X and performs actions from
A according to a stochastic policy ⇡ : X ! P(A),
and is rewarded by a real-number reward function
R : X ! R. Every policy can be evaluated by the
expected performance given by

J(⇡) = E⇠⇠P⇡ [R(⇠)]

where ⇠ is a trajectory (sequence of states) created by
following the policy from a common start state, and
R(⇠) is a (possibly discounted) reward for the whole
trajectory.

To simplify the learning, the policy is often as-
sumed to be from a parametrized class of functions,
and the learning is only performed on the parameter
values. Thus we can write the policy as ⇡ = ⇡(✓),
and substitute just ✓ for the policy, yielding

J(✓) = E⇠⇠P✓
[R(⇠)]

Gradient policy search then searches for the policy
parameters ✓? which maximize the expected perfor-
mance [2]:

✓? = argmax
✓

J(✓)

And this is where safe exploration comes into
play: during the gradient search, the examined val-
ues of ✓ are not restricted in any way, so that it can
happen that the robot visits an unsafe state. With just
a small alteration to the previous equation, we can
“plug in” the safety:

✓? = argmax
✓:S(✓)�smin

J(✓)

where S is the safety function and smin 2 h0, 1i is a
user-defined safety threshold. Finally, we define the
state safety function s : X ! h0, 1i, from which S is
“composed” as

S(✓) = min
x⇠⇡(✓)

s(x)

The task is to construct a safety function closest
to the real safety margins, and not to visit any unsafe
states during the training.



4. Safe exploration system components

The basic background and motivation to our work
has been presented, so now we can describe the main
components of the algorithm.

A cautious simulator is the main component that
differentiates our work from other safe exploration
concepts. We use the simulator to predict safe states
among the set of unvisited states (it may be e.g.
a simple physical simulator). Cautious means that
if the simulator labels a state as safe, it is also safe
in the real world. On the other hand, it is allowed to
wrongly label safe states (in the real world) as unsafe.
Having a cautious simulator is a key to success of our
algorithm, and creating such simulator is (much) eas-
ier than constructing a plausible physical simulator.
Throughout all this work we suppose that running the
simulator is (computationally) expensive, so we try
to minimize the number of its uses, and we prohibit
sampling the whole state space using the simulator.

Next, we need to have an experienced human op-
erator that is capable of executing safe trajectories
on the robot in the real world. We suppose that this
operator has much more (prior or sensory) informa-
tion than the robot has, and thus he or she can assess
the safety of intended actions before executing them.
These safe trajectories will be used to initialize the
safety function. If we discover an area in the state
space that is misclassified by the safety function as
unsafe, the operator can reach these areas manually,
which forces the algorithm to correct the safety esti-
mates for that region.

Combining the simulator and operator results, we
can construct the safety function. Such function takes
the state of the robot (the extracted features), and la-
bels it either safe or unsafe (by returning a number in
the h0, 1i interval, where values greater than smin are
considered safe). This component is implemented
using Neyman-Pearson SVM classifier.

Finally, we need a safe policy extractor, that takes
the current estimate of safety function and chooses
a policy going only through safe states. Safe policies
are then used to automatically gather new data.

The algorithm that combines all these components
into a safe exploration scheme is shown in Alg. 1 and
described in detail in the next section.

5. USAR safe exploration in detail

In this section we’re going to go through the algo-
rithm step-by-step and show what exactly is done in
each step. In Table 1 we present the basic definitions

Algorithm 1 The safety function training algorithm
1. Xreal = operator-generated initial trajectories
2. Update T, S0 := updateSVM(T)
3. i := 0
4. while learning should continue do
5. Generate an optimal policy ⇡i safe on Si, or

use the operator “as a policy”

6. Drive using ⇡i, record visited states xnew
7. Xreal = Xreal [ xnew
8. Update T, S0

i := updateSVM(T)
9. Perturb xnew several times, add the perturbed

states to Xsim
safe or Xsim

unsafe depending on the
result of simulation

10. Update T, Si+1 := updateSVM(T)
11. i++
12. end while

Variable Definition
n The dimensionality of feature space
X Rn, the feature (state) space
A X⇥A ! P(X), the set of actions
Xreal ⇢ X, already visited states
Xsim

safe ⇢ Xsim , states labeled safe by Sim

Xsim
unsafe ⇢ Xsim , states labeled unsafe by Sim

T {Xreal ⇥ {safe}} [ {Xsim
safe ⇥

{safe}} [ {Xsim
unsafe ⇥ {unsafe}},

the training set for SVM
Sim X ! {safe, unsafe}, the simulator
⇡i X ! P(A), a stochastic safe policy
Si X ! {safe, unsafe}, a safety

function (SVM)

Table 1. Notation used in the algorithm.

used in the algorithm.

5.1. Initialization

On line 1 we first require the operator to gener-
ate some real-world trajectories. It is generally not
necessary for them to be generated by the operator;
they can also be substituted by a first run of the sim-
ulator or by prior knowledge (e.g. if a small part of
safe states can be analytically expressed). It is im-
portant for this initial set to be sufficiently large –
if it were not, the initial estimate of the safety func-
tion would be very poor. All the generated points
are inserted into Xreal which is represented either as
a set of points, or as a spatial search tree (depend-
ing on the expected number of elements). Then we



update the training set T (according to its definition
given in Table 1), and update the SVM model of the
safety function (S0). Description of the SVM update
is postponed for Section 5.6.

5.2. The stopping criterion

Line 4) represents the stopping criterion. It can be
either a subjective measure (trading off safety func-
tion accuracy for time available for experimenting),
or a qualitative measure (if the algorithm is no longer
able to simulate more unvisited states, or if the safety
function hasn’t changed for some time).

5.3. Generating an optimal safe policy

On line 5 a policy is generated based on Si. There
are several options on how to do that.

If the task is not only to train safety, but also to
optimize a given criterion, it is needed to run a modi-
fied Reinforcement learning algorithm that optimizes
the expected return subject to all the states selected
by the policy are safe. Since computing such opti-
mization problem efficiently is a large problem itself,
we only give here a simple (and probably inefficient)
way to solve the constrained RL problem. The easy
solution is to set rewards for all unsafe states to nega-
tive infinity. This will surely find a policy that is safe,
however we do not say whether it is optimal or not.

The other option is to randomly generate policies
and verify their intersection with the safety function
(e.g. by sampling). This is good if we are not inter-
ested in learning any specific task, and we just want
to explore the state space (“optimal” here means any
safe policy).

It can happen that there is no safe state for a partic-
ular feature value. Then we need to incorporate this
into the policy and allow it to answer that a state is
unreachable.

5.4. Policy execution

The step to be done next is to execute the safe pol-
icy (line 7 and further). This may need some addi-
tional work to be done, such as setting the robot to
an initial position, changing the environment and so
on. After the policy is executed, the newly visited
states are added to Xreal and an update of T and the
SVM is run.

5.5. Simulation

The loop starting on line 9 specifies that we sam-
ple some perturbed states and simulate them in the
simulator. Here is one important point – we assume

that the further a perturbed state is from the current
(real) state of the robot, the less precise the simula-
tion is. Therefore we always try to perturb only in
some small local neighborhood of the current state.
How to perturb depends on the type of the features –
it can be e.g. by Euclidean vector shifting. The mag-
nitude of the shifts is one of the free parameters of
this algorithm.

Once we have the simulations done, we record the
simulated states to Ssim

safe or Ssim
unsafe depending on

the results of the simulations (which are either binary
classes or numbers from h0, 1i). Then the training
set and SVM are updated again (which is described
in the next section).

This simulation and perturbation can also be run
just after initialization, before the algorithm enters
the learning loop. This way the initial estimate of S0

will be better.

5.6. Updating the safety function (updateSVM)

Representation and modification of the safety
function are the key points of our algorithm. We need
the safety function to generalize the set Xreal[Xsim

safe

in continuous space, not containing any point from
Xsim

unsafe.
From our assumptions it follows that it is not nec-

essary that a generalization over this set also denotes
only safe regions (because we defined that safe are
only visited states, and states tagged safe by Sim).
However, if we assume continuousness of the safety
function, it can be approximated very well.

To describe the representation of the safety func-
tion, we first define an auxiliary set Tpruned ⇢ T,
which is basically the set of all visited or simulated
states. To avoid serious problems in computation
of the safety function, we need to prune Tpruned in
such way, that there are no points from Xsim near
to any point from Xreal. This in fact ensures that
visited states have “priority” over states just simu-
lated, which allows us to remedy states misclassified
by Sim as unsafe, although they are safe in reality.
Again, the distance function is a free parameter of
this algorithm.

Now, Tpruned contains states of which no two
cover each other, and are tagged either safe or un-
safe. Finding a representation of Si is now a binary
classification task. To ensure safety of the estimated
safety function, the classification has to be done in
such a way that it never classifies an unsafe state
as safe. This can be easily achieved by using the



Neyman-Pearson classification [15] with false neg-
ative rate limit set to zero (assuming negative=safe).

One of the possible implementations of this clas-
sification scheme is using 2⌫�SVM presented in [6]
utilizing LIBSVM [4]. There is a set of kernel func-
tions that can be used with SVMs, and which one
to choose again depends on the expected structure
of the safety function. Preferring SVMs has one
good reason against other binary classification tools
– SVMs minimize structural risk (error on test data)
rather than minimizing the error on training data.
This should provide us with a robustly estimated
safety function.

5.7. Remarks

The goal of this algorithm is to find a safety func-
tion closest to the real safety margins of the robot.
The approximation of the real safety with the safety
function should get better as the number of visited
states increases, which can be confirmed taking into
account how the training set for SVMs is built and
how SVMs operate (assuming the kernel function is
rich enough to represent the safety function).

Also we can conclude that the number of simu-
lator runs is less than if we sampled the state space
regularly, which could be another method of estimat-
ing the safety function. Furthermore, our approach
has the advantage that it is always sufficient to sim-
ulate in local neighborhood of the state the robot is
in, allowing for better simulations than if we ran the
simulator in distant states.

6. Experiments

6.1. Platform description

To prove this concept of safe exploration we have
set up an experiment on a real robot. In the experi-
ment we train a safety function for the task of climb-
ing down steps with various heights. The robot is
in front of a terrain step and it receives the “go for-
ward” command. The task is to find the safe flipper
angles using which the robot climbs down safely (if
it is possible at all).

The robot we used is the Absolem platform from
EU FP7 projects NIFTi and TRADR (see Fig. 1).
This is an actively articulated tracked platform with
size about 60 cm⇥30 cm⇥30 cm and weight 25 kg.
The four articulated subtracks (two on each main
track) are called flippers. The robot can actively
control the rotation of each of the flippers (indepen-
dently).

From the point of view of this experiment, the
robot has two important sensors - an IMU (measuring
rotation and acceleration), and a laser range finder
with broad field of view (270� both horizontally and
vertically). There is also a 3D map incrementally
built from the laser data, so the robot knows the ter-
rain under itself (which is occluded for the laser).

6.2. Experiment setup

For the experiment we have chosen the task of
controlling front flippers when driving down a step
(both flippers the same angle). This action is inter-
esting because for different step heights there are dif-
ferent safe flipper configurations, and from a partic-
ular height up, there is no safe flipper configuration.
The potentially unsafe states cover robot body break-
age due to flipping over, gaining too high speed, or
touching the terrain with one of its fragile parts (e.g.
the laser scanner or camera).

So the state space consists of all possible step
heights (also drop heights; measured at the point
where the flipper is attached to the main track). The
robot generates multiple data when driving down
a step – first for height 0, then for the maximum
height, and then for all the heights until it finishes
climbing down the step (however, we assume only
limited sampling capabilities, and this is why the data
in Fig. 3 are that sparse). The action space then cov-
ers all possible flipper angles the robot can set when
climbing down the step. For simplicity, we assume
the robot can switch quickly between two different
flipper configurations.

The policies are from the deterministic linear pol-
icy class of the form ⇡(x) = ✓0+✓1x. The reinforce-
ment learning objective we minimize is J(✓) = ✓21
(to prefer policies with less flipper motion, e.g. to
save power). We seek for a safety function that would
discriminate which flipper configurations are safe for
which step heights. The safety function is repre-
sented by a 2C-SVM (equivalent to 2⌫-SVM) with
Radial Basis Function kernel.

For executing the simulations, we created a simple
model of the robot for use with the Gazebo simula-
tor. Gazebo is a physical simulation library, however
our model contains only the basic physical proper-
ties. Namely, we have created plausible collision
links for the real robot links (simple enough to al-
low for fast collision checking, though they are still
triangle meshes and not primitive objects). For each
of the links we have estimated the weight, center of



mass position and inertial properties. Specifically,
we have not estimated or set any properties regard-
ing the motors, friction, slippage or other dynamic
properties.

Similarly, we put in the simulator a rough terrain
representation that is created directly by triangulating
the point cloud (either from the laser scanner or from
the point map). Such map is in no means smooth,
rigid or regular. It contains triangles with wrongly
estimated normals or even corner positions and it is
non-continuous. Creating a more sophisticated map
is an option for improving the estimated safety func-
tion, but it is difficult and we want to show that this
algorithm works well even with the cluttered map
and simplistic robot model. Thus, the task environ-
ment can be considered unstructured.

The simulation is then done in the following man-
ner: first we get the triangulated map and place the
robot to the position corresponding to the real world.
Then we shift it forward 30 cm, set the desired flipper
angle and let the robot “fall” on the ground, adjusting
the flipper angle according to the given policy. If the
flipper policy is safe, then the robot only falls a few
millimeters and remains in a stable state, and we can
mark all passed state-action pairs as safe. The pol-
icy is considered unsafe if the robot touches the ter-
rain with its fragile parts, if it turns over or if it ends
up too far from the desired [x, y] coordinate – then
the simulator tags all the state-action pairs as unsafe.
For a reference on how the robot looks visualized by
Gazebo, refer to Figure 1.

Fortunately, physical simulations in this setting
proved to satisfy the requirement on cautiousness of
the simulator. To even more ensure cautiousness, we
perturb each simulated state several times and return
the ratio of safe simulations to all simulations as the
final result (thus our simulator returns values from
h0, 1i). Here the great advantage of our algorithm
showed up – the simple physical model, as well as
the triangulated map, are matters of hours to create.
If we should create a precise physical model (of both
the robot and the terrain), it would still have cases
where it fails, and it would have needed much more
effort to be done. Moreover, there are properties of
the terrain that cannot be modeled in advance, and
our perturbation approach could overcome some of
them.

It is important to notice that the simulations are
performed in a space much larger than the feature
space (which is 1-dimensional). The simulations are

Figure 1. Robot simulation in the Gazebo simulator. Four
articulated subtracks (flippers) can be seen in the image –
the front ones on the right, and the rear ones on the left.
All flippers are in a configuration corresponding to flipper
angle 0 rad, and the white arrows symbolize some basic
flipper configurations. So lifting up the flippers decreases
the flipper angle. In the image there is also shown the
triangulated terrain. The red and green segments denote
detected robot-terrain collisions.

performed with full 3D models (triangle meshes) in-
corporating physical influences of forces. So what
we do is simulate the problem in its full description,
and then map the result of the simulation to the prob-
lem projected to a 2D subspace consisting of features
and actions. If the projection is chosen wise, there
should be no problem with this dimension shrinking.

6.3. Realization of the experiment

To verify the safe exploration algorithm in prac-
tice, we drove the robot on several steps of different
heights, running the algorithm after each trial. After
each teleoperated trial there was an autonomous test
of the generated policy. We always chose the policy
that intersects the largest area of safe states.

6.4. Evaluation of the experiment

During the realization phase, the robot never tried
to enter an unsafe state (both from the estimated un-
safe set, and from the real unsafe states). It always
managed to add new points to the safety function rep-
resentation and enlarge the area of state space cov-
ered with the safe region. The safe and optimal pol-
icy did not change during the experiment, it was al-
ways a constant policy ⇡ = 1.1 + 0x.

The progress of the safety function, as well as
its support vectors is shown in Fig. 3, note how the
safety function’s safe area growed gradually with
each iteration.

After the final iteration, we compared the learned



Figure 2. Poses of the robot to better illustrate the meaning of data points in Figure 3. The robot icons are placed
approximately with their center on the data point (the left column represents drop height 0). The “ghost” flippers for angle
1 rad denote that the robot pushes to get to that angle, but the applied power is not sufficient (the flippers are compliant).
The red bars illustrate the place where the drop height was measured.

safety function to the limits that an experienced op-
erator would allow for the robot. Actually, in more
complex instances of safe exploration, getting such
limits is impractical. The comparison is shown in
Fig. 3, and Fig. 2 provides a graphical understanding
for the data points. It is evident from the figure that
we have succeeded keeping the false negative (FN)
rate at 0 (here FN denotes unsafe states classified as
safe).

Using the classifier terminology, we can specify
true negatives (TN) as the number of safe states clas-
sified safe, false positives (FP) the number of safe
states classified unsafe, and true positives (TP) the
number of unsafe states classified unsafe. Then we
may define accuracy as (TP + TN)/(TP + TN +
FP +FN) and precision as TP/(TP +FP ). With
this terms defined, we may say that the objective of
the safe exploration algorithm is to achieve precision
as close to 1 as possible, which means to minimize
the difference between the estimated and real safety
functions, while preserving FN = 0.

During the three model updates, the values of ac-
curacy in the individual steps were [0.70, 0.82, 0.81],
and precision was [0.42, 0.66, 0.69]- Another inter-
esting metric can be seen when we superimpose
the last (best) SVM model S2 over the set of vis-
ited points in previous model updates. This shows
how the model gets gradually better – accuracy
[0.77, 0.82, 0.81], precision [0.48, 0.66, 0.69]. We
note that compared to the first model S0, the last
model S2 classifies several previously unsafe points
as safe, increasing both accuracy and precision. On
the second model S1 there is no change if superim-
posed with S2.

7. Conclusion and further work

In our work, we have presented a novel frame-
work for achieving safe exploration in unstructured
environments. Compared to other approaches, our
method does not need to visit unsafe states, as well
as it can guarantee that the robot doesn’t visit un-
safe states by accident (this holds only for the unsafe
states we provide simulators for). It also allows to
train the safety function(s) independently from the
robot’s other tasks, and such safety functions can be
easily composed. The trained safety functions are
then used to restrict reinforcement learning and other
algorithms to only choose safe actions during explo-
ration.

There are two main prerequisites for our safe ex-
ploration approach: having a cautious simulator and
knowing how to represent the safety function. For
the former, we have shown that creating such sim-
ple simulator can be easy at least for some problems.
The latter can be circumvented by either analysis and
modeling of prior knowledge, or by trial-and-error.

This algorithm can be advanced in several ways.
Adjusting parameters of the simulator seems to be an
interesting way of increasing performance. However,
it is not clear how to do some kind of gradient descent
with the whole simulator.

If we could safely visit critical states (those near
the decision border), that could also help. This can be
for example achieved by implementing a cautious ex-
ploration strategy (human operators also slow down
in dangerous or unknown situations).

Further improvements can be done in the area of
selecting which policy to execute. For example, if
we could select a policy that would maximize the in-
crease of the safe area, the exploration could be done
faster.



Figure 3. The progress of learning the SVMs for safety model (iterations 1, 2 and 3 from the top). The pink area is
considered safe by the SVM (the blue solid line is its boundary). The dashed black line denotes the safety boundary
estimated by an experienced operator (just for evaluation purposes). Data points from Xreal are represented as brown
dots, Xsim

safe as plus signs and Xsim
unsafe as crosses. Safety of Xsim data points is coded by color using the shown color

scale (we used safety threshold smin = 0.7). Encircled points are the Support Vectors. The thin red, green and blue lines
represent the manually driven trajectories, and the magenta line at the bottom is the trajectory executed using ⇡i. To better
understand the visualization of the trajectories, please refer to the robot poses depicted above the first iteration connected
by green dotted lines to the corresponding data points (first, the drop height is 0, then it “jumps” to the maximum drop
height, and as the robot climbs down, the drop height gets lower and lower). Note that manually visiting the green and
azure points in the last step would greatly improve the safety function estimate.

A similar idea is to have an algorithm that would
tell the operator which states classified as unsafe by
simulator would be worth visiting in the real, if the
operator considers them safe. Such approach could
both minimize the number of needed human inter-
ventions and speed up the exploration process.
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Abstract If we aim for autonomous navigation of a mobile
robot, it is crucial and essential to have proper state esti-
mation of its position and orientation. We already designed
a multi-modal data fusion algorithm that combines visual,
laser-based, inertial, and odometric modalities in order to
achieve robust solution to a general localization problem in
challenging Urban Search and Rescue environment. Since
different sensory modalities are prone to different nature
of errors, and their reliability varies vastly as the environ-
ment changes dynamically, we investigated further means
of improving the localization. The common practice related
to the EKF-based solutions such as ours is a standard sta-
tistical test of the observations—or of its corresponding fil-
ter residuals—performed to reject anomalous data that dete-
riorate the filter performance. In this paper we show how
important it is to treat well visual and laser anomalous resid-
uals, especially in multi-modal data fusion systems where
the frequency of incoming observations varies significantly
across the modalities. In practice, the most complicated part
is to correctly identify the actual anomalies, which are to be
rejected, and therefore here lies our major contribution. We
go beyond the standard statistical tests by exploring different
state-of-the-art machine learning approaches and exploiting
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our rich dataset that we share with the robotics community.
We demonstrate the implications of our research both indoor
(with precise reference from a Vicon system) as well as in
challenging outdoor environment. In the final, we prove that
monitoring the health of the observations in Kalman filtering
is something, that is often overlooked, however, it definitively
should not be.

Keywords Localization· Kalman filter· Multi-modal data
fusion· Anomaly detection· Mobile robots

1 Introduction

In this work, we seek for an improvement in localization of
a mobile robot (see Fig.1) by inspecting measurements pro-
vided to a state estimation algorithm. We wish to achieve
more accurate and robust estimates of the robot pose (i.e.,
attitude, velocity, and position). We seek for a classifier
that identifies an anomalous measurement and thus sup-
ports the pose estimation, which is in our case realized using
an extended Kalman filter (EKF) combining proprioceptive
(inertial measurements and velocities of the tracks) and exte-
roceptive (visual and laser measurements) modalities. In the
context of state estimation, we define the anomalous mea-
surements as those, which cause significant deviation of the
state estimates from the true values. Consequently, anomaly
detection is understood as a process that ensures identifi-
cation and rejection of these defective exteroceptive pose
data before they are processed by the estimation frame-
work and spoil the localization. Since we use both statis-
tical and machine learning methods, the key to successful
evaluation of our anomaly detection is having rich datasets
with precise and accurate external reference for attitude
and position, such as captured using the Vicon system (for
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Fig. 1 The skid-steer mobile robot. See Sect.3 for details about the
sensory set and multi-modal data fusion

this purpose we exploit our publicly available datasets, see
Sect.4.1).

To avoid confusion, we would like to stress out that our
multi-modal data fusion utilizes only relative observations
(raw pose measurements or increments). Neither propriocep-
tive nor exteroceptive pose measurements exploit any kind of
predefined map, loop closures or other prior knowledge that
could correct the pose information before it is processed in
the EKF update step. We primarily aim to improve the local-
ization by mitigating the pose drift that accompanies any such
data fusion without absolute corrections. Moreover, we con-
sider the proprioceptive sensors—inertial measurement unit
(IMU) and track odometry—as the primary sensory set for
the mobile robot localization, which was previously proved
to localize the robot up to a certain performance limit influ-
enced especially by the yaw angle drift and track slippage
(Reinstein et al. 2013; Simanek et al. 2015). To complement
the proprioceptive set, we exploit the exteroceptive measure-
ments, which provide corrections leading to more robust esti-
mates. We claim that inspecting the Kalman filter residuals
(i.e., difference between predicted and real measurements)
generated by the exteroceptive sensory set and rejecting real-
world disturbances is particularly essential for long-term nav-
igation and autonomous behavior no matter which platform
is used.

During our previous work in urban search and rescue
(USAR) scenarios, we encountered frequent abnormal pat-
terns in the visual odometry attitude (VO), and laser range
finder attitude and position estimates. These usually occurred
as a consequence of unexpected environmental effects or
modality failures (e.g., dynamically changing conditions, ter-
rain obstacles, limited range of view, low visibility). For this
reason, we were motivated to investigate means of detec-
tion and subsequent rejection of such anomalous measure-
ments and we extend our previous work regarding EKF-based
mobile robot localization and adaptive odometry (Kubelka
et al. 2014; Simanek et al. 2015; Reinstein et al. 2013; Rein-

stein and Hoffmann 2013; Kruijff et al. 2012). Furthermore,
the aspect of inspecting EKF residuals is often overlooked
in common practice or a simple threshold based approach
is applied. In that case, threshold has to either be manually
tuned for all of the EKF states or implemented as a statistical
measure (e.g., chi-squared statistics test). In both cases, the
detection performance was repeatedly referred as arguable
(Ting et al. 2007; Ma et al. 2012).

Our major contribution lies in the in-depth analysis of
the detection and resolution of anomalous measurements in
EKF-based multi-modal data fusion framework. We propose
several possible solutions using supervised machine learn-
ing: Gaussian Mixture Models (GMM) modified by a Maha-
lanobis distance-based decision, one-class Support Vector
Machines (SVM), and logistic regression. We compare them
to each other as well as to the common practice approaches—
covariance and chi-squared threshold tests. We evaluate clas-
sifier performance by the means of true positive rate and true
negative rate on the indoor datasets labeled with the use of
a precise and accurate referential system. Finally we deploy
the best classifier in several complex testing environments,
such as urban park, disaster training site or dense forest, and
evaluate the localization performance.

This paper is structured as follows. Related work is
addressed in Sect.2. Section3 briefly introduces the data
fusion used in our mobile robot and summarizes methods we
use for anomaly detection. Section4 provides details regard-
ing experimental setup used for gathering data, as well as
results achieved. The results are concluded in Sect.5.

2 Related work

In this overview we focus on two areas: mobile robot
localization—multi-modal data fusion without any prior
knowledge about the surroundings or absolute measurements
(e.g., GPS measurements, known map or landmarks, loop
closures); and anomaly detection within the context of state
estimation.

2.1 Multi-modal localization

Since our mobile robot is a ground vehicle, the most used and
basic means of localization is the wheel or track 2D odom-
etry. Odometry usually provides 2D pose estimates without
excessive computational load at the cost of unbounded and
significant error growth (Endo et al. 2007). Since the stand-
alone odometry drifts rapidly (especially in the case of a
skid-steered vehicle) and provides only planar localization,
it is often complemented by inertial measurements (Yi et al.
2007), slippage estimation (Endo et al. 2007), or odometry
derived constraints (Dissanayake et al. 2001). Generally, it
is desired to aid the proprioceptive pose estimates by extero-
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ceptive measurements to provide more accurate and reliable
results, but still with unbounded error growth.

Visual odometry (Scaramuzza and Fraundorfer 2011) acts
as one of the exteroceptive modalities and provides aiding for
the IMU and odometry fusion (Shen et al. 2011); however,
at the high computational costs that have to be investigated
(Rodriguez et al. 2009). Another type of such sensor modality
is the laser scanner, which can provide dense 3D point clouds
used for mapping, or scan-to-scan translation and rotation
estimates allowing robot pose estimation (Pomerleau et al.
2013; Yoshida et al. 2010; Suzuki et al. 2010).

The well established and popular (Görner and Stelzer
2013; Yi et al. 2007; Dissanayake et al. 2001) state esti-
mation algorithm—the Kalman filter—excels in working
with a uni-modal distribution parametrized by mean and
covariance, providing state as well as its uncertainty esti-
mates (BarShalom et al. 2001, pp. 381–394). Majority of the
mobile robotics application use the extended or unscented
Kalman filters (UKF), where the UKF compared to EKF
does not require the derivation of Jacobians. The computa-
tional complexity of the UKF is higher (Chen 2003), which
makes it less feasible for running the state estimation in real-
time and on-board for large state space. Particle filters are
a suitable alternative for localization especially for nonlin-
ear systems with non-Gaussian noise. However, they require
even higher computational power than the UKF (Gustafsson
et al. 2002).

2.2 Anomaly detection in the context of state estimation

Anomaly detection addresses the task of finding patterns that
do not conform to expected behavior (Chandola et al. 2009).
There has been a lot of effort put into rejection of such dis-
turbances in a broad range of different applications (e.g.,
network security, fraud alert, medical domain, etc.Dua and
Du 2011).

Within the field of robotics the problem of system failures
identification is often referred to asfault detection and isola-
tion (FDI) (Pettersson 2005). Fault is defined as an anomaly
in behavior of the monitored system and can be detected
(indication that something is going as not expected), isolated
(locating the faulty component) and identified (determina-
tion of magnitude of the fault) (Gertler 1998, p. 3). A reliable
robotic system must deal with many uncertainties that can be
handled by FDI, e.g., by quality inspection of the provided
information (Brunner et al. 2013), comparing information
providers (Sundvall and Jensfelt 2006), using information
flow between the control and actuation (Christensen et al.
2008), monitoring the reliability of resources (Morales et al.
2008), or proper recognition and modeling of the sensor and
mechanical failures (Goel et al. 2000).

Failures in the exteroceptive perception systems are one
of many sources of uncertainty in mobile robot localization.

In visual odometry or laser point cloud processing, outliers
often occur in the frame-to-frame or scan-to-scan motion
estimation process. It is crucial to implement outlier removal
before the motion estimation step (Howard 2008) and mon-
itor the image (point cloud) quality to prevent perceptual
failures, which cause large localization errors (Brunner et al.
2013). An established standard for model estimation in the
presence of outliers is represented by the RANSAC based
algorithms (Fraundorfer and Scaramuzza 2012; Konolige
et al. 2011). Despite the search for outliers is not the concern
of our paper, a brief review has to be given to distinguish them
from our exteroceptive-based pose anomalies we detect.

The most common fault detection approaches in robot-
ics employ observer-based monitoring of the system and one
of the most popular observers is represented by the Kalman
filter (Pettersson 2005). Remedies for faulty measurements
provided to the Kalman filter may include adjustment of the
filter noise matrices (Sarkka and Nummenmaa 2009; Borges
and Aldon 2003), smoothing algorithms (Agamennoni et al.
2011) or other modifications. These aim to make the Kalman
filter estimates more robust by considering heavy-tailed non-
Gaussian distributions, re-sampling or weighting techniques
(Ting et al. 2007; Borges and Aldon 2003). Most of these
modifications are still dependent on the undesired data detec-
tion, noise identification, or require modified versions of the
Kalman filtering algorithms. Traditional statistical methods
used for Kalman filter monitoring are based on the filter
innovations (i.e., residual between the real and estimated
measurement) (Hwang et al. 2010; Soule et al. 2005) and
assume that the residuals are zero-mean Gaussian processes
with given covariance. When the filter is optimal and consis-
tent (BarShalom et al. 2001, p. 232), residuals can be checked
if they are generated from a chi-squared distribution (Ali and
Ushaq 2009; Caron et al. 2006; Sukkarieh et al. 1999). How-
ever, in practice one may struggle to tune the filter properly,
since not all the filter assumptions are met, as reported for
instance during fusion of VO and IMU attitude (Ma et al.
2012).

There exist machine learning alternatives to the standard
inspection of the measurements. These are applied in many
areas (Chandola et al. 2009), such as trajectory tracking
and monitoring (Laxhammar et al. 2009), or human activity
recognition monitored by classifier ensembles (Sagha et al.
2013). The idea of combining anomaly detection and state
estimation appeared also in the area of filter self-tuning for
automated CPU usage monitoring (Knorn and Leith 2008).

It was pointed out byNdong and Salamatian(2011) that
anomaly detection under the assumption about Kalman filter
innovations (i.e., white and Gaussian process) produce large
amount of false alarms and that innovations should be rather
considered a mixture of Gaussians. In general, data driven
anomaly detection exploits both supervised (utilizing data
labeled as normal and anomalous) and unsupervised meth-

123

Author's personal copy



Auton Robot

ods of learning (especially clustering and nearest neighbor
methods) (Tsai et al. 2009).

3 Methodology

In the following methodology sections we, first, describe
measurements provided by the robot sensory set. Second, we
review the data fusion framework and provide a brief sum-
mary of the EKF equations and filter tuning (seeKubelka
et al. 2014for further explanation). Third, we present the
anomaly detection concept along with both statistical and
machine learning methods.

3.1 Proprioceptive measurements

Proprioceptive measurements are in our case provided by
inertial measurement unit (IMU) and track odometry.

The IMU uses gyroscopes and accelerometers to pro-
vide angular rates and accelerations at 90Hz in all three
dimensions. Processing of the IMU data includes integration
of angular rates to obtain attitude information and double
integration of accelerations to obtain velocity and position,
respectively. Both are known to be exposed to a time related
drift, however gyroscope integration holds over longer peri-
ods of time and can be aided by accelerometers in the roll and
pitch channels to suppress the drift (Kubelka and Reinstein
2012). In contrast, accelerometer integration is always prone
to severe drift, therefore usage of the position estimates is
restricted to very short time intervals and we primarily cor-
rect this drift by incorporating track odometry.

Second type of proprioceptive sensor, incremental rotary
encoder, provides us the velocity of right and left tracks
at 15Hz. Since the odometry heading information degrades
quickly due to skid-steer character of driving, we incorporate
only the speed in the robot forward direction in our model.
The slippage still affects both velocity and position, and if
not corrected, these quantities are prone to unbounded error
growth.

The main disadvantage of combining IMU and odometry
lies in unbounded yaw and spatial drifts. Since we do not use
any absolute pose measurements, we can only rely on other
relative sources of aiding. Because the exteroceptive mea-
surements are usually exposed to different sources of errors,
we exploit them to aid the attitude and position estimates.

3.2 Exteroceptive measurements

Exteroceptive measurements are provided by panoramic
camera and rotating laser scanner.

Camera images are processed by visual odometry (VO)
(Scaramuzza and Fraundorfer 2011; Svoboda et al. 1998;
Divis 2013), which provides us relative rotation between

two consecutive panoramic images sampled at 2.5Hz. Imple-
mentation usesOpenCV1 Orb keypoint detector, 5-point
RANSAC and sliding window bundle adjustment refinement
(Kümmerle et al. 2011). In the case of omnidirectional cam-
era, the most needed yaw angle aiding is well conditioned,
since the image correspondences are significant in the major-
ity of the omnidirectional image. However, there are many
occasions where the VO attitude deteriorates: changing envi-
ronment, camera occlusion, loss of image correspondences
due to low-textured surfaces, insufficient or extensive illumi-
nation of the scene, or inadequate VO bandwidth with respect
to robot dynamics (e.g., quick turns).

High density 3D point clouds produced by the rotating
laser scanner are processed by the Iterative Closest Point
(ICP) algorithm (Besl and McKay 1992; Pomerleau et al.
2013) (implementation useslibpointmatcher2). It pro-
vides us relative translation and rotation between two consec-
utive scans sampled at 0.3Hz. As in the case of VO, there are
situations, where the laser information may fail or deterio-
rate, especially in harsh environment, where an obstacle may
cause the rotating laser to stop, or frequent indoor/outdoor
transitions or large moving objects occur. The main problem
is the low sampling rate of the laser pose information, which
is in our case the only modality that can correct the error
accumulated during the track slippage.

3.3 Data fusion scheme

In our multi-modal data fusion (originally published in
Kubelka et al.(2014)), we exploit the EKF in feedback form
(Farrell 2008, p. 209) to fuse several sensor modalities sam-
pled at significantly different frequencies to estimate robot
pose in a local coordinate frame (see Fig.2, the modalities
are highlighted in gray).

The robot is modeled as a rigid body moving through
space with no dissipative forces. Following sensors are used
in our data fusion: IMU Xsens MTi-G containing low-grade
3-axis accelerometer and 3-axis gyroscope; caterpillar track
odometer; omni-directional Point Grey Ladybug3 camera;
and continuously rotating SICK LMS-151 laser range finder
capable of creating 3D scans of the environment in front of
the robot.

3.3.1 Extended Kalman filter

The EKF in feedback form follows the error state imple-
mentation inspired byWeiss(2012) where the error state
Δx is defined as the difference between true state and state

1 Open-source computer vision libraryhttp://opencv.org/.
2 Open-source ICP library https://github.com/ethz-asl/
libpointmatcher.
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Fig. 2 EKF based multi-modal
data fusion algorithm (Kubelka
et al. 2014) with integrated
anomaly detection (anomaly
detection, VO and laser
modalities marked inred)
(Color figure online)

Fig. 3 Error state EKF flowchart (Kubelka et al. 2014)

estimateΔx = x − x̂. A flowchart summary of the EKF
equations is given in Fig.3 and can be split into following
steps:

– Nonlinear state propagation The a priori state estimate
x̂k|k−1 is obtained using a discretized non-linear system
model f and previous state estimatex̂k−1|k−1.

– Error prediction step The error state and error state
covariance propagation in time are computed as follows:
the a priori error state estimateΔxk|k−1 is initialized
to zeroes and a priori error state covariancePk|k−1 is
estimated using previous error state covariance, system
matrix Fd and system noise covariance matrixQd [both
discretized by the Van Loan method (Farrell 2008, p.
143)].

– Error update step Measurementsy and nonlinear mea-
surement modelh (computes predicted measurements
based on current a priori state estimates) are used to pro-

duce the measurement residualsv (innovations)3. Mea-
surement residuals update thea posteriori error state
estimateΔxk|k via Kalman gain matrixK. Kalman gain
is computed using the residual matrixS, measurement
noise covariance matrixR, measurement matrixH, and
error state covariance matrixP. Final update step involves
updating the error state covariance matrix to the a poste-
riori form Pk|k .

– State estimate correction The EKF cycle is completed by
correcting the a priori state with the updated error state
to obtain a posteriori statêxk|k .

3.3.2 Filter tuning

The filter tuning (i.e., choosing the system and measurement
noise covariances) was carried out in two phases ensuring
proper filter performance. First, noise covariances were esti-
mated according to the measured noise under static condi-
tions or noise levels specified in the manufacturer’s technical
specification. Second, the noise covariances were iteratively
tuned until the filter provided the best possible state estimates
with respect to the precise and accurate reference obtained
by Vicon motion capture system (see Sect.4.1).

We are aware that the consistency criteria (zero-mean
white innovations with given covariance (Simon 2006, pp.
298–301) may not be passed and the estimated covariance
may end up too pessimistic or optimistic. However, such
use of the referential data in the tuning process is consid-
ered a common practice and is an alternative approach to
time-consuming manual approach (Lau and Lin 2011). It
also ensures the best possible localization performance in
the given environment.

3 We exploit this difference between predicted and actual measurements
in the anomaly detection.
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3.4 Anomaly detection

3.4.1 Detection and rejection of anomalous exteroceptive
data

It is highly advised to inspect the sensor data and reject the
detected anomalous readings in the Kalman filter framework
(Grewal and Andrews 2008, p. 271). The detection of anom-
alous data was in our case done by both statistical tests and
machine learning approaches (see Sect.3.4.2). All classifiers
were deployed for the real-time detection in the EKF frame-
work and when the anomaly was detected, the system ignored
the measurement that caused the anomalous behavior.

To detect anomalies by statistical tests in real-time, we
employed the information provided solely by the EKF. First,
we tracked the error state estimates and looked for values
larger than their estimated uncertainty. Second, we applied
a statistical measure called chi-squared test, which monitors
the innovation information provided by the EKF.

The machine learning approaches using supervised offline
learning require the ground truth labels defining whether the
exteroceptive measurements (i.e., VO attitude, laser attitude
and position) are normal or anomalous. First, we ran the EKF
framework with every experiment available in our datasets
(see Sect.4.1 for more details about the datasets). Second,
referential pose from the Vicon motion capture system was
compared with the EKF state estimates after the particular
measurement was used for the EKF update. In other words,
we artificially matched the estimate to the true value and
tracked the progress of the precision of estimates. Finally, if
the state estimate started to diverge rapidly from the true value
in a short time interval (varying according to the modality
sampling time), the measurement was labeled as anomalous;
the other measurements were labeled as normal. Thus we
ended up with the normal data within a specific tolerance
around the true value during the fixed time interval.

Choosing the right input for the classifiers (i.e., features)
is key in supervised learning. As our anomaly detection
approach is purely based on EKF residuals, we propose fea-
tures that consist of residuals in each dimension for particular
quantity of interest (VO attitude, laser attitude and position)
as well as their norm. Where whole residuals capture more
the spatial dependency of the difference between actual and
predicted measurements, the norm clearly indicates the dis-
tance of measurements from their prediction. For each clas-
sifier we performed a straightforward feature selection from
the following set: residuals, norm of residuals, both norm and
residuals. Best performing subset of the features was selected
for the classification task (see Table2).

Last but not least, there is a necessary prerequisite of hav-
ing sufficiently large datasets for learning the hypothesis (i.e.,
the model that ensures detection of the anomaly). In our case,
we divided the experiments (see Sect.4.1for details) as fol-

lows: 2/3 of the experiments were used as a training set (for
learning) and 1/3 was used as a testing set (this part of the
dataset served also for evaluation of the statistical methods).

3.4.2 Classification methods

This section introduces the methods we implemented for
anomaly detection.

State estimates and variance are checked by monitoring diag-
onal terms of the covariance matrixP, which correspond to
estimation uncertainty of the particular error states (Farrell
2008, pp. 217–224). Since the covariance matrix, unlike the
state estimates, is not dependent on the actual measurement
data, the covariance analysis can be used for anomaly detec-
tion after measurement update of the filter. If the error state
estimate is larger than a certain threshold (typically the±3σ

boundary), the measurement is classified as anomalous.

Chi-squared gating test (referred also as afilter consistency
check) is a standard procedure used in combination with the
Kalman filter. It utilizes either the normalized estimation
error squared (NEES), which however requires knowledge
about the true states, or the normalized innovation squared
(NIS) (BarShalom et al. 2001, pp. 232–244). In practice, there
is a need for real-time consistency check, which is often real-
ized as monitoring of the NISε = vT S−1v, wherev is the
innovation (residual) vector, andS is the innovation (residual)
covariance matrix. NIS has aχ2 distribution withl degrees
of freedom (i.e., dimension ofv) (BarShalom et al. 2001, p.
236) and the test is performed by comparing the NIS to a
value from theχ2 distribution table with given confidence
level and degree of freedom.

Gaussian mixture models (GMM) is a probabilistic
approach that models the data as a mixture of different
Gaussian distributions. There arek Gaussian distributions
parametrized by their centersμ, covariance matrices�,
and mixture proportions. The solution of finding the mix-
ture of distributions withk components was implemented
as maximum-likelihood parameter estimation and found by
the Expectation-Maximization algorithm (Mitchell 1997, pp.
191–195).

In our approach, we estimated the GMM (i.e., learned their
parameters) on the training data divided into anomalous and
normal samples. Both were modeled by two separate mix-
tures and each mixture was modeled with a number of up
to three components. For the classification, we computed
the Mahalanobis distance of a incoming residual to every
Gaussian in both anomalous and normal GMM. The Maha-
lanobis distance is defined asdM =

√
(v − μ)T �−1(v − μ).

The distances were then weighted by the mixture proportions
of the GMM components (i.e., their estimated probability),
averaged to obtain weighted distance measures (indicating
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the distance of new residual to trained anomalous and nor-
mal GMM), and the final decision was made by comparing
these two distance measures.4

One-class SVM algorithm was introduced bySchölkopf et al.
(1999) as a support vector algorithm fornovelty detection.
The one-class SVM assumes that the available data are from
one class, thus it can learn only on the normal data (majority
of the training dataset) and distinguish the anomalies without
knowing them. The problem is specified in following way:
given a dataset with a probability distributionP, estimate a
subsetS of the feature space, such that a previously unseen
point drawn fromP lies outside the subsetS with some a pri-
ori bounded probability. One-class SVM solves this problem
by estimating a function that is positive onS (captures most
of the normal data) and negative on the complement (anom-
alous data). The one-class version of SVM is characterized
by the parameterν which is an upper bound on the fraction of
outliers and a lower bound on the fraction of support vectors.
As the one-class SVM is sensitive to the chosen parameters
(Sagha et al. 2013), we also compared the default settings
of the selected kernels5 with the parameters found by a grid
search: fraction parameterν (i.e.,ν = 2−10, 2−9.5, . . . , 2−1;
for all approaches); RBF parameter (γ = 2−10, 2−9, . . . , 20)
and degree of the polynomial kernel (d = 0, 1, . . . , 6). The
grid search used a fivefold cross-validation (according to
SVM guide for practiceHsu et al. 2003) and we included
the anomalous samples in the validation data to obtain the
training error (evaluated in the same way as defined in Sect.
4.1) on a dataset including both classes.6

Logistic regression can solve a binary classification prob-
lem (Murphy 2012, pp. 245–249), where model parameters
are estimated by an iterative search for the minimum of the
negative log-likelihood. In our case this was solved by the
gradient descent algorithm.7

4 Experiments and results

Our experimental evaluation consists of two parts. First, we
exploit indoor laboratory environment equipped with the
Vicon motion capture system to gather datasets with pre-

4 We used thegmdistribution class from Matlab Statistics toolbox and
fitted the GMM for number of components equal tok = 1, 2, 3 with
the standard parameters. Maximum of 3 mixtures was selected, because
models with more than 3 mixtures usually resulted in negligible weights
for some redundant mixtures.
5 We took linear, polynomial and radial basis function (RBF) kernels
in consideration.
6 We used the LIBSVM tool (version 3.17) (Chang and Lin 2011).
7 We used thefminunc from Matlab Optimization toolbox for the min-
imization.

Fig. 4 The environment simulating USAR conditions (slippery slopes,
catwalks etc.)

Table 1 Learning datasets

Modality Anomalies Residuals Anomaly ratio (%)

VO attitude 354 16871 2.1

Laser attitude 91 3477 2.6

Laser position 23 3477 0.7

Number of all anomalous vectors, all residual vectors, and anomaly
ratio

cise ground truth8 for the classifier learning and performance
evaluation. Second, we show the impact of the best anom-
aly detection method on the accuracy of actual localization in
four selected test cases from both indoor and outdoor unstruc-
tured environment.

4.1 Classification performance

For learning of the classifiers and evaluation of their classifi-
cation performance, we tried to simulate USAR environment,
including ramps, boxes, catwalks, small passages, etc. (see
Fig. 4 that shows part of the setup). We recorded approx-
imately 1.7km of indoor data with ground truth9; 20 runs
represent standard conditions (590m in total), 25 runs repre-
sent failure cases of visual and laser modalities (e.g., partially
blocked field of view, moving object in the field of view;
1120m in total). The number of all learning data for VO and
laser modalities is shown in Table1, where the anomaly ratio
is the ratio of anomalies to the normal data.

4.1.1 Classification performance metrics

As our approach is a binary classification problem, we evalu-
ated the performance of all classifiers by means of a standard

8 Data collected in a room monitored with twelve cameras covering
more than 20m2 and giving a few millimeter accuracy at 100Hz.
9 The datasets are publicly available athttps://sites.google.com/site/
kubelvla/public-datasets.
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Table 2 Classification results as
obtained on the testing examples

Bold values indicate best result
for each modality
Δx EKF error state vector,
v EKF residual vector,S EKF
residual covariance matrix,σ
EKF standard deviation,‖x‖
Euclidean norm of a vectorx,
subscriptsatt andpos attitude
and position elements in a vector
or matrix,COV covariance
analysis,CHI chi-squared test,
GMM Gaussian mixture models
with 2 mixtures (best of 1, 2 and
3 mixtures),SVM one-class
SVM with RBF kernel (best of
linear, polynomial and RBF
kernels; learned using grid
search),REG logistic regression

Features TP TN FP FN TPR TNR G

VO attitude

COV Δxatt, σatt 157 6773 971 12 0.93 0.87 0.901

CHI vatt, Satt 130 6867 877 39 0.77 0.89 0.826

GMM ‖vatt‖ 160 7702 42 9 0.95 0.99 0.970

SVM vatt 160 7701 43 9 0.95 0.99 0.970

REG ‖vatt‖ 47 7743 1 122 0.27 0.99 0.527

Laser attitude

COV Δxatt, σatt 26 1170 407 1 0.96 0.74 0.845

CHI vatt, Satt 14 1429 148 13 0.52 0.91 0.685

GMM ‖vatt‖ 25 1499 78 2 0.93 0.95 0.938

SVM vatt 26 1473 104 1 0.96 0.93 0.948

REG ‖vatt‖ 4 1574 3 23 0.15 0.99 0.385

Laser position

COV Δxpos, σpos 0 1596 0 8 0.00 1.00 0.000

CHI vpos, Spos 0 1596 0 8 0.00 1.00 0.000

GMM ‖vpos‖ 8 1574 22 0 1.00 0.99 0.993

SVM vpos 8 1488 108 0 1.00 0.93 0.965

REG ‖vpos‖ 1 1595 1 7 0.12 0.99 0.353

two-by-two confusion matrix10. The commonly used clas-
sification metrics (i.e., accuracy, error rate) are however not
suitable for evaluating our imbalanced dataset (see the anom-
aly ratio in Table1). We aimed for maximizing true positive
rate TPR= TP/(TP + FN), as well as true negative rate
TNR = TN/(TN + FP). We used these two classification
metrics to maximize the percentage of positive and negative
examples correctly classified at the same time in the form of
a geometric mean measure G= √

TPR· TNR (Kubat et al.
1997).

4.1.2 Classification results

Table2 shows performance of all classifiers over the follow-
ing modalities: VO attitude, laser attitude and position. The
results were evaluated on the testing dataset, which was ran-
domly selected from the whole dataset, thus the results show
generalization of the methods to new data.

Performance of the statistical methods (covariance analy-
sis and chi-squared test) exhibit relatively good results in the
VO attitude modality, however with a high number of FP. This
behavior is not such an issue, since the roll and pitch angles
are primarily determined using the IMU measurements at
high rate. The high number of FP causes covariance analy-
sis to have the lowest TPR of all classifiers in the attitude

10 True Positive (TP)—anomaly correctly classified as anomaly; False
Negative (FN)—anomaly incorrectly classified as normal; False Posi-
tive (FP)—normal data incorrectly classified as anomaly; True Negative
(TN)—normal data correctly classified as normal.

modalities. Thus, it tends to incorrectly reject the normal
data—the thresholds, defined implicitly by the EKF tuning
of process and measurement noise covariances, seem to be
set too low. However, as empirically verified on all the testing
data, this behavior cannot be fixed by simply increasing the
threshold, because then the TNR is improved at the expense
of TPR. The lower TPR in the chi-squared test indicates that
this classifier can miss real anomalies and let them propagate.
This can be harmful especially in the yaw angle estimation,
where no absolute corrections are available. In general, sta-
tistical methods perform poorly in the case of laser modal-
ities and even fail in the laser position modality. The main
reason behind it is the nature of the laser position measure-
ments, which aim to correct the large error accumulated in
track odometry due to slipping. When the laser measure-
ment is processed, large values are introduced in the position
residuals, thus any threshold-based method will classify such
correction as anomalous data.

Two of the machine learning methods—GMM (learned
with 2 mixtures) and one-class SVM (OCSVM, learned with
RBF kernel and parameters determined via grid search)—
outperform the other classifiers in all modalities tested. On
top of that, the number of FP was lower in case of the GMM
in the laser modalities. Low number of FP is in general more
significant for the laser than visual modality, mainly due to
the low sampling frequency of the laser measurements.

Logistic regression classifier does not achieve such perfor-
mance, because there is only about 2 % of anomalies present
in the datasets and regression should have reasonably bal-
anced classes for proper learning. However, we wanted to
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include these results to show, how the straightforward and
popular learning approach will perform.

4.1.3 Discussion on classification performance

We can conclude that both the covariance analysis and the
chi-squared threshold test were inferior to machine learning
techniques we proposed and both are implicitly sensitive to
the filter tuning. However, they were not so demanding when
searching for the best model. The only parameter tuned was
the sigma bound in case of covariance analysis. Also, there
is actually a drawback when implementing the covariance
test—it requires a posteriori error state estimate and hence
the EKF measurement update needs to be recomputed when
anomaly is detected. Since we deal with a multi-modal data
fusion, the pose is usually influenced by other modalities and
therefore we cannot simply skip the measurement step.

Both the GMM and the SVM methods performed in a very
similar way and generalized for the indoor dataset (the per-
formance on training and testing datasets was very similar).
However, the number and range of parameters that needs to be
tuned is larger in case of the SVM (i.e., bounding parameterν

and different kernels with associated parameters) than in case
of the GMM, where we consider only the number of Gaussian
mixtures. Thus the implementation of the GMM was more
straightforward and computationally less demanding.

Finally, we would like to comment on the importance of
fault isolation and identification—the two stages subsequent
to detection. In our case, it is not necessary and often even not
possible to identify the exact cause of the anomalous exte-
roceptive measurements since the measurements are already
processed by the VO or the ICP algorithms. Therefore in
general, inspection needs to be carried out at the lower level,
where the images or point clouds are processed. Although
isolation and identification may help the rescuers and opera-
tors to understand the situation, the pose estimates will benefit
mainly from the detection part of the FDI process.

4.2 Localization performance

In this section, we demonstrate the performance in localiza-
tion when solving the anomaly detection using the GMM
(with 2 mixtures modified by a Mahalanobis distance based
decision). The GMM was selected as best choice based on the
results in Table2 and advantages mentioned in Sect.4.1.3.
We evaluate the localization in four different scenarios that
are most likely to appear in USAR missions. Three of the test
cases take place in outdoor environment and are completely
new and unseen in the learning process. Section4.2.1intro-
duces the scenario of the robot operating in semi-structured
indoor environment. Section4.2.2presents four experiments
from an outdoor urban environment. Section4.2.3presents
three experiments from a disaster training site with robot

Table 3 Summary of the test case experiments

Test Testa Testb Test

Case 1 Case 2 Case 3 Case 4

Dist. traveled (m) 32 327 332 550

Exp. duration (min) 3 17 37 37

Elev. difference (m) 0 12 1 8

a Sum of 4 experiments
b Sum of 3 experiments

inspecting ruins of a building. Section4.2.4 demonstrates
the performance during an outdoor experiment carried out
in a challenging forest environment. Table3 summarizes the
total distance traveled (1241m in total), experiment duration,
and maximum elevation difference for all four test cases.

4.2.1 Test case 1: indoor with Vicon reference

The selected indoor experiment is a representative from
the set of the learning experiments in semi-structured envi-
ronment (see Fig.4). We show the results with respect
to ground truth measurements in both trajectory and atti-
tude. The robot was exploring the room in an approximately
square-shaped path, however the VO experienced failures
due to lack of tracked features. As shown in red in Fig.5,
sudden loss and consequent lack of tracked visual features
resulted in wrong VO attitude measurements (represented
by roll, pitch, and yaw Euler angles). The data fusion frame-
work with GMM as anomaly detection successfully detected
and rejected the anomalous VO measurements (marked as
gray vertical lines). This prevented deterioration in the state
estimates and ensured improvement in the final position
error normalized by the distance traveled (i.e., 6.2% for
data fusion without anomaly detection and 0.8% for data
fusion with anomaly detection). This metric is defined as
e f inal = ||pl − pre f,l ||/d, wherel denotes the last position
sample andd is the distance traveled in meters. Accuracy
improvement is apparent also in the average position error
metric defined aseavg(k) = ∑k

i=1 ||pi − pre f,i ||/k, where
1 ≤ k ≤ total number of samples. Finaleavg for data fusion
without anomaly detection is more than 3× larger than for
data fusion with anomaly detection, see Fig.5.

4.2.2 Test case 2: urban environment

Second test case includes outdoor experiments from an urban
environment, namely one street experiment in a urban canyon
and three experiments from a city park including dense veg-
etation11, see Fig.6. The ground truth position of the robot

11 These experiments are publicly available as well athttps://sites.
google.com/site/kubelvla/public-datasets.
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Fig. 5 Indoor experiment—VO attitude failure between 115s and
140s (black dash-dot Vicon reference;red dashed multi-modal data
fusion without anomaly detection;blue multi-modal data fusion with
anomaly detection;gray vertical lines rejected VO attitude measure-

ments). (Left) Shows 2D projection of the trajectories. (Middle) Euler
angles. (Right) Average position error expressed as function of time
(Color figure online)

Fig. 6 Pictures from the urban experiments. (Left to Right) Detail of the Leica reference system. Street environment. Park environment. Detail of
a staircase in the park

in these experiments was tracked by an external reference
system Total Station TS15 from Leica Geosystems (further
refered to as Leica reference)12. Unfortunately, the Leica
theodolite does not provide the orientation of the robot and
the position ground truth is available only when the robot is
in the direct line-of-sight with the theodolite. However, it still
ensure precise position measurements even in urban areas,
which are often not suitable for reliable GPS ground truth
measurements due to limited sky view and multipath effects.

As in the previous case, we show the results from all
urban experiments as a projection of the trajectory to the
2D plane accompanied by the average position error plots.
The depicted urban experiments are as follows: a rectangu-
lar trajectory on the street, bigger and smaller lap in the park
including stairs, and straight and slightly leveled path in the
park. As shown in Fig.7, there are improvements in terms of
position error in all experiments except one, which did not
include any severe anomalies and the position error is com-
parable with the standard results. In terms of final position
error normalized by the distance traveled the results are the
following: 5.9, 6.1, 0.9 and 17.9% for standard data fusion,

12 The distance measurements are taken in continuous mode at 7.5Hz
with measurement accuracy about 3mm.

and 0.2, 1.9, 1.5 and 0.5% for data fusion with anomaly
detection.

4.2.3 Test case 3: disaster training site

The third test case demonstrates the anomaly detection dur-
ing USAR experiments carried out in a scenario where the
robot was deployed to a training disaster site of fire and rescue
service in Prato, Italy (see Figs.8and11). The robot was tele-
operated to assist firefighters in a training mission, where the
goal was to find victims in areas inaccessible or too dangerous
for people. Because the ground truth for these experiments
was not available, we show particular instances where the
applied anomaly detection contributed to the overall local-
ization accuracy and robustness of the estimates. Namely,
this test case includes two instances of disaster site explo-
ration and one instance of robot inspecting an underground
pipeline.

The state estimation results from the site exploration are
shown in Figs.9 and10. The robot was teleoperated along
the training site and returned back to initial position. There
is a visible improvement in both trajectories when using the
anomaly detection. The final position error normalized by
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Fig. 7 Urban environment (black dotted Leica reference;red dashed multi-modal data fusion without anomaly detection;blue multi-modal data
fusion with anomaly detection). (Top) 2D projections of the trajectories. (Bottom) Average position errors expressed as function of time (Color
figure online)

Fig. 8 Pictures from disaster training site experiment

the distance driven is for both the training site experiments
as follows: 16.0 and 9.5% for standard data fusion, and 1.2
and 2.8% for data fusion with anomaly detection. The main
reason of these improvements is due to rejecting anomalous
attitude VO and laser corrections, especially in yaw angle,
which otherwise spoil the trajectory. Details of such anom-
alous measurement rejections are shown in the Euler angles
plots in Figs.9 and10.

The inspection experiment took place in a pipeline of
diameter slightly larger than the robot, see Fig.11e, f. As
there was too dark for the VO modality, it was not used at all.
Figure12 shows the Euler angles during the whole experi-

ment, as well as the Euler angles detail of a moment, when
the robot drove out of the tunnel and the laser modality expe-
rienced sudden change from very tight area in the pipeline to
a large area in front of the tunnel. There is a visible deterio-
ration of the roll and yaw angles around the time sample of
181s. This particular instance was handled well by the data
fusion due to the anomaly detection.

4.2.4 Test case 4: outdoor forest

The last test case covers by far the most challenging environ-
ment from all our datasets. The experiment took place in a
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Fig. 9 Exploration of the disaster site 1 (red dashed multi-modal data
fusion without anomaly detection;blue multi-modal data fusion with
anomaly detection;light gray vertical lines VO anomaly detected and

rejected;dark gray dashed vertical lines laser anomaly detected and
rejected). (Left) 2D projection of the trajectories. (Middle) Euler angles
detail 1. (Right) Euler angles detail 2 (Color figure online)

Fig. 10 Exploration of the disaster site 2 (red dashed multi-modal data
fusion without anomaly detection;blue multi-modal data fusion with
anomaly detection;light gray vertical lines VO anomaly detected and

rejected;dark gray dashed vertical lines laser anomaly detected and
rejected). (Left) 2D projection of the trajectories. (Middle) Euler angles
detail 1. (Right) Euler angles detail 2 (Color figure online)

Fig. 11 Disaster site experiment from robot point of view.a USAR scenario.b Entering collapsed basement.c, d Inspecting building ruins at the
basement level.e, f Inspecting a pipeline (scene artificially lightened up)

hilly forest area (see pictures in Fig.13). The robot traversed
uneven terrain covered by soil and foliage causing very high
slippage. Moreover, both the vision and laser modalities were
exposed to very severe conditions. These were mainly the
vegetation blocking both camera and laser range of view, or
the robot traversing deformable terrain introducing motions
too fast to be properly sampled by relatively low frequency of
the exteroceptive modalities. Furthermore, there were people

simulating dynamic obstacles moving around the robot and
partially blocking the camera and laser scanner range of view
during the whole experiment.

As gathering reasonable ground truth data for such exper-
iment is very difficult, we attached a GPS receiver on top of
the robot, to get an approximate position information along
the robot path. One sigma uncertainty of the GPS position
was experimentally determined to be±5m (mainly due to
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Fig. 12 Inspection of the pipeline (red dashed multi-modal data fusion
without anomaly detection;blue multi-modal data fusion with anomaly
detection;dark gray dashed vertical lines laser anomaly detected and

rejected). (Left) Euler angles. (Right) Detail of the Euler angles around
181s and anomalous laser attitude corrections casued by robot returning
from the pipeline and entering large space area (Color figure online)

Fig. 13 Pictures from the forest experiment. (Left) Entering forest on the forest road. (Middle) Climbing a steep hill. (Right) Descending into a
valley (model of the robot projected into a point cloud colored using camera)

dense vegetation and treetops covering most of the sky). This
result indicates that the forest environment is almost GPS-
denied case if we aim to achieve localization precision less
than the body size of the robot.

A 2D projection of the original trajectory, trajectory
obtained with anomaly detection, the referential GPS trajec-
tory with its uncertainty, and the average position errors are
shown in Fig.14. Robot initial position was set to zero coor-
dinates and robot proceeded as indicated by the black arrows.
It can be clearly seen by visual inspection that the data fusion
with anomaly detection outperformed the standard one. The
average position error is computed with respect to the GPS
trajectory and the final average error for data fusion without
anomaly detection is 2× larger than the error for data fusion
with anomaly detection. On the other hand, both trajecto-
ries are influenced by a visible yaw estimate drift, which is
however expected and common when no absolute yaw cor-
rections are provided.

4.2.5 Discussion on localization performance

We would like to note that in our data fusion approach we
do not have any absolute position or heading measurements
available—the whole framework is based on relative mea-

Fig. 14 Forest experiment (black dash-dot GPS;red dashed multi-
modal data fusion without anomaly detection;blue multi-modal data
fusion with anomaly detection;gray experimentally determined GPS
uncertainty). (Top) 2D projection of the trajectories. (Bottom) Average
position error expressed as function of time (Color figure online)
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Table 4 Performance summary of the test case experiments with and
without anomaly detection (AD)

e f inal(%) eavg(m)

Without AD With AD Without AD With AD

Indoor 6.2 0.8 0.3 0.1

Street 5.9 0.2 2.7 0.5

Park 1 6.1 1.9 4.4 1.4

Park 2 0.9 1.5 0.6 0.7

Park 3 17.9 0.5 8.7 0.8

Train. site 1 16.0 1.2 n/a n/a

Train. site 2 9.5 2.8 n/a n/a

Forest 4.0 3.4 27.6 13.6

Summary includes all experiments for which the final position error
e f inal or average position erroreavg metric is available
Bold values indicate better result in the comparison ‘Without AD vs
With AD’

surements only—there is no loop-closure in the VO or the
ICP mapping algorithm. Therefore, the results presented in
Sect.4.2diverge from the reference in the same way as can be
expected for a dead reckoning localization approach. Based
on the analysis of our experiments, we identified that it is
actually the yaw angle that contributes the most to the over-
all error accumulation in this relative pose estimation. The
larger the error in yaw estimates, the larger the position error
gets accumulated over time. This effect is dramatically mag-
nified if anomalies propagate and influence the yaw angle
estimates. From the results summarized in Table4 as well as
by visual inspection of all the projected trajectories, we can
conclude that the data fusion supported by anomaly detec-
tion provides more accurate localization results. The reason
is the anomaly detection handles most of the exteroceptive
measurements that would otherwise introduce large errors.

In our previous work (Kubelka et al. 2014) we introduced
a failure case methodology to test the actual limits of our
proposed data fusion. Without the anomaly detection, the
data fusion algorithm performance was limited as expected.
Although it cannot be exactly quantified, we hope that by
including the anomaly detection we are able to push these
limits and even pass most of the failure cases. Although it
cannot be proven, similar behavior can be expected during
deployment to similar conditions.

5 Conclusion

In this paper, we extended our previous work regarding the
multi-modal data fusion for localization of a mobile robot
equipped with inertial sensors, track odometry, omnidirec-
tional camera and laser range-finder. Even if the data fusion
was well designed, there still occur real-world disturbances

related to the environment, no matter which platform is
used. These disturbances affect significantly the exterocep-
tive modalities (in our case the vision and the laser) and subse-
quently deteriorate the state estimates, causing degradation in
precision and reliability of localization. We have shown that
incorporating the anomaly detection to exteroceptive mea-
surements is an important step towards a more robust and
accurate state estimation.

We presented standard statistical tests for monitoring of
the EKF observations and compared them to supervised
machine learning approaches; namely: the covariance test,
chi-squared test, modified Gaussian Mixture Models, one-
class Support Vector Machines, and logistic regression. We
demonstrated that the GMM modified by a Mahalanobis dis-
tance decision criteria performs the best out of the selected
classifiers. This was experimentally verified in indoor tests
with precise ground truth using a Vicon system, as well as in
challenging outdoor environments. The anomaly detection
handled serious local disturbances and vastly improved the
overall performance, even in case of driving inside a pipe or
through a dense forest. Despite the necessity of creating a
labeled ground truth—which requires having a precise ref-
erence and is a time-costly procedure—for the supervised
machine learning, we still think that the improvements are
definitely worth the effort put into training the classifier.

Based on the results, we can conclude that anomaly detec-
tion is an important stage of any multi-modal state estimation
framework and should not be overlooked or underestimated
using a simplified approach. We are convinced that by hav-
ing such reliable localization, we can now pursue our desired
quest for long-term autonomy using our framework.
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Abstract

Urban Search and Rescue missions for mobile robots require reliable state estimation systems
resilient to conditions given by the dynamically changing environment. We design and
evaluate a data fusion system for localization of a mobile skid-steer robot intended for USAR
missions. We exploit a rich sensor suite including both proprioceptive (inertial measurement
unit and tracks odometry) and exteroceptive sensors (omnidirectional camera and rotating
laser rangefinder). To cope with the specificities of each sensing modality, we introduce a
novel fusion scheme based on Extended Kalman filter for 6DOF orientation and position
estimation. We demonstrate the performance on field tests of more than 4.4 km driven under
standard USAR conditions. Part of our datasets include ground truth positioning; indoor
with a Vicon motion capture system and outdoor with a Leica theodolite tracker. The overall
median accuracy of localization—achieved by combining all the four modalities—was 1.2 %
and 1.4 % of the total distance traveled, for indoor and outdoor environments respectively.
To identify the true limits of the proposed data fusion we propose and employ a novel
experimental evaluation procedure based on failure case scenarios. This way we address the
common issues like: slippage, reduced camera field of view, limited laser rangefinder range,
together with moving obstacles spoiling the metric map. We believe such characterization of
the failure cases is a first step towards identifying the behavior of state estimation under such
conditions. We release all our datasets to the robotics community for possible benchmarking.



1 Introduction

Mobile robots are sought to be deployed for many tasks, from tour-guide robots to autonomous cars. With
the rapid advance in sensor technology, it has been possible to embed richer sensor suites and extend the
perception capabilities. Such sensor suites provide multi-modal information that naturally ensure perception
robustness, allowing also better means of self-calibration, fault detection and recovery—given that appropri-
ate data fusion methods are exploited. Independently from the application, a key issue of mobile robotics
is state estimation. It is crucial for both perception, like mapping, and action, like avoiding obstacles or
terrain adaptation.

In this paper, we address the problem of data fusion for localization of an Unmanned Ground Vehicle (UGV)
intended for Urban Search and Rescue (USAR) missions. There has been a significant effort presented in the
field of USAR for robot localization that mostly aims for a minimal suitable sensing setup; exploiting usually
the inertial measurements aided with either vision or laser data. Having a sufficient on-board computational
power, we therefore aim for a richer sensors suite and hence for better robustness and reliability. Therefore,
our UGV used in this work (see Figure 1) embeds track encoders, an Inertial Measurement Unit (IMU), an
omnidirectional camera, and a rotating laser range-finder.

Figure 1: Picture of two USAR UGVs used for experimental evaluation (FP7-ICT-247870 NIFTi project)
and a detail of the sensor setup (a PointGrey Ladybug 3 omnicamera and a rotating SICK LMS-151 laser
range finder). See Section 3.1 for more details.

Our first contribution lies in the development of a model for such multi-modal data fusion using the Extended
Kalman Filter (EKF), especially in the way we incorporate sensors with slow and fast measurement update
rates. In order to cope with such significant difference in the update rates of various sensor modalities,
we concentrated the model design on integrating the slow laser and visual odometry with the faster IMU
and track odometry measurements. For this purpose, we propose and investigate three different possible
methods—one of them, the trajectory approach (see Section 4.3.3 for further details), is our contribution
that we compare it to the velocity approach, which is a common state-of-the-art practice. We show that a
standard EKF designed with the velocity approach does not cope well with such significant differences in the
frequency, whether our proposed trajectory approach does.

The context of USAR missions implicitly defines challenges and limitations of our application. The envi-
ronment is often unstructured (collapsed buildings) and unstable (moving objects or other ongoing changes,
deformable terrain causing high slippage). Robots need to cope with indoor-outdoor transitions (change
from confined to open spaces), bad lighting conditions with rapid changes and sometimes decreased visibility
(smoke and fire). These are essentially the main challenges that come with the sensor data we process.
Therefore, our main contribution lies in the actual experimental evaluation and analysis of limits of the pro-
posed filter. We review the different sensing modalities and their expected failure cases to assess the impact
of possible data degradation (or outage) on the overall precision of localization. We believe that the field
deployment of state estimation for multi-modal data fusion needs to be characterized both under standard



expected conditions as well as for case of partial or full failures of sensing modalities. Indeed, robustness to
sensor data outage or degradation is a key element to the scaling up of a field robotics system. Therefore, we
evaluate our filter using several hours and kilometers of experimental data validated by indoor or outdoor
ground truth measurements. In order to share this contribution to the robotics community, we release all
the captured datasets (including the ground truth measurements) to be used as benchmarks.1

The state of the art of sensor fusion for state estimation is elaborated in Section 2. In Section 3, we present the
hardware and software used in this work before describing in details the design of our data fusion algorithm
(Section 4). In Section 5, we explain our experimental evaluation including our fail-case methodology before
a discussion and conclusion (Section 6).

2 Related work

In general, the information obtained from various sensors can be classified as either proprioceptive (inertial
measurements, joint sensors, motor or wheel encoders, etc.) or exteroceptive (Global Positioning System
(GPS), cameras, laser range finder, ultrasonic sensors, magnetic compass etc.). Exteroceptive sensors that
acquire information from the environment can be also used to perceive external landmarks that are necessary
for long-term precision in navigation tasks. In modern mobile robots, a popular solution lies usually in the
combination of a proprioceptive component in the form of Inertial Navigation System (INS) (Titterton and
Weston, 1997), that captures the body dynamics at high frequency, and an external source of aiding, using
vision (Chowdhary et al., 2013) or range measurements (Bachrach et al., 2011). The key issue lies in the
appropriate integration of the different characteristics of the different sensor modalities.

As it was repeatedly shown, the combination of an IMU with wheel odometry is a popular technique to
localize a mobile robot in a dead reckoning manner. It generally allows very high sampling frequency as
well as processing rate, usually without excessive computational load. Dead reckoning can be used for short
term navigation without any necessity of perceiving surrounding environment via exteroceptive sensors. In
real outdoor conditions, dynamically changing environment often causes signal degradation or even outage
of exteroceptive sensors. However, proprioceptive sensing, in principle, is too prone to accumulating errors
to be used as a standalone solution. Computational and environmental errors as well as errors caused by
misalignment and instrumentation cause the dead reckoning system to drift quickly with time. Moreover,
motor encoders do not reflect the true path, especially heading of the vehicle, in case of frequent wheel slip.
In (Yi et al., 2007) and (Anousaki and Kyriakopoulos, 2004), an improvement through skid-steer model of
a 4-wheel robot is presented, based on a Kalman filter estimating trajectory using velocity constraints and
slip estimate. An alternative method appears in (Endo et al., 2007) where the IMU and odometry are used
to improve tracked vehicle navigation via slippage estimates. We addressed this problem in (Reinstein et al.,
2013). Substantial effort has also been made to investigate the odometry derived constraints (Dissanayake
et al., 2001), or innovation of the motion models (Galben, 2011). Concerning all the references so far,
localization of the navigated object via dead reckoning was performed only in 2D. There exist solutions
providing real 3D odometry derived from the rover-type multi-wheel vehicle design (Lamon and Siegwart,
2004). Nevertheless, the error is still about one order of magnitude higher than what we aim to achieve
(below 2% of the total distance traveled).

However, if long-term precision and reliability is to be guaranteed, dead-reckoning solutions require other
exteroceptive aiding sensor systems. In the work of (Shen et al., 2011), it is shown that a very low-cost
IMU and odometry dead-reckoning system can be realized and successfully combined with visual odometry
(VO) (Sakai et al., 2009; Scaramuzza and Fraundorfer, 2011) to produce a reliable navigation system. With
the increasing on-board computational power, visual odometry is becoming very popular even for large-scale
outdoor environments. Most solutions are based on the Extended Kalman filter (EKF) (Oskiper et al.,
2010; Civera et al., 2010; Konolige et al., 2011; Chowdhary et al., 2013) or a dimensional-bounded EKF
with landmark classifier introduced in (Jesus and Ventura, 2012). However, in (Rodriguez F et al., 2009)

1The datasets are available as bagfiles for ROS at https://sites.google.com/site/kubelvla/public-datasets



it is pointed out that a trade-off between precision and execution time has to be examined. Moreover, VO
degrades due to high rotational speed movements and it is susceptible to illumination changes and lack of
sufficient scene texture (Scaramuzza and Fraundorfer, 2011).

Another typically used 6 DOF aiding source is a laser rangefinder, which is used for estimating vehicle
motion by matching consecutive laser scans and creating a 3D metric map of the environment (Suzuki
et al., 2010; Yoshida et al., 2010). Examples of successful application can be found for both indoor—
without IMU but combined with vision (Ellekilde et al., 2007)—as well as outdoor—relying on the IMU
(Bachrach et al., 2011). As in case of the visual odometry, solutions using EKF are often proposed (Morales
et al., 2009; Bachrach et al., 2011). The most popular approach of scan matching is based on the Iterative
Closest Point (ICP) algorithm first proposed by (Besl and McKay, 1992) and in parallel by (Chen and
Medioni, 1991). More recently, (Nuchter et al., 2007) proposed a 6D Simultaneous Localization and Mapping
(SLAM) system relying mainly on ICP. Closer to USAR applications, (Nagatani et al., 2011) demonstrated
the use of ICP in exploration missions and used a pose graph minimization scheme to handle multi-robot
mapping. (Kohlbrecher et al., 2011) proposed a localization system combining a 2D laser SLAM with a
3D IMU/odometry-based navigation subsystem. Combination of 3D-landmark-based SLAM and multiple
proprioceptive sensors is also presented in (Chiu et al., 2013), their work aims mainly on low latency solution
while estimating the navigation state by means of Sliding-Window Factor Graph. The problem of utilizing
several sensors for localization that may provide contradictory measurements is discussed in (Sukumar et al.,
2007). The authors use Bayes filters to estimate sensor measurement uncertainty and sensor validity to
intelligently choose a subset of sensors that contribute to localization accuracy. As opposed to the later
publications realized in the context of SLAM, we only consider the results of the ICP algorithm as a local
pose measurement similarly to (Almeida and Santos, 2013) who use the ICP algorithm to extract steering
angle and linear velocity of a car-like vehicle to update its non-holonomic model of motion. In our approach,
the 3D reconstruction of the environment is considered locally coherent and neither loop detection nor error
propagation is used.

As stated in (Kelly et al., 2012), it is the right time to address concerning issues of the state-of-the-art
in long-term navigation and autonomy. In this respect, benefits and challenges of repeatable long-range
driving were addressed in (Barfoot et al., 2012). In this context, we believe that bringing more insight into
multi-modality state estimation algorithms is an important step for long-term stability of an USAR system
evolving in a complex range of environments.

Regarding multi-modal data fusion, we built on our previous work concerning complementary filtering
(Kubelka and Reinstein, 2012), odometry modeling (Reinstein et al., 2013), and design of EKF error models
(Reinstein and Hoffmann, 2013), even though the later work applied to a legged robot.

3 System description

Our system aims at high state estimation accuracy while ensuring robust performance against rough terrain
navigation and obstacle traversals. We selected four modalities to achieve this goal: the inertial measure-
ments (IMU ), odometry data (OD), visual odometry (VO) and laser rangefinder data (ICP) processed by
the ICP algorithm. This section explains the motion capabilities of the Search & Rescue platform and the
preprocessing computation applied to its sensors in order to extract meaningful inputs for the state estima-
tion. These explanations provide a motivation for a list of states to be estimated by the EKF described in
Section 4.

3.1 Mobile Robotic Platform

Figure 1 presents the UGV designed for USAR mission that we use in this paper. As described in (Kruijff
et al., 2012), this platform was deployed multiple times in collaboration with various rescue services (Fire



Department of Dortmund/Germany, Vigili del Fuoco/Italy). It has two bogies linked by a differential that
allows a passive adaptation to the terrain. On each of the tracks, there are two independent flippers that can
be position-controlled in order to increase the mobility in difficult terrain. For example, they can be unfolded
to increase the support polygon which helps in overcoming gaps and being more stable on slopes. They can
also be raised to help with climbing over higher obstacles. Given that the robot was designed to operate in
3D unstructured environments, the state estimation system needs to provide a 6 DOF localization.

Encoders are placed on the differential, giving the angle between the two bogies and the body; on the tracks
to give their current velocity; and on each flipper to give its position with respect to its bogies. Inside the
body, vertical to the center of the robot, lies the Xsens MTi-G IMU providing angular velocities and linear
acceleration along each of the three axes. The IMU data capture the body dynamics at high rate of 90 Hz.
GPS is not taken into account due to the low availability of the signal indoors or in close proximity with
building. Magnetic compass is also easily disturbed by metallic masses, pipes, and wires, which make it
highly unreliable and hence we do not use it.

The exteroceptive sensors of the robot consist of an omnidirectional camera and a laser rangefinder. The
omnidirectional camera is the PointGrey Ladybug 3 and produces a 12 megapixels stitched omni-directional
images at 5-6Hz. The omni-directionality of the sensor provides a stronger stability of rotation estimation
at the expense of scale estimation, which would be better handled by a stereocamera. The laser rangefinder
used is the Sick LMS-151 mounted on a rolling axis in front of the robot. The laser spins left and right
alternately, taking a full 360◦ scan at approximately 0.3Hz to create a point cloud of around 55,000 points.

3.2 Inertial data processing

Though the precision and reliability of the IMU measurements is sufficient in short term, in long term
the information provided suffers from random drift that, together with integrated noise, cause unbounded
error growth. To cope with these errors all the 6 sensor biases have to be estimated (see Section 4.1 for
more details). Therefore, we have included sensor biases in the state space of the proposed EKF estimator.
Furthermore, correct calibration of the IMU output and its alignment with respect to the robot’s body frame
has to be assured.

3.3 Odometry for skid-steer robots

Our platform is equipped with caterpillar tracks and therefore steering is realized by setting different velocities
for each of the tracks (skid-steering). The encoders embedded in the tracks of the platform measure the
left and right track velocities at approximatively 15Hz. However, in contradistinction to differential robots,
the odometry for skid-steering vehicles has significant uncertainties. Indeed, as soon as there is a rotation,
the tracks must either deform or slip significantly. The slippage is affected by many parameters including
the type and local properties of the terrain. To keep the computation complexity low, we assume only a
simple odometry model and we do not model the slippage. Instead, we take advantage of the exteroceptive
modalities in our data fusion to observe the true motion dynamics using different sources of information.
Hence, the fusion compensates for cases when the tracks are slipping because the surface is slippery or
because of an obstacle blocking the robot. Another advantage of using caterpillar tracks odometry lies in
the opportunity to exploit nonholonomic constraints. Further explanations on those constraints are given in
Section 4.3.

3.4 ICP-based localization

Using as Input the current 3D point cloud, a registration process is used to estimate the pose of the robot
with respect to a global representation called Map. We used a derivation of the point-to-point ICP algo-
rithm introduced by (Chen and Medioni, 1991) combined with the trimmed outlier rejection presented by



(Chetverikov et al., 2002).

The implementation uses libpointmatcher2, an open-source library fast enough to handle real-time pro-
cessing while offering modularity to cover multiple scenarios as demonstrated in (Pomerleau et al., 2013).
The complete list of modules used with their main parameters can be found in Table 1. In more details,
the configuration of the rotating laser produced a high density of points in front of the robot, which was
desirable to predict collision but not beneficial to the registration minimization. Thus, we forced the max-
imal density to 100 points per m3 after having randomly subsampled the point cloud in order to finish the
registration and the map maintenance within 2 s. We expected the error on pre-alignment of the 3D scans
to be less than 0.5m based on the velocity of the platform and the number of ICP per second that was to
be executed. So we used this value to limit the matching distance. We also removed paired points with an
angle difference larger than 50◦ to avoid the reconstruction of both sides of walls to collapse when the robot
was exploring different rooms. The surface normal vector used for the outlier filtering and for the error
minimization are computed using 20 Nearest Neighbors (NN) of every point within a single point cloud. As
for the global map, we maintained a density of 100 points per m3 every time a new input scan was merged in
it. A maximum of 600,000 points were kept in memory to avoid degradation of the computation time when
exploring a larger environment than expected. However, the only output of the ICP algorithm we consider
is the robot’s localization, i.e. position and orientation relative to its inner 3D point-cloud map. We do not
aim at creating a globally consistent map and we do not exploit the map in any other way than for analysis
of the ICP performance (no map corrections or loop closures are performed).

Table 1: Configurations of ICP chains for the NIFTi mapping applications.

Step Module Description

In
p
u
t

Read. filtering SimpleSensorNoise SickLMS
SamplingSurfaceNormal keep 80%, surface normals based on 20 NN
ObservationDirection add vector pointing toward the laser
OrientNormals orient surface normals toward the obs. direction
MaxDensity subsample to keep point with density of 100 pts/m3

R
eg

is
tr
a
ti
o
n

Ref. filtering - processing from the rows Map
Read. filtering - processing from the rows Input
Data association KDTree kd-tree matching with 0.5m max. distance, ǫ = 3.16
Outlier filtering TrimmedDist keep 80% closest points

SurfaceNormal remove paired normals angle > 50◦

Error min. PointToPlane point-to-plane
Trans. checking Differential min. error below 0.01m and 0.001 rad

Counter iteration count reached 40
Bound transformation fails beyond 5.0m and 0.8 rad

M
a
p Ref. filtering SurfaceNormal Update normal and density, 20 NN, ǫ = 3.16

MaxDensity subsample to keep point with density of 100 pts/m3

MaxPointCount subsample 70% if more than 600,000 points

There is one ICP-related issue observed with our platform. Although the ICP creates a locally precise
metric map, the map as whole tends to slightly twist or bend (we do not perform any loop-closure). This
is the reason why the position and the attitude estimated by the ICP odometry collide with other position
information sources. Another limitation is the refresh rate of the pose measurements limited to 0.3Hz. This
rate is far from our fastest measurement (i.e., the IMU at 90Hz), which poses a linearization problem. For
these reasons, we investigated three different types of measurement models; see Section 4.3.3 for details.

Furthermore, the true bottleneck of the ICP-based localization lies in the way it is realized on our platform
and hence prone to mechanical issues. As the laser rangefinder has to be turning to provide full 3D point
cloud, in environment with high vegetation such mechanism is easily struck, causing this modality to fail.
Large open spaces, indoor / outdoor transitions, or significantly large moving obstacles can also cause the
ICP to fail updating the metric map. Since this modality is very important, we analyzed these failure cases
in Section 5.4.

2https://github.com/ethz-asl/libpointmatcher



3.5 Visual odometry

Our implementation of visual odometry generally follows the usual scheme (Tardif et al., 2008; Scaramuzza
and Fraundorfer, 2011). The VO computation runs solely on the robot on-board computer and estimates
the pose at the frame rate 2-3Hz which, compared to the robot speed, is sufficient. It does search for
correspondences (i.e., image matching) (Rublee et al., 2011), landmark reconstruction and sliding bundle
adjustment (Kummerle et al., 2011; Fraundorfer and Scaramuzza, 2012), which refines the landmark 3D
positions and the robot poses. The performance essentially depends on the visibility and variety of landmarks.
The more variant landmarks are visible at more positions, the more stable and precise is the pose estimation.
The process uses panoramic images constructed from spherical approximation of the Ladybug camera model.
The Ladybug camera is approximated as one central camera. The error of the approximation is acceptable
for landmarks which are few meters from the robot.

The visual odometry starts with detecting and matching features in two consecutive images. We use OpenCV
implementation of the Orb keypoint detector and descriptor (Rublee et al., 2011). Only the matches, which
are distinctive above certain threshold, survive. The initial matching is supported by a guided matching
which uses an initial estimate of the robot movement. The robot movement is estimated by the 5-point
solver (Li and Hartley, 2006) encapsulated in RANSAC iterations. As the error measure we use the angular
deviation of points from epipolar planes. This is less precise than the usual distance from epipolar lines.
However, as we work with spherical projection we have epipolar curves. Computing angular deviations
is faster than computing distance to the epipolar curve. The movement estimate projects already known
landmarks and we can actively search around the projection. The feature tracks are updated and associated
with landmarks if the they pass an observation consistency test. The landmark 3D position is triangulated
from all possible observations and the complete estimate of landmark and robot positions are refined by a
bundle adjustment (Kummerle et al., 2011).

Using an almost omnidirectional camera for the robot motion estimation is geometrically advanta-
geous (Brodsky et al., 1998; Svoboda et al., 1998). The scale estimation however, depends on the precision
of 3D reconstruction where the omnidirectionality does not really help. It is also important to note the
omnidirectional camera we use sits very low above the terrain (below 0.5m) and directly on the robot body.
This makes a huge difference compared to, e.g. (Tardif et al., 2008), where the camera is more than 2m
above the terrain and sees the ground plane much better than our camera. Estimation of the yaw angle
is still well conditioned since it relies mostly on the side correspondences. The pitch estimation however,
would sometimes need more landmarks on the ground plane. The pitch part of the motion induces largest
disparity of the correspondences in the front and back cameras. Unfortunately the back view is significantly
occluded by the battery cover. This is especially problem in the street scenes where the robot moves along
the street, see e.g., Figure 11. The front cameras see the street level better however, the uniform texture of
the tar surface often generates only a few reliable correspondences. The search for correspondences is further
complicated by the tilting flippers which occlude the field of view and induce outliers. Second problem
is the agility of the robot combined with relatively low frequency of the visual odometry. The robot can
turn on spot very quickly, much quicker than an ordinary wheeled car. Even worse, the quick turn is the
usual way how the movement direction is changed. This all makes correspondence search difficult. In the
future versions of the visual odometry we want to improve the landmark management in order to resolve the
problem of too few landmarks surviving the sudden turn. We also think about replacing the approximate
spherical model by reformulating it in a multiview model.

4 Multi-modal data fusion

The core of the data fusion system is realized by an error state EKF inspired by the work of (Weiss, 2012).
The description of the multi-modal data fusion solution we propose can be divided into two parts. First is
the process error model for the EKF, that shows how we model the errors, which we aim to estimate and use
for corrections. Second part is the measurement model, that couples the sensory data coming at different



rates.

The overall scheme of our proposed approach is shown in Figure 2. Raw sensor data are preprocessed and
used as measurements in the error state EKF (the FUSION block). There is no measurement rejection
implemented; based on the assumption that fusion of several sensor modalities should deal with anomalous
data inherently—for details see Section 5 and Section 6—this however will be subjected to a future work.
As apparent from the Figure 2, measurement rates significantly differ among the sensor modalities—main
difference is especially between the IMU at 90Hz and the ICP output at 0.3Hz. Having the update rate of the
EKF at 90Hz the experiments have proven that this issue is crucial and has to be resolved as part of the filter
design to ensure reliable output from the fusion process (see Section 5.3.3). In our case, this problem concerns
mainly the ICP-based localization that provides measurements at very low rate of 0.3Hz—too low to capture
the motion dynamics as the IMU does (i.e. the motion dynamics spectrum gets sub-sampled). During these
3 seconds, real-world disturbances (which are often non-Gaussian and difficult to model and predict, e.g.
tracks slippage) accumulate. This was the motivation to investigate various ways of fusing measurements
at significantly different rates. Three proposed approaches that incorporate the ICP measurements are
described in the Section 4.3.3.
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Figure 2: The scheme of the proposed multi-modal data fusion system (ω is angular velocity, f is specific
force (Savage, 1998), v is velocity and q is quaternion representing attitude).

4.1 Process error model

For the purpose of localization, we model our robot as a rigid body with constant angular rate and constant
rate of change of velocity (ω̇ = 0, v̇ = const.). Presence of constant gravitational acceleration is expected
and incorporated into system model; no dissipative forces are considered.

We define four coordinate frames: R(obot) frame coincides with center of the robot, I(MU) frame represents
the Inertial Measurement Unit coordinate frame as defined by the manufacturer, O(dometry) frame represents



the tracked gear–frame, and N(avigation) frame represents the world frame. In all these frames, the North-
West-Up axes convention is followed, with the x-axis pointing forwards (or to the North in the N–frame),
the y-axis pointing to the left (or to the West), and the z-axis pointing upwards. Rotations about each
axis follow the right-hand rule. The fundamental part of the system design are the differential equations
describing development of the states in time. The state space with the corresponding errors is defined as:

x =




pN

qR
N

vR

ωR

fR
bω,I

bf,I




∆x =




∆pN

δθ
∆vR

∆ωR

∆fR
∆bω,I

∆bf,I




(1)

where pN is position of the robot in the N–frame, qR
N is unit quaternion representing its attitude, vR is

velocity expressed in the R–frame, ωR is angular rate, fR is specific force (Savage, 1998), bω,I and bf,I are
accelerometer and angular rate sensor IMU-specific biases expressed in the I–frame.

The error state ∆x is defined—following the idea of (Weiss, 2012, eq. 3.25)—as difference between the system
state and its estimate ∆x = x − x̂ except for attitude, where rotation error vector δθ is the vector part of
the error quaternion δq = q ⊗ q̂−1 multiplied by 2; ⊗ represents quaternion multiplication as defined in
(Breckenridge, 1999).

The states and the error states of the robot, modeled as a rigid body movement, propagate in time according
to the following equations:

ṗN = CT
(qR

N )vR ∆ṗN ≈ CT
(q̂R

N )∆vR − CT
(q̂R

N )δθ (2)

q̇R
N =

1

2
Ω(ωR)q

R
N δθ̇ ≈ −⌊ω̂R⌋δθ +∆ωR + nθ (3)

v̇R = fR − C(qR
N )gN + ⌊vR⌋ωR ∆v̇R ≈ ∆fR − ⌊C(q̂R

N )gN⌋δθ + ⌊v̂R⌋∆ωR − ⌊ω̂R⌋∆vR + nv (4)

ω̇R = 0 ḟR = 0 ḃω,I = 0 ḃf,I = 0

∆ω̇R = nω ∆ḟR = nf ∆ḃω,I = nb,ω ∆ḃf,I = nb,f (5)

where derivation of the left part of (3) can be found in (Trawny and Roumeliotis, 2005, eq. 110) and the
left part of (4) is based on (Nemra and Aouf, 2010, eq. 5); the difference from the original is caused by
different ways of expressing attitude. The right parts of (2-4) can be derived by neglecting higher-order error
terms and by approximation of the error in attitude by the rotation error vector δθ following (Weiss, 2012,
eq. 3.44). We define gN = [0, 0, g]T , n(.) are the system noise terms and Ω(ωR) in (3) is a matrix representing
quaternion and vector product operation (Trawny and Roumeliotis, 2005, eq. 108). It is constructed as

Ω(ω) =




0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


 (6)

In (5), time derivations of angular rates and specific forces are equal to zero—usually, they are considered
rather as input than state. However, we included them into the state vector to be updated by the EKF. The
error model equations can be expressed in compact matrix form:

∆ẋ = Fc∆x+Gcn (7)



where Fc is continuous time state transition matrix, Gc is noise coupling matrix and n is noise vector
composed of all the n(.) terms; the Fc matrix is as follows:

Fc =


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(8)

and the Gcn term is

Gcn =
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(9)

The noise coupling matrix describes, how particular noise terms affect the system state. Each n(·) term is
a random variable with Normal probability distribution. Properties of these random variables are described
by their covariances in the system noise matrix Qc. Since they are assumed independent, the matrix Qc is
diagonal Qc = diag(σ2

θx
, σ2

θy
, σ2

θz
, σ2

vx
, σ2

vy
, · · · ), where σ is standard deviation.

In order to implement the proposed model, we have to transform the continuous time equations to discrete
time domain. We use the Van Loan discretization method (Loan, 1978) instead of explicitly expressing values
of the discretized matrices. We substitute into matrix M defined by Van Loan

M =

[
−Fc GQcG

T

∅ FT
c

]
∆t (10)

and evaluate the matrix exponential

eM =

[
. . . F−1

d Qd

∅ FT
d

]
(11)

The result of the matrix exponential contains the discretized system matrix Fd in the bottom-right part
and the discretized system noise matrix Qd left multiplied by the inversion of Fd in the top-right part. The
discretized system matrix Fd can be easily extracted; Qd can be obtained by left multiplying the upper right
part of eM by Fd.

4.2 State prediction and update using EKF

The Extended Kalman filter (Smith et al., 1962; McElhoe, 1966), is a modification of the Kalman filter
(Kalman, 1960), i.e. optimal observer minimizing variances of the observed states. Since the error state EKF
is used in our approach, the state of the system is expressed as sum of current best estimate (x̂) and some small
error (∆x). The only difference compared to a standard EKF is that the linearised system matrices F and Q
describe only the error state and the error state covariance propagation in time, rather than the whole state
and state covariance propagation in time. This is mainly beneficial from the computational point of view since
it simplifies linearisation of the system equations. Flowchart describing the error state EKF computation is
shown in Figure 3 and can be decomposed into a series of steps that describe the actual implementation.
As new measurements arrive, state estimate (x̂) and its error covariance matrix (P ) are available from the
previous time-step (or as initialized during first iteration). This state estimate x̂ is propagated in time using
the nonlinear system equations. The continuous time Fc and Gc matrices are evaluated based on the current



value of x̂. Van Loan discretization method is used to obtain discrete forms of Fd and Qd. Then the error
state covariance matrix P is propagated in time. Expected measurements are compared to the incoming
ones and their difference is expressed in form of measurement residual ∆y. Innovation matrix H, expressing
the measurement residual as a linear combination of the error state components, is evaluated. Using the a
priori estimate of P , H and the variance of the sensors signals expressed as R, the Kalman gain matrix K
is computed. The error state ∆x is updated using the Kalman gain and the measurement residual; the a
posteriori estimate of the error state covariance matrix P , is evaluated as well. Finally, the a priori state
estimate x̂ is corrected using the estimated error ∆x.

Although this EKF cycle can be repeated each time measurements arrive, yet, for performance reasons, we
have chosen to group the incoming measurements to the highest frequency measurement, i.e. the IMU data.
Hence, each time any non-IMU measurement arrives, it is slightly delayed until the next IMU measurement
is available. The maximum possible sampling error caused by this grouping approach is 1/(2 · 90)s and thus
it can be neglected compared to the significantly longer sampling periods of the non-IMU data sources. The
update rate of the EKF is then equal to the IMU sampling rate, i.e. 90 Hz.
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Figure 3: Standard EKF (left) computation flowchart compared to the error state EKF computation
flowchart (right): in the error state EKF prediction step, the a priori state is estimated using the non-
linear system equation f() and the covariances are estimated using Fd (linearized matrix form of the error
state propagation equations). In the update step, measurement residual ∆y is obtained by comparing the
incoming measurement y with its predicted counterpart. The residual covariance S and the Kalman gain K
are evaluated and used to update the state and covariance matrix to obtain the a posteriori estimates. Note
that in the case of the error state EKF, Qd and Hk couple system noise and measurements with the error
state ∆x rather than x̂.

4.3 Measurement error model

In general, the measurement vector y can be described as sum of measurement function h(x) of the state x
and of some random noise m due to properties of the individual sensors:

y = h(x) +m (12)



Using the function h, we can predict the measured value based on current knowledge about the system state:

ŷ = h(x̂) (13)

There is a difference ∆y = ŷ − y caused by the modeling imperfections in the state estimate as well as by
the sensor errors. This difference can be expressed in terms of the error state ∆x:

∆y = y − ŷ = h(x)− h(x̂) +m

= h(x̂+∆x)− h(x̂) +m
(14)

If function h is linear, (14) becomes
∆y = h(∆x) +m (15)

Although the condition of linearity is not always met we still can approximate the behavior of h in some
close proximity to the current state x̂ by a similar function h′, which is linear in elements of x̂ such that

h(x̂+∆x)− h(x̂) ≈ h′(∆x)|x̂ = Hx̂∆x (16)

where Hx̂ is the innovation matrix projecting observed differences in measurements onto the error states.

4.3.1 IMU measurement model

The inertial measurement unit (IMU) is capable of measuring specific force (Savage, 1998) in all three
dimensions as well as angular rates. The specific force measurement is a sum of acceleration and gravitational
force, but it also contains biases—constant or slowly changing value independent of the actual acting forces—
and sensor noise, which is expected to have zero mean normal probability. All the values are measured in
the I–frame.

yf,I = fI + bf,I +mf,I (17)

where yf,I is the measurement, fI is the true specific force, bf,I is sensor bias and mf,I is sensor noise.

Since the interesting value yf,I is expressed in the I–frame, we define a constant rotation matrix CI
R of

R–frame to I–frame. Translation between the I– and R–frames does not affect the measured values directly;
thus, it is not considered. Since the IMU is placed close to the R–frame origin, we neglect centrifugal force
induced by rotation of R–frame and conditioned by non-zero translation between R– and I–frames. Using
this rotation matrix, we express the measurement as:

yf,I = CI
RfR + bf,I +mf,I (18)

where both fR and bf,I are elements of the system state. If we compare the measured value and the expected
measurement, we can express the h function, which is—in this case—equal to the h′:

yf,I − ŷf,I = ∆yf,I = CI
RfR + bf,I − CI

R f̂R − b̂f,I +mf,I

= CI
R∆fR +∆bf,I +mf,I

(19)

and hence can be expressed in Hx̂∆x form as

∆yf,I =
[
∅3 ∅3 ∅3 ∅3 CI

R ∅3 I
]
∆x+mf,I (20)

where the error state ∆x was defined in (1).

The angular rate measurement is treated identically; the output of the sensor is

yω,I = ωI + bω,I +mω,I (21)

where ωI is angular rate, bω,I is sensor bias and mω,I is sensor noise.

Similarly, the measurement residual is obtained:

yω,I − ŷω,I = ∆yω,I = CI
R∆ωR +∆bω,I +mω,I (22)

which can be expressed in the matrix form

∆yω,I =
[
∅3 ∅3 ∅3 CI

R ∅3 ∅3 I
]
∆x+mω,I (23)



4.3.2 Odometry measurement model

Our platform is equipped with caterpillar tracks and therefore, steering is realized by setting different veloc-
ities to each of the tracks (skid-steering). The velocities are measured by incremental optical angle sensors
at 15 Hz. Originally, we implemented a complex model introduced in (Endo et al., 2007), which exploits
angular rate measurements to model the slippage to further improve the odometry precision. However, with
respect to our sensors, no improvement was observed. Moreover, since the slippage is inherently corrected
via the proposed data fusion, we can neglect it in the odometry model, assuming only a very simple but
sufficient model:

vO,x =
vr + vl

2
(24)

where vO,x is the forward velocity, vl and vr are track velocities measured by incremental optical sensors—the
velocities in the lateral and vertical axes are set to zero. Since the robot position is obtained by integrating
velocity expressed in R–frame, we define a rotation matrix CO

R :

vO = CO
RvR (25)

which expresses the vR in the O–frame.

During experimental evaluation, we observed a minor misalignment between these two frames, which can
be described as rotation about the lateral axis by approximately 1 degree. Although relatively small, this
rotation caused the position estimate in the vertical axis to grow at constant rate while the robot was moving
forward. To compensate for this effect, we handle the CO

R as constant—its value was obtained by means of
calibration. The measurement equation is then as follows:

yv,O = CO
RvR +mv,O (26)

where yv,O is linear velocity measured by the track odometry, expressed in O–frame. Since this relation is
linear, the measurement innovation is

yv,O − ŷv,O = ∆yv,O =

= CO
RvR − CO

R v̂R +mv,O

= CO
R∆vR +mv,O

(27)

and expressed in the matrix form

∆yv,O =
[
∅3 ∅3 CO

R ∅3 ∅3 ∅3 ∅3
]
∆x+mv,O (28)

4.3.3 ICP-based localization measurement model

The ICP algorithm is used to estimate translation and rotation between each new incoming laser scan of
the robot surroundings and a metric map created from the previously registered laser scans. In course of
our work, three approaches processing the output of the ICP were proposed and tested. The first approach
treats the ICP-based localization as movement in the R–frame in between two consecutive laser scans in
form of a position increment (the incremental position approach). The idea of measurements expressed in a
form of some ∆p can be, for example, found in (Ma et al., 2012). In our case, the increment is obtained as:

∆pR,ICP,i = C(qR
N,ICP,i−1)

(pN,ICP,i − pN,ICP,i−1) (29)

where both the position pN,ICP and attitude qR
N,ICP are outputs of the ICP algorithm. The increment

∆pR,ICP,i is added to the position estimated by the whole fusion algorithm at time-step i−1 to be used as a
direct measurement of position. The same idea is applied in the case of attitude (an increment in attitude is
extracted by means of quaternion algebra). The purpose is to overcome the ICP world frame drift. However,



it is impossible to correctly discretize the system equations respecting the laser scan sampling frequency
( 13 Hz). Also, the assumption of measurements being independent is violated by utilizing a previously
estimated state to create a new measurement. Thus, corrections that propagate to the system state from
this measurement tend to be inaccurate.

The second approach treats the ICP output as velocity in the R–frame (the velocity approach). We consider
it a state-of-the-art practice utilized, for example, by (Almeida and Santos, 2013). The velocity is expressed
in the N–frame first:

vN,ICP =
pN,ICP,i − pN,ICP,i−1

t(i)− t(i− 1)
(30)

where t() is time corresponding to a time-step i. To express the velocity in the R–frame:

vR,ICP (t) = C(qR
R′,ICP

(t)⊗qR′
N,ICP,i−1)

vN,ICP (31)

it is necessary to interpolate the attitude between qR
N,ICP,i−1 and qR

N,ICP,i in order to obtain the increment

qR
R′,ICP (t). Angular velocity is assumed to be constant between the two laser scans. The velocity vR,ICP

and the constant angular velocity obtained from the interpolation can be directly used as measurements
which are independent of the estimated state and because of the interpolation, they can be generated with
arbitrary frequency and thus, there is no problem with discretization (compared to the previous approach).
However, this approach expects the robot to move in a line between the two ICP scans. This is a too strong
assumption and also a major drawback of this approach that results in incorrect trajectory estimates.

Therefore, we propose the third approach, the trajectory approach, which overcomes the assumption of the
velocity approach by (sub-optimal) use of the estimated states in order to approximate possible behavior
of the system between each two consecutive ICP scans. This trajectory approach proved to be the best for
pre-processing the output of the ICP algorithm; for details see Section 5.4.5.
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Figure 4: The principle of trajectory approach: when the new ICP measurement arrives (time-step i),
trajectory estimate based on measurements other than ICP (black dotted line) is duplicated and aligned
with the incoming ICP measurement (black dashed line) and weighted average (red solid line) of these two
trajectories is computed.

The trajectory approach assumes that the first estimate of the trajectory (without the ICP measurement) is
locally very similar to the true trajectory (up to the effects of drift). Thus, when a new ICP measurement
arrives the trajectory estimated since the previous ICP measurement is stored to be used as the best guess
around the previous ICP pose. The ICP poses at time-steps i and i − 1 are aligned with the N–frame so
the ICP pose at time-step i − 1 coincides with the first pose of the stored trajectory. This way the ICP
world frame drift is suppressed. Then, the stored trajectory is duplicated and aligned with the new ICP
pose to serve as the best guess around the new ICP pose; see Figure 4. The resulting trajectory is obtained



as weighted average of the original and the duplicated trajectories:

p̂N,weighted,k = p̂N,kwk + p̂′
N,kw

′
k (32)

where p̂N,k are points of the original trajectory (black dotted line in Figure 4), p̂′
N,k are points of the

realigned duplicated trajectory (black dashed line in Figure 4) and wk, w
′
k are weights—linear functions of

time equal to 1 at time-step of associated ICP measurement and equal to 0 at time-step of the other ICP
measurement. The resulting trajectory is used to generate the velocity measurements in the N–frame as
follows:

vN,weighted,k =
pN,weighted,k − pN,weighted,k−1

t(k)− t(k − 1)
(33)

where t(k) and t(k− 1) are time-steps of poses of the resulting weighted trajectory. The k denotes indexing
of the fusion algorithm high-frequency samples. Velocities can be expressed in R–frame using the attitude
estimates q̂R

N,k:

vR,weighted,k = C(q̂R
N,k)

vN,weighted,k (34)

and can be used directly as measurement, whose projection onto the error state vector yields:

∆yv,weighted =
[
∅3 ∅3 I3 ∅3 ∅3 ∅3 ∅3

]
∆x+mv,weighted (35)

The velocity expressed in R–frame can be used this way as measurement, but its values for the time period
between two consecutive ICP outputs are known only after the second ICP measurement arrives. Thus it is
necessary to recompute state estimates for this whole time period (typically in length of 300 IMU samples),
including the new velocity measurements.

To process the attitude information provided as the ICP output, we use a simple incremental approach such
that the drift of the ICP world frame with respect to the N–frame is suppressed. To achieve this, we extract
only the increment in attitude between two consecutive ICP poses:

qR
N,ICP,i = qR

R′,ICP ⊗ qR′
N,ICP,i−1 (36)

qR
R′,ICP = qR

N,ICP,i ⊗
(
qR′
N,ICP,i−1

)−1

(37)

where qR
R′,ICP is rotation that occurred between two consecutive ICP measurements qR′

N,ICP,i−1 and qR
N,ICP,i.

We apply this rotation to the attitude state estimated at time-step k′ ≡ i− 1:

yq,ICP = qR
R′,ICP ⊗ q̂R

N,k′ (38)

To express the measurement residual, we define the following error quaternion:

δqICP,i = q̂R
N,k ⊗ (yq,ICP )

−1
(39)

where q̂R
N,k is the attitude estimated at time-step k ≡ i. We express this residual rotation by means of

rotation vector δθICP,i

δθICP,i = 2 ~δqICP,i (40)

which can be projected onto the error state as

∆yδθ,ICP =
[
∅3 I3 ∅3 ∅3 ∅3 ∅3 ∅3

]
∆x+mδθ,ICP (41)

Although the ICP is very accurate in measuring translation between consecutive measurements, the attitude
measurement is not as precise. Noise introduced in the pitch angle can cause wrong velocity estimates
expressed in R–frame, resulting in problem described as climbing robot—the system tends to slowly drift in
the vertical axis. Since the output of the trajectory approach is velocity vR,weighted,i, applying a constraint
assuming only planar motion in the R frame is fully justified, easy to implement and resolves this issue.



4.3.4 Visual odometry measurement model

As explained in Section 3.5, the visual odometry (VO) is an algorithm for estimating translation and rotation
of a camera body based on images recorded by the camera. The current implementation of the data fusion
utilizes only the rotation part of the motion estimated by the VO, since it is not affected by the scale.
The set of 3D landmarks maintained by the VO is not in any way processed by the fusion algorithm—it is
used by the VO to improve its attitude estimates internally. Similarly, the bundle adjustment ensures more
consistent measurements, yet still, it does not enter the data fusion models.3 The way we incorporate the
VO measurements is equivalent to the ICP trajectory approach, however, reduced only to the incremental
processing of the attitude measurements. This way, the whole VO processing block can easily be replaced
by an alternative (for example by stereo vision based VO), provided the output—the estimated rotation—
is available in the same way. The motivation is to have the VO measurement model independent on the
VO internal implementation details. The implementation of the VO attitude aiding is identical to the ICP
attitude aiding; the attitude increment is extracted and used to construct a new measurement yq,V O:

qR
N,V O,i = qR

R′,V O ⊗ qR′
N,V O,i−1 (42)

qR
R′,V O = qR

N,V O,i ⊗
(
qR′
N,V O,i−1

)−1

(43)

where qR
R′,V O is rotation that occurred between two consecutive VO measurements qR′

N,V O,i−1 and qR
N,V O,i.

We apply this rotation to the attitude state estimated at time-step k′ ≡ i− 1:

yq,V O = qR
R′,V O ⊗ q̂R

N,k′ (44)

Then, the measurement residual is expressed as error quaternion:

δqV O,i = q̂R
N,k ⊗ (yq,V O)

−1
(45)

where q̂R
N,k is the attitude estimated at time-step k ≡ i. We express this residual rotation by means of

rotation vector δθV O,i

δθV O,i = 2 ~δqV O,i (46)

which can be projected onto the error state as

∆yδθ,V O =
[
∅3 I3 ∅3 ∅3 ∅3 ∅3 ∅3

]
∆x+mδθ,V O (47)

where mδθ,V O is the VO attitude measurement noise.

5 Experimental evaluation

Our evaluation procedure involves several different tests. First, we describe our evaluation methodology in
Section 5.1. It covers obtaining ground truth positioning measurements for both in- and outdoors. Then
we present and discuss our field experiments with the global behavior of our state estimation (Section 5.2).
We also show two examples of typical behavior of the filter in order to give more insight on its general
characteristics (Section 5.3). We take advantage of them to explain the importance of the trajectory approach,
compared to more standard measurement models. Finally, we analyze the behavior of the filter under failure
case scenarios involving partial or full outage of each sensory modality (Section 5.4).

3The same idea applies for the ICP-based localization: although it builds an internal map, this map is independent from
our localization estimates. This would not be the case in a SLAM approach with integrated loop closures.



5.1 Evaluation metrics

In order to validate the results of our fusion system, we need accurate measurements of part of our system
states to confront with the proposed filter. For indoor measurements, we use a Vicon motion capture system
with nine cameras covering more than 20m2 and giving a few millimeter accuracy at 100Hz.

For external tracking, we use a theodolite from Leica Geosystems, namely the Total Station TS15; see
Figure 5 (left). It can track a reflective prism to measure its position continuously at an average frequency
of 7.5Hz. The position precision of the theodolite is 3mm in continuous mode. However, this system cannot
measure the orientation of the robot. Moreover, the position measured is that of the prism and not directly
of the robot, therefore we calibrated the position of the prism with respect to the robot body using the
theodolite and precise blueprints. However, the position of the robot cannot be recovered from the position
of the prism without the information about orientation. That explains why, in the validations below, we do
not compare the position of the robot but the position of the prism from the theodolite and reconstructed
from the states of our filter. With these ground-truth measurements, we use different metrics for evaluation.
First, we simply plot the error as a function of time. More precisely, we consider position error, velocity
error, and attitude error and we compute it by taking the norm of the difference between the prediction
made by our filter and the reference value.

Since this metric shows how the errors evolve over time, a more condensed measure is needed to summarize
and compare the results of different versions of the filter. Therefore, we use the final position error expressed
as a percentage of the total trajectory length:

erel =
||pl − pref,l||

distance travelled
(48)

where l is the index of the last position sample pl with the corresponding reference position pref,l.

While this metric is convenient and widely used in the literature, it is however representative only of the end
point error regardless of the intermediary results. This can be misleading for long trajectories in confined
environment as the end-point might be close to the ground truth by chance. This is why we introduce, as a
complement, the average position error:

eavg(l) =

∑l
i=1 ||pi − pref,i||

l
(49)

where 1 ≤ l ≤ total number of samples. To improve legibility of this metric in plots, we express the eavg as
a function of time

e′avg(t) = eavg(l(t)) (50)

where l(t) simply maps time t to the corresponding sample l.

5.2 Performance overview of the proposed data fusion

With these metrics, we can actually evaluate the performance of our system in a quantitative way. We
divided the tests into indoor and outdoor experiments.

5.2.1 Indoor performance

For the indoor tests, we replicated semi-structured environment found in USAR environments, including
ramps, boxes, a catwalk, a small passage, etc. Figure 5 (right) shows a picture of part of the environment.
Due to limitations of our motion capture set-up, this testing environment is not as large as typical indoor
USAR environments. Nevertheless, it features most of the complex characteristics that make state estimation
challenging in such an environment.



Figure 5: The experimental setup with the Leica reference theodolite for obtaining ground truth trajectory
(left). Part of the 3D semi-structured environment for indoor test with motion capture ground truth (right).

For this evaluation, we recorded approximately 2.4 km of indoor data with ground truth; 28 runs represent
standard conditions (765m in total), 36 runs represent failure cases of different sensory modalities induced
artificially (1613m in total). Table 2 presents the results of each combination of sensory modalities for the
28 standard conditions runs; the failure scenarios are analyzed in Section 5.4 separately.

The sensory modalities combinations can be divided into two groups by including or excluding the ICP
modality; these two groups differ by the magnitude of the final position error. From this fact, we conclude that
the main source of error is slippage of the caterpillar tracks—the VO modality in our fusion system corrects
only the attitude of the robot. Also, the results confirmed sensitivity to erroneous attitude measurements
originating from the sensory modalities. In this instance, VO has slightly worsen the median of the final
position error—the indoor experiments are not long enough to make the difference between drift rates of the
bare IMU+OD combination and possible VO errors that originate from incorrect pairing of image features.
Nevertheless, the results are not significantly different.4 A significant improvement is brought with the ICP
modality, which compensates the tracks slippage and reduces the resulting median of the final position errors
by 50% (approximately). As expected during the filter design, fusing all sensory modalities yields the best
result (not significantly different that without VO), with a median of 1.2% final position error; the occasional
VO attitude measurement errors are diminished by the ICP modality attitude measurement (and vice versa).

5.2.2 Outdoor performance

We ran outdoor tests in various different environments; namely a street canyon and a urban park with trees
and stairs in Zurich. Figure 6 shows pictures of the environments.

In those environments we recorded in total approximately 2 km, with ground truth available for 1.6 km, the
rest were returns from the experimental areas. These 1.6 km are split into 10 runs and, as for the indoor
experiments, Table 3) presents the results of each combination of sensory modalities for each run.

Contrary to the indoor experiments, combining all four modalities does not improve precision of localization
compared to ICP, IMU and odometry fusion (the fusion of all is significantly worse than ICP, IMU and
odometry only). Although some runs show improvement while combining all the sensory modalities (runs
7, 9 and 10) or are at least comparable with the best result 0.4|0.6|1.2 (runs 4, 5 and 6), there are several
experiments, where VO failed due to the specificities of the environments. Such failures result in erroneous
attitude estimates significantly exceeding expected VO measurement noise and compromising localization
accuracy of the fusion algorithm. The reasons for failures are described in the Section 5.4 together with
other failure cases. Since we did not artificially induce these VO failures as we did in the case of the
indoor experiments, we do not exclude these runs from the performance evaluation in Table 3—we consider

4All statistical signicance results are assessed using the Wilcoxon signed-rank test with p < 0.05 testing whether the median
of correlated samples is different.



Final position error in % of the distance travelled

Exp. Distance
traveled [m]

Exp. duration
[s]

OD, IMU OD, IMU,
VO

OD, IMU,
ICP

OD, IMU,
ICP, VO

1 47.42 254 2.17 2.30 1.71 0.79
2 36.52 186 1.99 2.21 0.36 0.14
3 48.74 244 3.15 2.63 0.50 0.18
4 29.40 237 2.22 2.06 0.42 0.45
5 82.10 585 2.51 2.24 0.90 0.71
6 74.64 452 2.05 3.64 0.98 1.24
7 74.65 387 1.70 1.72 2.28 0.58
8 30.57 194 1.98 3.42 1.59 2.29
9 26.58 287 2.67 2.23 1.90 1.19
10 26.57 236 1.53 3.94 0.77 2.11
11 26.96 208 1.25 1.20 0.95 0.66
12 29.13 211 1.27 1.29 0.88 0.87
13 26.35 180 1.37 1.25 0.94 0.77
14 40.23 240 6.58 6.70 0.88 0.99
15 21.01 167 5.26 5.27 0.61 0.57
16 19.04 209 5.94 5.95 0.55 0.60
17 10.95 405 3.44 2.89 2.15 2.05
18 8.65 238 2.87 2.77 1.36 1.38
19 9.36 284 4.14 3.91 1.83 1.85
20 9.02 282 2.90 3.36 2.73 2.65
21 10.82 308 3.79 3.23 1.43 1.41
22 9.45 237 5.36 5.45 2.66 2.68
23 12.75 204 2.65 2.84 2.66 1.79
24 7.81 179 1.58 1.83 2.82 3.06
25 10.85 165 3.85 4.14 3.25 2.17
26 10.83 163 2.36 1.84 0.62 0.68
27 12.79 237 15.42 14.95 2.48 2.53
28 12.07 239 28.42 27.07 2.89 2.98

Lower quartile|Median|Upper quartile 2.0|2.7|4.0 2.1|2.9|4.0 0.8|1.4|2.4 0.7|1.2|2.1

Table 2: Comparison of combinations of different modalities evaluated on indoor experiments performed
under standard conditions with the Vicon system providing ground truth in position and attitude. Final
position error expressed in percents of the total distances traveled was chosen as metric for each experiment;
the total distance of the 28 experiments was 765m, including traversing obstacles.

such environments standard for USAR. Moreover, we treat them as another proof of the fusion algorithm
sensitivity to erroneous attitude measurement originating both from VO and ICP modalities and address
them in the conclusions and future work.

5.3 In-depth analysis of the examples of performance

In order to have more insight on the characteristics of the filter, we selected some trajectories and show more
information than just the final position error metric.

5.3.1 Example of data fusion performance in indoor environment

In this example we address the caterpillar tracks slippage when traversing an obstacle (Figure 7). Since
we are looking forward to USAR missions, such environment with conditions inducing high slippage can be
expected, e.g. collapsed buildings full of debris and dust that impairs traction on smooth surfaces such as
exposed concrete walls or floors, mass traffic accidents with oil spills, etc. The Vicon system was used to



Figure 6: Pictures of the outdoor environments in Zurich. Left: street canyon, right: urban park.

Final position error in % of the distance travelled

Experiment Distance
traveled [m]

Exp.
duration [s]

OD, IMU OD, IMU,
VO

OD, IMU,
ICP

OD, IMU,
ICP, VO

1: basement 1 120.62 825 2.08 26.61 1.83 17.84
2: basement 2 175.67 853 1.37 12.53 2.42 5.91
3: hallway straight 159.42 738 1.10 20.48 0.43 12.22
4: street 1 135.18 584 2.78 0.72 0.24 0.62
5: street 2 259.86 992 9.74 0.80 0.26 0.80
6: park big loop 145.31 918 2.65 2.66 1.03 1.76
7: park small loop 88.20 601 1.94 1.60 1.25 0.97
8: park straight 99.29 560 1.20 20.18 0.62 11.50
9: 2 floors 238.28 1010 9.10 0.62 0.58 0.43
10: 2 floors opposite 203.23 1107 3.23 6.79 0.51 0.42

Lower quartile|Median|Upper quartile 1.4|2.4|3.2 0.8|4.7|20.2 0.4|0.6|1.2 0.6|1.4|11.5

Table 3: Comparison of combinations of different modalities evaluated on outdoor experiments performed
under standard conditions with the Leica system providing ground truth in position.

obtain precise position and orientation ground truth for computing the average position error development
n time.

When traversing a slippery surface, any track odometry inevitably fails with the tracks moving with signif-
icantly diminishing traction. For this reason, trajectory and state estimates resulting from the IMU+OD
fusion showed unacceptable error growth; see Figure 8. The robot was operated to attempt climbing up the
yellow slippery board (Figure 7), which deteriorated the traction to the point the robot was sliding back
down with each attempt to steer. Because of the slippage, it failed to reach the top. Then, it was driven
around the structure and up, to further slowly slip down the slope backwards, with the tracks moving forward
to spoil traction. The effect of the slippage on the OD is apparent from the purple line in Figure 8. The
corresponding average position error of the bare combination of IMU+OD starts to build up as soon as the
robot enters the slippery slope. At 75 seconds, the IMU+OD has already an error of 0.5 m and finishes at
200 sec at an error of 4.4 m (outside Figure 8). Without exteroceptive modalities this problem is unsolvable
and as expected, including these modalities significantly improves the localization accuracy; the final average
position error is only 0.14 m for the IMU+OD+VO+ICP combination. The resulting state estimates for
combination of all modalities are shown in Figure 9 and 10. Figure 9 depicts position estimates (the upper
left quarter) with the reference values. The difference between the estimate and the reference is plotted in
the bottom left quarter; similarly, the right half of the figure displays the velocity estimate. In the left part
of the Figure 10, the attitude estimate expressed in Euler angles is shown with its error compared to the
Vicon reference. The right part of this figure demonstrates estimation of the sensor biases, which are part of



the system state. Note, that the biases in angular rates are initialized to values obtained as the mean of an-
gular rate samples measured when the robot stays stationary before each experiment—short self-calibration.
Concluded, adding the exteroceptive sensor modalities—as proposed in our filter design—compensated the
effect caused by high slippage shown in this example as shown by the shape of trajectories and the average
position error.

Figure 7: The 3D structure for testing of obstacle traversability shown a metric map created by ICP.
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Figure 8: Trajectories obtained by fusing different combinations of modalities during the indoor experiment
testing obstacle (depicted in Figure 7) traversability under high slippage (left, middle); development of the
average position error (right).

5.3.2 Example of data fusion performance in outdoor environment

This outdoor experiment took place on the Clausiusstrasse street (nearby ETH in Zurich) (Figure 11) and
the purpose was testing the exteroceptive modalities (the ICP and the VO) in open urban space. In this
standard setting, both the ICP and the VO are expected to perform reasonably well, though the ICP—
compared to a closed room—is missing a significant amount of spatial information (laser range is limited
approximately to 50 meters, no ceiling etc.). The Leica theodolite was used to obtain the ground truth
position during this experiment (Figure 5).
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Figure 9: The corrected position (top left) and velocity estimates (top right) for the IMU+OD+ICP+VO
combination corresponding to the trajectory in Figure 8 (testing obstacle traversability). Errors in position
and velocity are obtained as norm of difference between the Vicon reference and the corresponding state at
each time-step (bottom left, bottom right). The Vicon reference for both position and velocity is shown in
black.
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Figure 10: The corrected attitude estimates (top left) for the full multi-modal combination
IMU+OD+ICP+VO corresponding to the trajectory shown in Figure 8 (testing obstacle traversability).
Errors in attitude are obtained as the difference between the Vicon reference and the corresponding state at
each time-step (bottom left). Estimated biases for the specific forces (top right) and angular rates (bottom
right).



Figure 11: An example of trajectory driven by the robot over the Clausiusstrasse street.

The results are shown in Figures 12 and 13, demonstrating the improvement of performance when including
more modalities up to the full setup. The basic dead-reckoning combination (IMU+OD) showed clearly
drift in the yaw angle caused by accumulating error due to angular rate sensor noise integration (see the
purple trajectory in the left part of Figure 12). By including the VO attitude measurements (resulting
in IMU+OD+VO) the drift was compensated. Though the VO is not in fact completely drift-free, the
performance is clearly better than the angular rate integration—it is rather the scale of the trajectory
that matters. The IMU+OD+VO modality combination suffered from inaccurate track odometry velocity
measurements (the green line in Figure 12), but this problem was resolved by including the ICP modality
into the fusion scheme. The IMU+OD+ICP+VO combination proved to provide the best results; see the
average position error plot in Figure 12 (right). The attitude estimates and estimates of the sensor biases
are shown in Figure 14.
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Figure 12: Trajectories obtained by fusing different combinations of modalities during the outdoor experiment
with Leica reference system (left) and the corresponding average position error in time (right).
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Figure 13: The position and velocity estimates (top left and bottom respectively) for the IMU+OD+ICP+VO
combination corresponding to the outdoor trajectory in Figure 12; errors in position obtained as norm of
differences between the Leica reference and the corresponding state at each time-step (top right).
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Figure 14: The attitude estimates (left) for the IMU+OD+ICP+VO combination corresponding to the
outdoor trajectory in Figure 12; biases estimated for the specific forces (top right) and angular rates (bottom
right).

5.3.3 Evaluation of the measurement model

We claim that a standard measurement model—as usually used for measurements coming at comparable
frequency—is not well suitable for measurements with significant differences in sampling frequencies as well



Indoor Outdoor
Model erel eavg erel eavg

incremental position 0.4|0.7|1.2 0.1|0.1|0.2 0.8|1.5|11.0 0.7|2.4|6.1
velocity 1.0|1.3|2.3 0.1|0.1|0.3 0.9|1.8|12.2 0.8|2.5|6.1
trajectory 0.7|1.2|2.1 0.0|0.1|0.2 0.6|1.4|11.5 0.6|2.2|6.1

Table 4: Comparison of the different measurement models; for each model we show the lower|median|higher
quartile statistics of the relative and average metrics. The average metric eavg is evaluated for the last sample
of each experiment, see (49). We distinguish the in- and outdoor environments.

as in values, which correspond to the same state observed. This is crucial, when the difference in states
obtained from the IMU or the OD at high frequency is very large compared to the measurements provided
by the ICP or the VO sensory modalities at relatively low frequency—such as in case of high slippage.

Table 4) shows the overall comparison of the three measurement models we evaluated for fusing the ICP and
the VO sensory modalities in the filter. Figure 15 presents a typical example of trajectory reconstructed by
all the three measurement approaches we introduced in Section 4.3.3. The velocity approach—the state-of-
the-art practice—that considers those information as relative measurements, is the least precise, with the
highest average position error; see Figure 15 (right). This is due to the corner cutting behavior emphasized
in Figure 15 (middle). The incremental position approach performs reasonably well in indoor environments,
which are well -conditioned for the ICP and the VO sensory modalities—especially the ICP algorithm is
really precise as there are enough features to unambiguously fix all degrees of freedom. On the other hand,
in larger environments with less constraints (expected for USAR), the trajectory approach allows the IMU
and the OD information to better correct the drift of the ICP and the VO sensory modalities.
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Figure 15: Comparison of effects of the three different ICP aiding approaches on the estimated trajectory
(left, middle) and on the average position error (right). Note the corner cutting effect of the velocity approach.

5.4 Failure case analysis

As seen in the previous sections, there are plenty of occasions in USAR environments for which the generic
assumptions of the EKF are not valid. The most frequent example is track slippage that violates the
assumption of Gaussian observation centered on the actual value.

Our failure case analysis reviews each sensory modality involved in the filter to see how the resulting estimate
degrades with partial outage of the modality. IMUs are not subject to much partial failure other than bias
and noise, that are already accounted for in our filter.
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Figure 16: Test trajectory for robot slippage. Black line: ground-truth; red solid line: state estimate with all
four modalities; green dashed line: IMU and odometry fusion. Top left: top view of the trajectory; bottom
left: average error as a function of time; top, middle, bottom right: evolution of x, y, z coordinate.

5.4.1 Robot slippage and sliding

A typical failure case of the odometry modality is significant slippage. Small slippage occurs routinely when
turning skid-steer robots and is usually accounted for by the uncertainty in the odometry model. However,
on surfaces like ice, or inclined wet or smooth surfaces, stronger slippage can occur. Stronger slippages or
sliding are outliers of the odometry observation model. IMU, ICP and VO sensory modalities are not affected
in such a case. In order to simulate such a situation, we placed the robot on a trolley and moved it manually.

Figure 16 shows both the trajectory from the top (top-left plot) and the comparison between the fusion of
all four sensory modalities and the fusion of only IMU+OD. We can see that the latter wrongly estimates no
motion whereas the fusion of all modalities correctly estimates the trajectory. The failure of the partial filter
can be explained by the low acceleration of the platform during the test. As the IMU acceleration signal is
quite noisy, confidence on the IMU cannot compensate for the odometry modality asserting an absence of
motion.

It should be noted that such a failure of the odometry modality does not lead to a failure of our complete
filter.

5.4.2 Partial occlusion of visual field of view

Partial occlusion, overexposure, or projections of dirt on the camera could lead to faulty estimation of the
motion by the VO. In order to test this situation, we occluded one of the cameras of the omnicamera (see
Figure 17). Reduction of the field of view of the omnicamera causes in the vast majority of cases a reduction
in the number of visual features being robustly detected by the VO. The insufficient number of features can
then cause the VO to incorrectly estimate the attitude. This information then propagates into the state
estimate and can make the fusion algorithm fail.

Figure 18 shows the result of the filter in such a case. We can see that during a first loop of the trajectory,



Figure 17: Picture from the partially occluded omnicamera. Notice the dark rectangle in the middle
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Figure 18: Trajectory reconstruction with partial omnicamera occlusion. Black line: ground truth; Solid red
line: state estimate with all four modalities; Dashed green line: state estimate excluding visual odometry;
Black arrow: visual odometry failure. Top left: top view of the trajectory; Top right: average position error
around visual odometry failure; Bottom: attitude estimated along the trajectory.
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Figure 19: Trajectory estimates in case of low ICP frequency. Black line: ground truth; cyan line: positions
estimated by ICP alone; red line: state estimate with all four modalities; green dashed line: state estimate
excluding ICP measurements. Left: top view; middle: 3D view; right: average position error.

the state estimation is correct. Then, lacking a sufficient number of features, the VO computes an erroneous
estimate and the final state estimate degenerates. On the contrary, by leaving out the visual odometry, the
state estimation would continue to perform satisfactorily.

It is to be noted that more than the portion of the field of view occluded, it is the number, quality and
distribution of features that matters. One typical way to prevent this issue is to monitor the number of
features and eventually their distribution in the field of view—our VO tries to have corresponding features
spread over the whole image. As Figure 18 shows, even with the partial occlusion of the field of view, the
VO performed correctly during most of the trial. This observation holds also for too dark or over-exposed
images.

5.4.3 Temporary laser scanner outage

As demonstrated above, our trajectory approach to fusion of ICP measurements is able to cope with the
relatively low frequency of laser scanning. As the laser is moving, it can be blocked in case of collision or
high vibration of the platform (safety precaution at the level of the motor controller). When this happens,
it is necessary to initiate a recalibration procedure that can take around 30 s.

We simulated this situation by throttling the laser point clouds, which resulted in ICP measurement outages
of up to 40 s. Figure 19 shows the trajectory estimates for this test. On the left the cyan polygon shows
the position estimates of ICP linked by straight lines (no filtering). It is to be noted that in this case, the
positions are accurate compared to the ground-truth but of very low sampling rate. We can see in the middle
and right graphs that the filter estimates degrade gracefully. There is some drift, mostly along elevation due
to slippage, but even with this low frequency, the ICP measurements help correcting the state estimates over
just the IMU, odometry and visual odometry.
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Figure 20: Trajectory estimates in case of moving obstacle in reduced field of view. Solid black line: ground
truth; solid red line: state estimate with all four modalities; dashed green line: state estimate excluding ICP
measurements; cyan line: position estimated by ICP alone; black arrow: start of moving obstacle. Top left:
3D view; bottom left: average error as a function of time; right: x, y, and z coordinates as a function of
time.

5.4.4 Moving obstacle and limited laser range

Unlike the cameras, laser range sensors are not sensitive to illumination conditions. On the other hand, they
have a limited sensor range which can induce a lack of points in large environments. Close range obstacles
might then be the dominant cluster of points and hence the ICP registration might converge to a wrong
local minimum, following the motion of the obstacles.

In order to test this situation, we artificially limited the range of the laser range sensor to 2m. This is similar
to heavy smoke or dust scenarios that can arise in USAR conditions. This prevents the laser to observe the
walls and the ceiling that are, indoors, usually the strongest cues for correct point cloud registration.

Additionally, we used a large board to simulate a moving obstacle of significant size. This caused the ICP
to drift, following the motion of the board.

Figure 20 shows the result of the filter compared to ground truth. We can see that when the large obstacle
starts to move, the estimate of the ICP drifts with it. As a consequence the whole filter drifts as well. This
is analogous to the slippage situation, in which the ICP modality compensates the combined estimate of the
other three modalities. Using the omnicamera information not only as visual compass but also as a complete
visual odometry modality would probably allow to make the difference between those two situations.

5.4.5 Map deformation

As explained above, the ICP map is not globally optimized. This means that the map might have some large
scale deformations due to the accumulation of small errors. We were able to observe this particularly in a
long corridor that we used to assess the impact of map deformation on the state estimate.

Figure 21 shows an instance of the deformed map. We drove along two superposed corridors over two floors.
We can see that both ends of the corridor are not aligned: the ground plane of the blue end has a roll angle



 

Figure 21: Deformed point cloud map created by ICP. The points are colored alongside the corridor from
red (initial position) to blue. Left: front view; top right: side view; bottom right: top view.

of several degrees compared to the red end. We used the theodolite system to acquire ground truth on the
upper floor.

Figure 22 shows the impact of map deformation on the state estimate. The top graph shows that even if the
ICP estimate is erroneous, the full filter maintains a correct, drift-free estimate. The bottom graph compares
the estimate of the roll angle between ICP only and the fusion. It clearly shows the drift in roll of the ICP
estimate and the lack of impact it has on the fusion. The difference with previous failure case lies on the
kind of drift. The drift of the roll angle can be compensated for by the IMU, especially the accelerometer.
On the other hand, the drift in position of previous failure case is not observable by the other modalities.

6 Conclusion

We designed and evaluated a multi-modal data fusion system for state estimation of a mobile skid-steer robot
intended for Urban Search and Rescue missions. USAR missions often involve in- and outdoor environments
with challenging conditions like slippage, moving obstacles, bad or changing light conditions, etc. In order
to cope with such environment, our robot is equipped with both proprioceptive (IMU, tracks odometry) and
exteroceptive (laser rangefinder, omnidirectional camera) sensors. We designed such a data fusion scheme in
order to adequately include measurements from all these four modalities with order of magnitude difference
in update frequency from 90Hz to 1

3 Hz.

We tested our algorithm on approximately 4.4 km of field tests (over more than 9 hours of data) both in-
and outdoors. In order to have precise quantitative analysis, we recorded ground truth using either a
Vicon motion capture system (indoors) or a Leica theodolite tracker (outdoors). This way we proved that
our scheme is a significant improvement upon standard approaches. Combining all four modalities: IMU,
tracks odometry, visual odometry and ICP-based localization, we achieved precision in the total distance
driven of 1.2% error in the indoor environment and 1.4% error in the outdoor environment. Moreover,
we characterized the reliability of our data fusion scheme against sensor failures. We designed failure case
scenarios according to potential failures of each sensory modality that are likely to occur during real USAR
missions. In course of this testing, we evaluated robustness with respect to: heavy slippage (odometry failure
case), reduction of field of view of the omnicamera (visual odometry failure case), and reduction of the laser
rangefinder together with large moving obstacles spoiling the created metric map (ICP-based localization
failure case).
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Figure 22: Trajectory estimates in case of map deformation. Solid black line: ground truth; solid red line:
state estimate with all four modalities; cyan line: position estimated by ICP alone. Top: side view; bottom:
roll angle along the trajectory.

While our filter demonstrates good accuracy during our field tests and is robust against some of the failures
expected in USAR, there is still a space for improvement—the need for an automatic failure detection and
resolution. Exploring different methods of detecting anomalous measurements and rejecting them in order
to improve the overall performance is one of the ways, but it is currently left for future work. Furthermore,
developing a visual odometry solution capable of providing also estimates of scaled translation is another
topic for the future.

It is not surprising that combining more modalities yields more precision. But we were able to show that
if such a rich multi-modal system is well designed, it will perform reasonably well even in cases, where
other systems exploiting fewer modalities fail completely. We describe how to design such system using the
commonly used EKF. In this way we contribute by proposing and comparing three different approaches to
treat the ICP measurements; out of which the trajectory approach proved to perform best.

To contribute to the robotics community, we release our datasets used in this paper, including the ground
truth measurements from Vicon and Leica systems.
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